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Abstract: Plantations of fast-growing forest species such as black locust (Robinia Pseudoacacia) can
contribute to energy transformation, mitigate industrial pollution, and restore degraded, marginal
land. In this study, the synergistic use of Sentinel-2 and Sentinel-1 time series data is explored for
modeling aboveground biomass (AGB) in black locust short-rotation plantations in northeastern
Greece. Optimal modeling dates and EO sensor data are also identified through the analysis. Random
forest (RF) models were originally developed using monthly Sentinel-2 spectral indices, while,
progressively, monthly Sentinel-1 bands were incorporated in the statistical analysis. The highest
accuracy was observed for the models generated using Sentinel-2 August composites (R2 = 0.52).
The inclusion of Sentinel-1 bands in the spectral indices’ models had a negligible effect on modeling
accuracy during the leaf-on period. The correlation and comparative performance of the spectral
indices in terms of pairwise correlation with AGB varied among the phenophases of the forest
plantations. Overall, the field-measured AGB in the forest plantations plots presented a higher
correlation with the optical Sentinel-2 images. The synergy of Sentinel-1 and Sentinel-2 data proved
to be a non-efficient approach for improving forest biomass RF models throughout the year within
the geographical and environmental context of our study.

Keywords: optical; SAR; spectral indices; AGB; seasonal; random forests

1. Introduction

Europe’s Green Deal strategy sets out the pathway for transforming the European
Union (EU) towards climate neutrality by 2050. Energy transition is the cornerstone of
the strategy, along with the reduction of greenhouse gas emissions, decarbonization of
the energy sector, and neutralization of greenhouse gases released into the atmosphere
through carbon sequestration. As part of the European Green Deal, Renewable Energy
Directive II sets rules for the EU to achieve a minimum 32% share of renewables in final
energy consumption by 2030 [1]. To reach such an energy target, the deployment and
use of renewable energy resources, such as the bioenergy derived from organic material,
have to be promoted and upgraded. Forest species have long been recognized for their
potential contribution in increasing carbon sequestration and carbon storage as well as
serving as an alternative bioenergy source to emission-intensive fossil fuels [2,3]. Forest
plantations, despite their relatively small extent, comprising 7% of forest areas globally [4],
constitute carbon sinks, add landscape diversity, support habitat biodiversity, and have a
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vital role in the protection of landscape ecosystem services [5]. In addition, within the EU,
short-rotation forest plantations have been promoted not only for achieving national and
supranational goals of climate neutrality but also as part of the set-aside strategy under
the Common Agricultural Policy (CAP) introduced in 1988, which imposes quotas in the
proportion of agricultural land used for the production of agricultural commodities [6].
As such, throughout Europe, short-rotation forest plantations composed of fast-growing
tree species such as willow, poplar, and black locust, harvested in periods of 2–20 years,
are grown under intensive agricultural practices to achieve high biomass energy and fiber
yields [7].

Long-term ecological, economic, and social sustainability of biomass production,
optimization of cost-efficient management, minimization of susceptibility and exposure
of short-rotation forest plantations to hazards, and regulation of biomass supply in the
biomass market [4] require accurate spatial and temporal information related to the extent,
status, and silvicultural parameters of plantations. Such information can nowadays be pro-
vided by remote sensing sensors [8]. While in short-rotation plantations, stand age is usu-
ally known, other parameters related to biomass estimation (i.e., diameter at breast height,
root collar diameter, height) are measured through destructive and non-destructive field
measurements involving significant budget, time, and personnel demands [9]. Coupled
with such measurements, remote sensing can provide reliable, updated, and cost-efficient
information for estimating biomass and carbon content across space and time, reducing
overall time and personnel costs [10,11]. With the increasing availability and advent of
the technical characteristics of earth observation (EO) data, remote sensing methods have
been explored and applied for vegetation biomass estimation not only over primary and
secondary natural forests [12] but also over short-rotation plantation forests.

Regarding the use of optical data, a range of methods has been employed for biomass
estimation over plantations. Selection of the optimal approach is made according to scene
characteristics and EO data’s spatial, spectral, and temporal resolutions as well as data
accessibility and affordability. Stem biomass in eucalypt plantations in Brazil has been
estimated from time-series Normalized Difference Vegetation Index (NDVI) data and from
high temporal but low spatial resolution MODIS data [13]. Carbon stock in date palm
plantations in the United Arab Emirates has also been estimated using linear regression
models based on original and synthetic Landsat-8 OLI bands [14]. Chen et al. [15] also
explored the relationship between rubber biomass and Landsat and Sentinel-2 data using
linear and non-linear regression models in Hainan Island, China. Commercially, very
high spatial resolution optical data has also been employed over forest plantations for
black locust biomass estimation in Loess Plateau [16] as well as for eucalyptus and pine
biomass estimation in South Africa [17]. Data obtained by active sensors, such as Light
Detection and Ranging (LiDAR), for biomass estimation over plantations through direct
tree size measurements, have, so far, limited use due to the associated (high) costs. Only
recently, Lu et al. [18] estimated forest biomass in black locust plantations in the Yellow
River delta based on LiDAR point clouds. On the other hand, active data from Synthetic-
Aperture Radar (SAR) satellite sensors have been extensively employed for plantation
biomass estimation, taking advantage of the fact that SAR can operate unaffected by
daylight and cloud conditions; it is also able to penetrate the tree canopy [19,20]. For
example, ALOS PALSAR data have been used for forest plantations for oil palm [21] and
eucalyptus [22] biomass prediction. In addition, several studies over natural forest areas,
but rarely over plantation areas, have also explored the combination of both passive and
active sensors for increasing modeling and prediction accuracy of aboveground biomass
(AGB) [20]. Laurin et al. [19] predicted AGB in a Mediterranean pine forest in central
Italy using Sentinel-1, ALOS-2, and Sentinel-2 data, while Chen et al. [23] used ALOS-2,
Sentinel-1, Sentinel-2, and a digital elevation model to map AGB in mixed forests in China.
Therefore, the synergetic use of passive and active data for AGB estimation in short-rotation
plantations has not been previously explored in such an environmental (i.e., afforested
agricultural land) research framework (i.e., optimal modeling dates).
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In the present study, EO passive and active data blending using a random forest
(RF) modeling procedure is explored for estimating AGB over short-rotation black locust
(Robinia Pseudoacacia) plantations over afforested agricultural fields in northeastern Greece.
In addition, the effect of monthly variations in the canopy and leaf characteristics of black
locust in AGB on overall modeling accuracy is also assessed. This objective is accomplished
through (i) the analysis of the relationship of individual spectral indices and backscattering
coefficients with AGB throughout the annual phenological stages and (ii) the development
of monthly RF models using EO data from the Sentinel-1 and Sentinel-2 satellite duos.

2. Materials and Methods
2.1. Study Area

The short-rotation black locust plantations under study are located in northeastern
Greece in the northern part of the Evros regional unit (Figure 1). Black locust plantations
have covered approx. 44% of the total agricultural afforested area in Greece since the
introduction of national Regulations 2080/92 and 1257/99 under the implementation
framework of EU CAP [24]. Black locust is a fast-growing species that produces large
amounts of biomass and high-density wood; it can also conserve soil and water, fixes soil
nitrogen, and presents strong adaptability on low fertility soils, making it ideal for marginal
land exploitation [25].
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Figure 1. Location of the study area and field plot distribution.

Land use in the northern part of the Evros regional unit is dominated by agricultural
activities due to the mild topography, fertile soil, and available water resources. Elevation
in the area where the plantations have been established ranges from 15 to 455 m above mean
sea level (m.s.l.), while the mean elevation is 99.19 m. It is noteworthy that approximately
80% of the study area can be described as lowland, according to Dikau’s classification [26],
with mild slopes (Figure 1).
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Moreover, according to Beck et al. [27], the climate of the area that contains the sur-
veyed plots belongs mostly to the Csa (hot-summer Mediterranean climate) type, consistent
with Koppen-Geiger’s climate classification. Records of the meteorological station located
at Alexandroupoli indicate that the months with the highest rainfall are April (53 mm),
November (50.4 mm), December (48 mm), and May (47 mm), while, on the other hand, the
months with the lowest rainfall are July (0 mm), September (1.2 mm), and March (6 mm).

2.2. Analysis Workflow

The methodological approach of the present study for modeling the AGB of black
locust consists of five main steps (Figure 2). In the first step, data are collected by per-
forming field measurements on survey plots and by filtering the Sentinel-2 and Sentinel-1
image collections to create seasonal time-series. In the second step, the initial datasets
undergo preprocessing by utilizing an allometric equation for AGB calculation from field
measurements and by generating monthly composites from Sentinel-2 and Sentinel-1 fil-
tered imagery. The third step involves the calculation of multispectral indices along with
the value extraction from both multispectral indices and radar backscatter (VV and VH) for
each survey plot. In the fourth step, Spearman rank correlation analysis is applied to the
multispectral and radar variables in order to explore the correlation between each variable
and the ABG for each month. Finally, in the last step, random forest models are developed
using four different datasets, spectral variables, and the synergetic use of Sentinel-2 and
Sentinel-1 variables. The flowchart diagram in Figure 2 presents a general description of
the processing steps of our research.
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2.3. In Situ Measurements

Field data collection in the forest plantations of the study area was carried out from
June to September of 2019. The parcel boundaries of the forest plantations in the whole
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area were manually digitized through visual interpretation of very high-resolution satellite
basemaps. Since the Forest Service is responsible for the monitoring of the plantations,
according to the requirements of national regulations, hard-copy records from the local
forest service department were retrieved in order to populate the attributes (i.e., date of
establishment, silvicultural treatments implemented, eligibility, species) of the plantation
polygons through a laborious procedure. A stratified random sampling procedure was
followed, considering the date of planting and silvicultural treatments for selecting the
105 square plots. The 0.09 ha plots were established within each parcel with the aid of the
Global Navigation Satellite System (Figure 1). Furthermore, in each plot, the number of
trees, their diameters at breast height (d1,3), and heights (H) were measured (Table 1). The
characteristics of the black locust trees are described in Table 1 and show that the average
AGB is 33.43 Mg ha−1; AGB values range from 4.41–98.12 Mg ha−1, and the standard
deviation is 16.45 Mg ha−1.

AGB for individual trees was estimated by utilizing the allometric equation developed
by Annighöfer et al. [28] for northern Italy. The non-linear model (Equations (1) and (2)) is
based on the relationship between AGB and the diameter at breast height (DBH) and tree
height and allows the calculation of the total aboveground biomass, as follows:

ln(BM) = α + β × ln
(

D2 × H
)

(1)

BM = exp(a)× (D2)
b × Hb + CF (2)

where BM (Mg ha−1) represents the total dry weight of the biomass, α = −3.33 and b =
0.95 represent the fitted parameters, CF = 1.004 represents the correction factor when using
the unlogged versions of the formula, D represents the diameter at breast height, and, H
represents the height of the tree.

Table 1. Summary statistics for black locust measurements in the study site.

Trees per Ha Height (m) Diameter at Breast
Height (cm)

Above Ground Biomass
(Mg ha−1)

Average 1589 7.64 8.71 33.43
Range 733–3522 0.5–22 3–28.7 4.41–98.12
Standard Deviation 355 1.98 2.77 16.45

2.4. Remote Sensing Data and Preprocessing

Data acquired from the Sentinel-2 MultiSpectral Instrument (MSI) between January
2019 and December 2020 were used in this study. Clouds, cirrus, cloud shadows, and snow
were masked from the Sentinel-2 surface reflectance product (L2A) within the Google Earth
Engine (GEE) environment using the scene classification map resulting from the surface
reflectance retrieval procedure [29]. In total, 400 Sentinel-2 tiles (granules TMF and TMG)
were used. Sentinel-2 monthly composites with average values were created within the
GEE. The lower spatial resolution (20 m) bands covering the red-edge and infrared part
of the spectrum (i.e., 5, 6, 7, 8A, 11, and 12) were resampled to a 10-m spatial resolution.
In order to compress the spectral information of Sentinel-2, to limit data redundancy
and spectral information, 10 spectral indices (Table 2) were calculated for each monthly
composite. The selection of spectral indices was based on their merits for AGB estimation,
identified in earlier studies [20,30–32].

A Sentinel-1 dataset was also retrieved and processed by the GEE, consisting of
29 ground range detected (GRD) C-band SAR images of interferometric wide (IW) swath
mode and VV and VH dual-polarization acquired between January 2020 and December
2020 (Figure 3). The images were of descending pass, and all of them belonged to the same
relative orbit (i.e., 109). Regarding preprocessing, each 10-m scene was initially calibrated
into σ0 backscatter coefficient values and despeckled using a 5 × 5 Lee filter, while terrain
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correction involved the use of SRTM 30 [30]. The final step involved the conversion of pixel
values into decibels (dB), according to the following Equation (3):

σ0(dB) = 10 ∗ log10
(

σ0
)

(3)
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Sentinel-1 time series backscattering coefficients for VH and VV polarizations at 10 m
resolution were also generated using a monthly average composition method. VV and
VH variables were chosen because they are the most useful and widely used variables
in the literature; they involve the estimation of AGB with the aid of C-band SAR im-
agery [19,20,23,30]. Specifically, VH polarization is generally preferred due to the fact that
it is less influenced by soil moisture [20], and VV returns are linked to crown biomass [31].
Moreover, VV polarization, although influenced by soil moisture and surface roughness,
when combined with VH polarization, can possibly reduce the influence of surface scatter-
ing and foliar water content [33], thus making the S1 signal more sensitive to AGB [19].

Table 2. Sentinel-2- and Sentinel-1-based features evaluated as black locust AGB predictors.

Index Formula Reference

Sentinel 2

NDVI NDVI = (NIR−Red)
(NIR+Red)

[34]

NDWI
NDWI=(NIR−SWIR1)

(NIR+SWIR1)
[35]

NDI45 NDI45= (RE1−Red)
(RE1+Red)

[36]

MCARI MCARI = [(RE1 − Red)− 0.2 × (RE1 − Green)]× (RE1 − Red) [37]

PSSRa PSSRa = NIRn1
Red [38]

GEMI
GEMI = eta×(1−025×eta)−(Red−0.125)

(1−Red)
[39]

where
eta =

[2×(NIR2−Red2)+1.5×NIR2+0.5+0.5×Red]
(NIRn1+Red+0.5)

[39]

WET
WET = 0.1509 × Blue + 0.1973 × Green + 0.3279 × Red + 0.3406 × NIR

−0.7112 × SWIR1 − 0.4572 × SWIR2
[40]

RSR RSR= NIR
Red × SWIR1max−SWIR1

SWIR1max−SWIR1min [41]

EVI EVI = 2.5 × NIR−RED
1+NIR+6×Red−7.5×Green [42]

GNDVI GNDVI = (NIR−Green)
(NIR+Green)

[43]

Sentinel 1

VV vertical transmit and vertical receive polarization
VH vertical transmit and horizontal receive polarization
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2.5. Random Forest Modeling and Assessment

Initially, only pixels located completely within the plot boundary were used to calcu-
late the mean plot values. Plot values were extracted for each survey plot from backscatter
coefficients and spectral indices, and then they were used in the statistical analysis. The
relationship among spectral indices/backscattering coefficients and AGB throughout a
year was explored through a pairwise correlation (Spearman rank correlation) analysis.
This correlation approach does not require assumptions of the distribution of the data
being normal or linear [40].

Subsequently, RF models at a monthly basis were developed using Sentinel-2 spectral
indices (S2); Sentinel-2 spectral indices and Sentinel-1 VV backscattering (S2/S1_VV);
Sentinel-2 spectral indices and VH backscattering values (S2/S1_VH); and Sentinel-2
spectral indices with VV and VH backscattering values (S2/S1). RF is a machine learning,
non-parametric method that combines multiple decision trees [41]. RF, being a bagging
ensemble algorithm, can handle multicollinearity issues due to random predictor subset
selection [42,43]. Previous studies have confirmed RF’s stability [44] and relative resistance
to overfitting as well as its effectiveness in AGB estimation [18,20].

RF analysis was performed using the randomForest package [45]. Concerning RF
tuning parameters, the number of trees in the forest (ntree) was optimized based on the
out-of-bag (OOB) estimated error; as for the minimum number of observations in a node
(nodesize) and the number of random variables used in each tree (mtry), they were set to
default values [45]. Based on this optimization procedure, ntree was set to 500, nodesize
was set to 5, and mtry was set to 1/3 of the predictor variables.

RF models were fitted using all the data, while model performance was accessed
using the OOB sample. RF as a bagging technique considers a random bootstrap sample
of two-thirds of available data to train each tree; the remaining one-third of the original
data, called the out-of-bag-sample, is used to calculate the mean prediction error (out-of-
bag error) get unbiased out-of-bag estimates [41]. In other words, self-testing is possible
even if all data are used for training since the RF model can be fitted into one sequence,
with cross-validation being performed along the way [46]. A 10-fold cross-validation was
performed along the way [46], using two-thirds of the available training data to grow each
tree, and the remaining one-third was used to calculate the OOB error [47]. Finally, the
calculations of the coefficient of determination (R2) and the root mean square error (RMSE)
based on OOB were used as indicators for the model’s accuracy and the verification of the
best dataset for AGB estimation.

3. Results

From June to October, during the phenophases of flowering to defoliation [48], all
spectral indices presented positive, statistically significant correlations with black locust
biomass. Figure 4 illustrates the average temporal NDVI and NDWI profiles of black locust
plantations (2019 and 2020). The symmetrical seasonal change demonstrated from the
NDVI values records the opening of the buds and mid-spring leaf development, with
peak foliage development occurring in late May–early June. Fall leaf coloring begins in
approximately mid-September, and defoliation begins in October, followed by leaf-off in
November [48]. The leaf yellowing in summer (starting in July) is related to drought stress
and high temperatures and is also noted in the NDVI decrease over this period. These
findings, related to black locust phenology, are also confirmed by NDWI seasonal variation
(Figure 4) since positive values have been linked to healthy vegetation [33].

The strongest relationship between spectral indices and AGB is noted in July except
for WET and MCARI indices, which present a higher correlation in August. In all months
except May and January, RSR values present statistically significant correlations with
measured black locust biomass throughout the year.
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Figure 4. Time-series of the seasonal variation of Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI) indices derived from Sentinel-2 images.

In January, none of the indices are correlated with AGB (p > 0.05), while in February
and March, only the RSP index presents statistically significant correlations (p < 0.01).
Furthermore, in April, four indices (NDVI, NDI45 PSSRa, and RSR) present a correlation,
with p < 0.05. Additionally, in May, further to RSR, NDI45 is not correlated with AGB,
while in the same month, three indices (MCARI, GEMI, and WET) present their weakest
correlation. In November and December, a few indices present statistical, albeit weak,
correlations with AGB.

Spearman’s correlation analysis (Table 3) also indicated that Sentinel-1 backscattering
coefficients of the VV band in March, May, July, and October are statistically correlated
(p < 0.01) with AGB. The March composite presents the maximum correlation (R = 0.35).
On the contrary, the measured VV polarization backscattering coefficients do not present a
significant correlation in January, April, June, August, and November.

Table 3. Spearman’s rank correlation coefficients (*: 0.01 < p < 0.05; **: p < 0.01) for Sentinel-2 spectral indices with black
locust AGB measured in the 105 plots.

MONTH NDVI NDWI NDI45 MCARI PSSRA GEMI WET RSR EVI GNDVI

JANUARY 0.00 −0.02 −0.03 −0.11 0.01 −0.09 0.04 0.12 −0.07 0.04
FEBRUARY 0.11 0.05 0.13 −0.03 0.12 −0.02 0.14 0.30 ** −0.02 0.13

MARCH 0.13 0.06 0.09 −0.11 0.14 0.01 0.18 0.26 ** −0.02 0.16
APRIL 0.20 * 0.15 0.21 * 0.05 0.22 * 0.16 0.17 0.23 * 0.13 0.15
MAY 0.22 * 0.37 ** 0.18 0.21 * 0.24 * 0.34 ** 0.32 ** 0.10 0.41 ** 0.21 *
JUNE 0.39 ** 0.48 ** 0.34 ** 0.27 ** 0.39 ** 0.51 ** 0.35 ** 0.28 ** 0.48 ** 0.36 **
JULY 0.60 ** 0.64 ** 0.63 ** 0.38 ** 0.60 ** 0.62 ** 0.62 ** 0.59 ** 0.60 ** 0.53 **

AUGUST 0.28 ** 0.63 ** 0.32 ** 0.52 ** 0.30 ** 0.39 ** 0.64 ** 0.31 ** 0.54 ** 0.20 *
SEPTEMBER 0.54 ** 0.51 ** 0.62 ** 0.31 ** 0.55 ** 0.49 ** 0.51 ** 0.55 ** 0.41 ** 0.48 **
OCTOBER 0.38 ** 0.37 ** 0.45 ** 0.38 ** 0.39 ** 0.35 ** 0.41 ** 0.37 ** 0.33 ** 0.30 **

NOVEMBER 0.15 0.08 0.21 * 0.09 0.17 0.05 0.11 0.20 * 0.05 0.15
DECEMBER 0.24 * −0.01 0.20 * −0.06 0.22 * 0.01 0.11 0.29 ** −0.02 0.21 *

Correlation analysis between field-measured AGB and monthly VH values indicates
a significant correlation for all months except June and October (Table 4). The highest
correlation is noted in January (R = 0.47). During March, May, and July, both VV and VH
backscattering coefficients provide high significant correlations (p < 0.01) with AGB.

Subsequently, four classes of RF models were trained and evaluated. RF models were
developed using solely monthly spectral index values (S2) coupled with VV (S2/S1_VV),
VH (S2/S1_VH), and both VV and VH backscattering coefficients (S2/S1) (Table 5).
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Table 4. Spearman’s rank correlation coefficients (*: 0.01 < p < 0.05; **: p < 0.01) for Sentinel-1 variables
with black locust AGB measured in the 105 plots.

MONTH VV VH MONTH VV VH

JANUARY 0.12 0.47 ** July 0.29 ** 0.34 **
FEBRUARY 0.23 * 0.44 ** August 0.18 0.22 *

MARCH 0.35 ** 0.29 ** September 0.22 * 0.35 **
APRIL 0.19 0.28 ** October 0.27 ** 0.07
MAY 0.27 ** 0.28 ** November 0.14 0.26 **
JUNE 0.11 0.14 December 0.24 * 0.25 *

Table 5. Accuracy assessment results for the monthly RF models.

S2 S2/S1_VV S2/S1_VH S2/S1

Month R2 RMSE R2 RMSE R2 RMSE R2 RMSE

January −0.17 17.62 −0.06 16.79 0.05 15.95 0.05 15.81
February −0.23 17.94 −0.09 17.04 0.04 15.80 0.08 15.62

March −0.16 17.37 0.00 16.16 0.00 16.41 0.06 15.88
April 0.03 16.06 0.06 15.70 0.11 15.39 0.12 15.25
May 0.11 15.27 0.11 15.22 0.11 15.19 0.11 15.25
June 0.08 15.53 0.07 15.73 0.08 15.60 0.07 15.85
July 0.37 12.87 0.36 13.01 0.38 12.81 0.37 12.83

August 0.52 11.26 0.50 11.47 0.51 11.40 0.50 11.54
September 0.37 12.99 0.36 12.95 0.36 12.93 0.37 12.99

October 0.19 14.73 0.18 14.77 0.19 14.58 0.20 14.61
November 0.10 15.45 0.09 15.47 0.10 15.48 0.11 15.47
December −0.08 16.96 −0.04 16.71 −0.05 16.89 −0.06 16.79

For the models consisting only of Sentinel-2 data, the highest R2 (0.52) and low-
est RMSE (11.26 Mg ha−1) are noted when August spectral indices (Figure 5) are used
(R2 = 0.379, RMSE = 12.825 Mg ha−1). In July and September, models achieved nearly
equal accuracy (R2 = 0.37, RMSE = 12.87 Mg ha−1 and R2 = 0.37, RMSE = 12.99 Mg ha−1,
respectively). On the other hand, during the leaf-off season in winter (December, January,
February) and early spring (March), the Sentinel-2 based models performed poorly (R2

below 0).
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The synergistic use of passive and active Sentinel data slightly decreased the accuracy
compared to the (best performing) Sentinel-2 August model (R2 = 0.50, R2 = 0.51, and
R2 = 0.50 for S2/S1_VV, S2/S1_VH, and S2/S1, respectively). The S2/S1_VH models
presented equal or slightly better performance than S2/S1_VV models. The S2/S1 models
with VV or VH or both VV and VH values were slightly improved over the spectral models
of low performance (January to April and October to December). However, S2/S1 models
using May to September data provided similar levels of accuracy to the Sentinel-2 indices
models, implying that backscattering information had no significant effect on spectral-only
models (Figure 6).
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4. Discussion
4.1. AGB Models Using Sentinel-1 and Sentinel-2 Data

The regular assessment of tree biomass within plantations is increasingly important,
and remote sensing offers a good alternative to costly, time-consuming, and difficult-to-
implement field measurements [49]. In this study, remote-sensing-based AGB models were
developed over short-rotation black locust forest plantations in northeastern Greece using
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open-access medium-high resolution multispectral and radar data. Black locust is the most
common forest species used for afforestation purposes in agricultural and marginal lands
in the region as well as on a national scale in Greece [24].

The results of this analysis indicate that the complementary use of data from the
Sentinel-2 and Sentinel-1 sensors provide marginal or no improvement in AGB modeling
accuracy. Backscatter intensity slightly improved the poor modeling accuracy during the
leaf-off period, implying that VV and VH values derived from the leaf-off season might
carry better information for AGB estimation than spectral values. On the other hand,
during the leaf-on period, the integration of Sentinel-1 bands with e Sentinel-2 spectral
indices in the modeling procedure slightly decreased the models’ accuracy. The inclusion
of noisy or irrelevant predictors may reduce the predictive accuracy of the RF models,
as noted in previous research findings [50]. It seems that since SAR C-band wavelength
penetration is limited in the foliage of black locust due to the presence of leaves, the
backscatter intensity provided no information on top of the spectral response recorded in
the Sentinel-2 indices. Earlier research exploring the synergy between the active and passive
sensors employed in this study presented diverse results related mainly to the wavelength
of the radar data employed, which affected its sensitivity to forest biomass. In a similar
research context in West Africa, Forkuor et al. [51] also found that Sentinel-2 was a better
predictor of AGB than Sentinel-1; however, their combined use increased the accuracy by
0.07 (R2 = 0.90%). Identical improvement in modeling accuracy was noted by Li et al. [52]
in China. On the other hand, Nuthammachot et al. [53] identified that R2 increased by only
0.02 when Sentinel-1 data was fused to an already highly accurate (R2 = 0.84%) Sentinel-2
model over a forest area in Indonesia. On the other hand, Navarro et al. [20] observed a
significant decrease of accuracy for a fused Sentinel-2/Sentinel-1 model, especially over
low AGB density.

The RF spectral-only monthly models during winter (December, January, February)
and early spring (March) presented poor performance (negative R2), indicating that the
models’ predictions are worse when considering the mean AGB for prediction. In line
with this pattern, the results of the pairwise correlation between the individual spectral
indices and black locust indicated very low, non-statistically significant correlations for
the majority of indices over the same period. The reflectance recorded by optical, passive
sensors during winter months over deciduous forest stands [54]—as in the case of the dense
black locust plantations—is a mixture of the reflectance from the woody structural elements
and the heterogeneous (spatially and temporally) vegetation cover of the plantation floor.
The recorded signal is further influenced by tree-to-tree self-shading and the shadows cast
onto the ground from dense branches and brown seed pods of black locust during the
leaf-off period.

With regard to the low performance of the May and June models, it must be noted
that during this period, a peak in vegetation greenness and canopy foliage density is also
observed (Figure 4). Zhu and Liu [55], in their study, also highlighted that the use of
imagery acquired during vegetation peak may result in low accuracy in AGB models due
to saturation. The highest accuracy was observed for the Sentinel-2 models generated from
the July, August, and September spectral indices. The earlier research of our team over
natural deciduous forest stands distributed within the same climatic type region confirmed
that the dry season, prior to the beginning of the senescence phase, was the optimal period
for forest parameter estimation [56].

During July, eight out of ten used spectral indices presented the highest correlation
with black locust AGB compared to their (statistically significant) counterparts of August.
However, the August RF model attained much higher accuracy. Previous studies also
demonstrated that the strength of the RF modeling framework lies in taking into account
the not-so-evident interactions among features [57], as in the case of RS-based variables,
which carry information from different parts of the electromagnetic spectrum.
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4.2. Information Content of Individual Variables

Spectral indices have been used for describing phenological changes in short-rotation
plantations [58]. While NDVI is considered effective for modeling AGB [55], in our case,
the pairwise correlation did not identify this index among the ones presenting the highest
correlations with black locust biomass. Our results also indicated that NDVI during peak
plantation growth in May did not present the highest correlation with AGB. NDVI shows
stronger correlations to AGB in July and at the beginning of the fall season in September.
This weaker relationship in the peak season can be expected due to the saturation effect of
dense canopies [55] and the non-linear relationship between NDVI and green biomass [59].
Similar to NDVI, MCARI and GNDVI (including information from the green part of
the spectrum) were not among the top-ranked indices in terms of correlation with AGB.
Barati et al. [60] also noted that the use of the green band may further decrease the ability
of the index to provide information on vegetation biomass.

The reduced simple ratio (RSR) presents the highest significant correlation during the
period of leaf emergence (March to April). RSR, considering spectral information from the
red, infrared, and short wave infrared parts of the spectrum, has a linear correlation with
leaf area and sensitivity to moisture content [61], leading to a statistically significant (albeit
low) correlation with AGB.

NDI45 presents the highest, statistically significant correlation with black locust AGB
during the maximum leaf senescence and leaf-fall periods (September to November).
Prior research findings have also indicated that NDI45 derived from Sentinel-2 imagery is
sensitive to AGB [53,62]. NDI45, a modified version of the NDVI, is estimated upon spectral
response in the red-edge part of the spectrum, replacing the near-infrared reflectance of
the original NDVI formula. In the study of Mariën et al. [63], information from the
red-edge part of the electromagnetic spectrum was also found to be the most relevant
to the chlorophyll degradation noted during the leaf senescence process in deciduous
forest species.

NDWI shows a highly significant correlation to AGB in the leaf-on season. Specifically,
in July, NDWI has a better relationship to AGB than all the other indices. Other studies
have used NDWI for the Leaf Area Index (LAI), biomass estimation, and gross primary
production [64] in a range of ecosystem types and observed the sensitivity of NDWI to
canopy leaf water content.

Previous studies using single-time spectral indices for AGB estimation have quite
often reported unsatisfactory accuracy results due to saturation, especially when using
foliage peak imagery, demonstrating that seasonal time series of a spectral index can
offer a viable alternative for increasing modeling accuracy [55]. However, despite the
current availability of high spatial–temporal satellite observations, the use of a (single)
spectral index time-series to identify the optimal AGB modeling point is not a trivial
task. Rapid transitions in canopy phenology add further obstacles to the challenges
associated with the variability in canopy-related information during leaf development and
senescence by different spectral indices [65]. Seasonal spectral variations over deciduous
plots are driven by complex structural and biochemical changes occurring at tree level.
Quite often, significant interannual variation in these responses might exist due to climate
forcing [65]. Factors such as forest floor plant cover [66] and seasonal differences in shadow
influences [54,67] add further constraints to the identification of the optimal modeling
date based on a single index. Robust modeling procedures (i.e., RF), exploring the use of
complex interactions and non-linear relationships between several indices on a monthly
basis, seem to provide a viable solution.

With regard to the dataset of Sentinel-1 images, the best results in the current study
were provided by those of VH polarization, which is in agreement with previously pub-
lished research findings [19,20]. Furthermore, concerning deciduous trees, Sentinel-1
images are strongly affected by seasonal phenological behavior, making the use of time-
series highly recommended in such AGB estimations [11,20]. In the case of black locust, the
results indicate that the optimal time period for the use of SAR imagery in AGB estimations
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is from late winter to the beginning of spring, aligned with the findings of Mauya et al. [11].
This observation can be attributed to the fact that during the leaf-off period, C-band wave-
length saturation is at a minimum, and part of the signal backscatters onto the trunk of
the tree [19,20]. On the other hand, soil wetness during the leaf-off period introduces
variability in the backscatter that influences the robustness of the modeling procedure [22].
ESA’s Earth Explorer Biomass mission, planned for launch in 2021, will be carrying the
first-ever P-band SAR sensor, which is expected to contribute to AGB estimation processes.

5. Conclusions

Biomass and carbon stock in forest plantations can significantly contribute to mitigat-
ing climate change effects and a carbon-neutral Europe, providing sustainable bioenergy
for substituting fossil fuel usage. Forest plantations of fast-growing species can also re-
store degraded, marginal land to productive use and act as a phytoremediator to absorb
heavy metals in contaminated land. Regular assessment of the quantitative and qualitative
status of plantation biomass through remote sensing is important for silvicultural man-
agement, identification of infections and health monitoring, mitigation of any negative
environmental impacts, and prioritization of biomass harvesting and energy planning.

In this study, Sentinel-2 and Sentinel-1 time series data were employed for estimat-
ing AGB in black locust forest plantations in northeastern Greece. Spectral indices and
backscattering coefficients were employed to examine monthly changes in AGB modeling
accuracy. The modeling framework was based on RF regression, while individual pairwise
correlations between remote sensing variables and AGB were also explored.

The highest accuracy was observed for the Sentinel-2 models generated from July,
August, and September spectral indices. In particular, the August model achieved a rather
satisfactory prediction accuracy (R2 = 0.52). However, the indices used for the development
of the July and September models presented higher, statistically significant correlations
with the AGB. This finding confirms the well-known complex mechanisms driving forest
species reflectance, from leaf to landscape, as well as the efficiency of RF modeling to
handle these complex, hidden interactions among indices containing information from
different parts of the spectrum. It also underlines the caution that should be applied when
employing variable selection procedures in RF models. Furthermore, the negative impact
on modeling accuracy from the inclusion of the Sentinel-1 bands into the spectral indices
models should also be noted. Both polarizations demonstrated statistically significant
correlations with AGB in July and September. Again, these findings indicate that individual
variable correlations might not be a robust approach in RF and that noisy predictors can
have a negative effect on the predictive accuracy of RF.

Single-date indices acquired during peak foliage growth presented both low pairwise
correlations with AGB as well as poor prediction ability when integrated into the RF
model. The relatively flat terrain allowed us to study the temporal changes induced in the
correlations between spectral indices and the AGB of a forest species, with minimal cloud
obstruction and distortions resulting from shadowing or terrain normalization procedures.
One index (i.e., RSR) presented a stable, positive correlation with AGB for many months
throughout the year, while MCARI presented the lowest correlation throughout the year.
The comparative performance of the spectral indices in terms of correlation with AGB
varied among the phenostages and different ranges of biomass.

Overall, the high temporal and spectral resolution of the Sentinel satellites facilitated
the development of monthly black locust AGB models and contributed to the identification
of the optimal phenostage in terms of modeling accuracy. The results of the study indicate
that such a monthly modeling approach, based only on Sentinel-2 data, can be transferred
across the country for biomass mapping over black locust plantations.
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