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Abstract: The detection and recognition of unstructured roads in forest environments are critical for
smart forestry technology. Forest roads lack effective reference objects and manual signs and have
high degrees of nonlinearity and uncertainty, which pose severe challenges to forest engineering
vehicles. This research aims to improve the automation and intelligence of forestry engineering
and proposes an unstructured road detection and recognition method based on a combination of
image processing and 2D lidar detection. This method uses the “improved SEEDS + Support Vector
Machine (SVM)” strategy to quickly classify and recognize the road area in the image. Combined
with the remapping of 2D lidar point cloud data on the image, the actual navigation requirements of
forest unmanned navigation vehicles were fully considered, and road model construction based on
the vehicle coordinate system was achieved. The algorithm was transplanted to a self-built intelligent
navigation platform to verify its feasibility and effectiveness. The experimental results show that
under low-speed conditions, the system can meet the real-time requirements of processing data at an
average of 10 frames/s. For the centerline of the road model, the matching error between the image
and lidar is no more than 0.119 m. The algorithm can provide effective support for the identification
of unstructured roads in forest areas. This technology has important application value for forestry
engineering vehicles in autonomous inspection and spraying, nursery stock harvesting, skidding,
and transportation.

Keywords: unstructured road recognition; forest engineering; unmanned ground vehicle (UGV);
autonomous navigation; multi-sensor fusion

1. Introduction

The role of unmanned operating vehicles in forest areas to promote sustainability and
improve efficiency is fully recognized in the forest supply chain. The detection and recog-
nition of unstructured roads in forest areas are of great significance for the autonomous
navigation of forestry engineering vehicles. To solve the problem of unstructured road
identification, many methods have been proposed.

The road model method is a common road-recognition method [1–4]. Xu Ming et al.
used the two-dimensional Otsu algorithm to segment the region of interest and extract the
road boundary [5]. Based on the judgment of the road model by the offline scene classifier,
Zuo Wenhui et al. proposed that an off-line scene classifier was efficiently learned by both
low- and high-level image cues to predict the unstructured road model [6]. The road model
method has a significant effect on road recognition when there is a high level of structure.
However, for completely unstructured roads with unclear edges, this method has several
limitations [7–10].
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Vanishing point detection is also a commonly used method for identifying unstruc-
tured roads [11–14]. Ende Wang proposed a method of light normalization based on RGB
(Red, Green and Blue) images [15]. An online voting method based on the maximum
weight was used to estimate the location of the vanishing point to determine the road
boundary. Peyman Moghadam et al. used joint activities of four Gabor filters to estimate
the local dominant orientation at each pixel location in the image plane [16]. The vanishing
point was estimated by weighting the dominant direction of each pixel. However, in the
forest area, a large number of trees and branches have a greater impact on the detection
results of the straight-line classification [17,18].

With the development of hardware technology, the fusion of multiple sensors and
multiple algorithms was used for UGV (unmanned ground vehicle) [19–21]. To overcome
the low accuracy and poor robustness of a single detection method, a novel algorithm
was proposed that combines an SVM (Support Vector Machine) and a K-nearest neighbors
algorithm and the confidence map under a Bayesian framework [22]. This improved the
overall road detection performance. A target detection scheme for an outdoor traversable
area based on binocular vision was also proposed. Possible candidate pairs for road
boundaries were selected from the region boundaries, and the Bayes rule was used to
choose the most probable candidate pairs as the lane boundaries [23,24]. However, these
methods use extremely complex algorithms, and their real-time performance needs to
be improved.

In addition, the increasing interest in neural networks and deep learning stimulates
new ideas for image segmentation and classification [25–28]. Luca Caltagirone et al. used a
fully convolutional neural network for light detection and ranging lidar fusion to improve
the reliability of unstructured environment recognition results [29]. A road-area detection
method based on a Decision-Based Neural Network (DBNN) for outdoor robot single-
camera navigation was also proposed [30]. However, the rapid calculation of deep learning
and recognition of images relies highly on high-performance hardware support and a
significant amount of supervised learning. This greatly increases the cost of equipment.
The real-time performance needs to be further improved.

In summary, although much research has been conducted on road detection in com-
plex outdoor environments, research on the detection of unstructured roads in forest areas
is quite limited [31,32]. Most studies have only focused on the detection and annota-
tion of road regions in images and have not provided accurate road models or spatial
coordinate descriptions.

This study proposes an unstructured road detection system based on a vision camera
and a two-dimensional (2D) lidar to address the problem of unstructured road detection
and recognition in forest environments. Section 2 introduces a self-built forest autonomous
navigation system and the environmental perception method. This section introduces
an unstructured road-area recognition algorithm based on visual images. The algorithm
adopts the strategy of “SEEDS + SVM” to meet the real-time requirements of the mobile
platform. Then, combining the image information, the remapping method of the point
cloud on the image and construction of the road model is introduced. Section 3 shows the
experimental results of the algorithm in the forest area. Section 4 analyzes the effect of
unstructured road recognition. Finally, a feasibility evaluation of the algorithm is conducted
and discussed.

2. Materials and Methods
2.1. Autonomous Navigation Platform of Vision and Lidar Cooperation

For the UGVs to navigate in a forest environment, they need the ability to perform
real-time road detection and direction estimation simultaneously [33,34]. Therefore, the
UGV systems need to have the ability to comprehensively process the lidar point cloud
data and visual images. This enables the vehicle and the system to understand the sur-
rounding environment more accurately, as well as to realize the UGV’s motion planning
and obstacle avoidance.
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In this study, a combination of a 2D lidar and a camera is selected as the forest road
information perception system. During the experiment, a new external calibration method
is used to realize online data space information matching between the vision camera
and the 2D lidar. Figure 1a shows the 3D calibration board that we designed. Figure 1b
shows the calibration test and calibration effect diagram of the calibration board in a
laboratory environment. The matching transformation in the spatial dimension is realized
by calculating the rotation–translation relationship between the vision and the laser system.
Figure 1c shows the calibration of the vision sensor and lidar in the time dimension. The
arrow in the figure indicates the time axis. Each circle or square on the timeline represents
a data frame. The green graph connected by the dotted line indicates data with matching
time-stamps. The remaining data (represented by the yellow graph) were discarded. The
information flow is aligned along the time axis by extracting the message time-stamp.
Detailed information regarding the calibration methods can be found in our previous
study [35].

Forests 2021, 12, x FOR PEER REVIEW 3 of 19 
 

 

rounding environment more accurately, as well as to realize the UGV’s motion planning 
and obstacle avoidance. 

In this study, a combination of a 2D lidar and a camera is selected as the forest road 
information perception system. During the experiment, a new external calibration 
method is used to realize online data space information matching between the vision 
camera and the 2D lidar. Figure 1a shows the 3D calibration board that we designed. 
Figure 1b shows the calibration test and calibration effect diagram of the calibration 
board in a laboratory environment. The matching transformation in the spatial dimen-
sion is realized by calculating the rotation–translation relationship between the vision 
and the laser system. Figure 1c shows the calibration of the vision sensor and lidar in the 
time dimension. The arrow in the figure indicates the time axis. Each circle or square on 
the timeline represents a data frame. The green graph connected by the dotted line indi-
cates data with matching time-stamps. The remaining data (represented by the yellow 
graph) were discarded. The information flow is aligned along the time axis by extracting 
the message time-stamp. Detailed information regarding the calibration methods can be 
found in our previous study [35]. 

  
(a) (b) 

 
(c) 

Figure 1. Joint calibration of the monocular vision camera and the 2D Lidar based on space coor-
dinates and time axis conditions. (a) 3D calibration board; (b) The calibration test; (c) The calibra-
tion of the vision sensor and the lidar in the time dimension. 

For meeting the needs of forest operations, as shown in Figure 2, the UGV platform 
used in the research is a self-built Ackerman chassis platform. It is equipped with CCD 
(charge coupled device) monocular vision camera (LRCP10230_1080P) and 2D Laser 
HOKUYO UST_10LX. The installation method between the sensors is vertical installa-
tion. The advantage of this configuration is that it neither obstructs the field of view but 
also facilitates the fusion of the two-sensor data. 

Figure 1. Joint calibration of the monocular vision camera and the 2D Lidar based on space coordi-
nates and time axis conditions. (a) 3D calibration board; (b) The calibration test; (c) The calibration of
the vision sensor and the lidar in the time dimension.

For meeting the needs of forest operations, as shown in Figure 2, the UGV plat-
form used in the research is a self-built Ackerman chassis platform. It is equipped with
CCD (charge coupled device) monocular vision camera (LRCP10230_1080P) and 2D Laser
HOKUYO UST_10LX. The installation method between the sensors is vertical installation.
The advantage of this configuration is that it neither obstructs the field of view but also
facilitates the fusion of the two-sensor data.
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Figure 2. The self-built forestry UGV platform, equipped with a CCD monocular vision camera and a
2D lidar. 1. CCD monocular vision camera; 2. Two-dimensional lidar; 3. Sensor bracket; 4. Epigynous
machine; 5. Gyro; 6. Ackerman chassis.

Based on the self-designed Ackerman chassis UGV test platform, the test environment
that meets the conditions is configured. The epigynous machine is implemented on a PC
with an Intel Duo Core i7-8700K CPU @ 3.7 GHz and 8 GB of RAM under Linux 16.04 and
ROS-kinetic. Two-dimensional Lidar (HOKUYO UST_10LX) is selected to obtain point
cloud data. The effective detection distance is 10 m. The scanning angle is 270◦. The image
collected by the CCD vision camera (LRCP10230_1080P) is 640 (pixels) × 480 (pixels).

The height of the lidar from the ground is 0.83 m. The height of the camera from
the ground is 0.87 m. The experiments involved in this research are based on this UGV
platform. The external parameters of the 2D lidar and the camera were calibrated, and the
result was:

R =

 0.0031445 −0.99997 −0.00714269
−0.0234563 0.007067 −0.9997

0.99972 0.00331109 −0.0234334

 (1)

T =
[
−0.0146695 0.0222217 −0.135979

]T (2)

2.2. Unstructured Road Detection Based on Vision

This section mainly introduces the image-processing methods and principles. To
realize the rapid identification of roads in forest areas, the “SEEDS + SVM” strategy is
adopted. Image processing is a key component of multi-sensor road recognition.

2.2.1. Superpixel Segmentation

1. Preliminary segmentation;

It is challenging to extract and identify forest road areas owing to their non-structural
features. To extract the road area from the image to guide the driving of the UGV, an
improved SEEDS image segmentation algorithm is proposed.

The improved SEEDS algorithm first performs the initial segmentation of the image.
The CCD monocular vision camera extracts the image of the forest area and reads it into
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the system. The images are converted into the OpenCV Mat multi-channel image type.
Then, depending on the pixel size of the image, the image is segmented. The image is
initially divided into K rectangular sub-regions (superpixels) of the same size. The initial
segmentation of the image is related only to the image size and space constraints. Nimage is
the total number of pixels in the image, and K is the preset number of superpixels. The
mapping relationship is as follows:

s(i) :
{

1, · · · , Nimage
}
→ {1, · · · , K} (3)

where s(i) is the set of all pixels in the superpixel, and i is the pixel assigned to s.
As shown in Figure 3a, it is the original image of the road collected in the forest area.

The number of initial segmentations is K = 4× 4 in Figure 3b. In Figure 3c, K = 6× 5. The
larger the value of K, the higher the accuracy of the final segmentation result. However, the
number of calculations has also increased. Therefore, in practical applications, to balance
the calculation accuracy and time cost, the K value needs to be artificially set according to
the size of the collected image and the configuration of computer hardware.
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2. Energy function construction.

The superpixels of the initial segmentation are usually not the optimal segmentation
results. The superpixel segmentation needs to be optimized based on the initial segmenta-
tion. The problem of image segmentation optimization is challenging. The reason is that
the result of superpixel segmentation should be consistent in perception. In particular, the
color should be as uniform as possible. However, this evaluation is subjective. In addition,
there is no unified mathematical method for the best way of evaluating the uniformity of
regional colors [36]. Almost every study on superpixels in the literature introduces a new
energy function to satisfy its algorithm. To meet the unstructured road identification in the
specific environment of the forest area, in this research, the energy function is constructed
as follows:

E(s) = αH(s) + βG(s) + γCO(s) (4)

The energy function is composed of three image-related indicators. The first term is
H(s) based on the color distribution concentration of the superpixels. The second term
G(s) is the boundary term. The third term is the compactness term CO(s). The energy
function is built by evaluating the color density distribution of each superpixel. E(s) is the
energy value of the evaluated superpixel.

3. Color distribution item H(s);
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The color distribution item is a superpixel evaluation index based on a histogram
of the color distribution density. According to the color distribution in the superpixel, a
histogram of the color distribution density is established:

H(s) = ∑
k

ψ
(
cAk

)
(5)

ψ
(
cAk

)
= ∑

Hk

(
cAk

)2
+
(
g
(
cAk

))2 (6)

cAk (j) =
1
S ∑

i∈Ak

δ(I(i) ∈ Hk) (7)

where ψ
(
cAk

)
is a function that forces the color distribution to be concentrated in one or

several colors; cAk is the color histogram of the set of pixels in superpixel Ak; g
(
cAk

)
is

the difference coefficient; j is the bin of the histogram; I(i) represents the color of pixel i;
s is the normalization factor of the histogram; and, δ(·) is the probability and statistical
function equation. When the color of the pixel falls into the histogram, the value returned
is 1; otherwise, the value returned is 0. Hk is a closed subset of the color space.

g
(
cAk

)
= 1− e

(
cAk

)
(8)

where e
(
cAk

)
is the information entropy. Information entropy is introduced to measure the

degree of dispersion of the color distribution in the superpixels. The information entropy
expression is described as:

e
(
cAk

)
= −∑

Hk

cAk (j) ln (cAk (j)) (9)

The color distribution in the superpixel color block is less concentrated as the informa-
tion entropy increases. The color distribution item is formed by the color density histogram
ψ
(
cAk

)
and the color difference item g

(
cAk

)
. This item is used to measure the concentration

of the superpixel color distribution and is the core term of the energy function.

4. Boundary term G(s);

Based on the color distribution term, the boundary term is introduced to evaluate
the smoothness of the superpixel boundary. It is used to remove local irregularities at the
boundary of the superpixels. For superpixels with smoother borders, this term can improve
the smoothness of the superpixel borders. However, the shape of the more popular borders
seems to be subjective. The programmer can use this item to exercise fine control over the
boundary of the superpixel.

With each boundary pixel as the center, a patch (of size n × n) area Ni is set around
it. Similar to the color distribution item, the local color distribution item of each patch is
counted depending on the color distribution of the histogram. The attribution of boundary
pixels is determined by comparing the similarities between the main color distribution and
the color distribution of the field. Similar to the color distribution item, the algorithm uses
a quality measure to define G(s):

G(s) = ∑
i

∑
k

(
bNi (k)

)2 (10)

bNi (k) =
1
s ∑

i∈Ni

δ(I(i) ∈ Ak) (11)

where k is the bin of the histogram. Each bin corresponds to a superpixel label. The
histogram counts the number of pixels in the boundary patch that fall into label k. The
boundary patch centered on the boundary pixel may belong to any superpixel adjacent to it.
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It is generally believed that when most patches contain only one superpixel, the superpixel
has a better shape.

5. Compactness term CO(s).

Compactness (CO) is an index used to measure the compactness of the superpixels.
The compactness term is specifically used to control the compactness of the superpixel and
punish the irregular border of the superpixel.

CO
(
Sj
)
=

4πA
(
Sj
)

P2
(
Sj
) , (0 < CO ≤ 1) (12)

CO compares the area A(Sj) of each superpixel Sj with the area of a circle (the most
compact 2D shape) with the same perimeter P(Sj). The higher the value of CO, the better
the compactness of the superpixel. The boundary term and the compactness term of the
patch area Ni are weighted by voting. When G(s) has a large contribution to the energy
function, the patch is considered to belong to superpixel Sj. When the weighted vote of
the compactness term is greater than the maximum of the boundary term, the patch is
eliminated from superpixel Sj. Thus, the purpose of boundary smoothing and superpixel
compactness segmentation is achieved through the boundary penalty.

Based on constructing the energy maximization function, the Hill-Climbing algorithm
is selected for optimization of the segmentation of superpixels. Superpixel optimization
and updating is the process of maximizing the energy of a pixel block.

2.2.2. Road Detection Based on Online SVM

Based on the principle of energy maximization, the frame image is divided into
multiple superpixel regions. Superpixels must be further semantically recognized and
classified. The SVM is used for the online recognition of forest road areas.

1. Superpixel feature extraction;

Accurate and effective monitoring and classification of the divided superpixel area is
a prerequisite for identifying forest roads.

To perform accurate semantic recognition of superpixels, the characteristics of different
types of superpixels need to be analyzed and extracted. The image features include mainly
color and texture features. Seven independent features (hue, saturation, value, angle
second moment, contrast, inverse difference moment, and correlation) are selected to
describe the superpixels to consider the accuracy of the classification and the time cost of
feature extraction.

These characteristics are selected based on the specificity of the images collected in
the special environment of the forest area. Considering the universality of tree canopy
occlusion and shadows in the forest environment, the Hue, Saturation, and Value (HSV)
color space performs better in adapting to shadows and reflections. Therefore, during the
recognition process, the images are converted to HSV color space for classification. It has
the advantage of removing interference for the area where there is a shadow projection of
the canopy on the road in the forest area. In addition, there are many common elements
such as trees, grasslands, and bushes in the forest environment. The strong texture features
of these background environments provide important information for superpixel feature
extraction. Considering the accuracy and time cost of classification, in the 14 texture feature
statistics of the Gray Level Co-occurrence Matrix (GLCM) algorithm, four indicators are
selected to quantitatively describe the texture features of superpixels. They are the angle
second moment (a), Contrast (c), Inverse difference moment (i), and Correlation (d). For the
training and supervised learning of the SVM model, a Boolean value is added to the feature
operator as a superpixel classification label. The label for the non-road area is 0. The label
of the road area is 1. Thus, the feature operator is represented as τ = [h, s, v, a, c, i, d, bool]T .

2. Construction and training of SVM model
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• Construction of SVM model;

The superpixel feature operator, which is the basis for superpixel classification, is
used as the input to the SVM model. The structures of the nonlinear positive and negative
samples based on the superpixel feature operator are as follows:{

D = (τi, yi), i ∈ Ns
yi ∈ {1,−1} (13)

where τi is the input sample; yi is the category label of the sample; Ns is the number of
superpixels in a single frame; and, D represents the training sample set. Because τi is a
multidimensional sample space, the hyperplane of the classification model is

f (x) = wTx + b (14)

where w is the normal vector, which determines the direction of the hyperplane; and b is
the displacement term, which determines the distance between the hyperplane and the
origin. Then, a nonlinear mapping of τi is:

τi → φ(τi) = (φ1(τi), φ2(τi), . . . , φn(τi))
T (15)

where φ(τi) is the kernel function. After mapping, the optimal classification function
model is:

f (τ) =
n

∑
i=1

αiyiφ(τi)
T ·φ(τ) + b (16)

Owing to the nonlinearity of the characteristic operator, it is necessary to ensure that
the classification algorithm model has a good generalization ability and improves the
calculation efficiency. The Gaussian radial kernel function (RBF) was selected for training
in this study (as shown in Equation 17). The sample is mapped to a higher-dimensional
space through the Gaussian kernel function, which makes the boundary of decision-making
diverse and accurate, and has good calculation and classification performance.

φ(τ, τi) = exp
(
−‖ τ − τi ‖2

δ2

)
(17)

Then, the training SVM model is tested using the test set. The trained SVM model can
perform binary classification judgment on whether the superpixel is a road area. Thus, it
can achieve superpixel classification and road-area recognition.

• Data set construction.

To enable the classification model to be fully trained and have a wide range of adapt-
ability, a reasonable dataset needs to be constructed. In the process of supervised training
of the SVM, a public dataset of Robot Unstructured Ground Driving (RUGD) is used [37].
The dataset contains more than 7000 frames of pixel-level images. The reason for selecting
this dataset is that it is different from the existing benchmark data for autonomous driving.
It contains more terrain types, irregular boundaries, minimally structured scales, fewer
urban elements, and structured road elements. In addition, there are many unstructured
roads in the forest environment. Among these, 850 images containing forest roads are
selected. Then, 1100 images of the forest environment taken by our laboratory were also
added to the dataset. The shooting location is the Jiufeng National Forest Park and the
Liaocheng Forest Farm Test Base, Shandong, China. They formed a dataset containing
1950 frames of images.

A total of 1300 images were randomly selected as the training set for the SVM. Special
attention needs to be paid to the differences between the training set and the training
sample. The samples input to the SVM for training were superpixel feature operators. In
this study, each image was segmented into 5 × 5 superpixels using the improved SEEDS
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algorithm. Therefore, the number of training samples used for SVM training was 25 times
the number of images, that is, 32,500. It contained a positive sample of 9053 and a negative
sample of 23,447. The superpixels in the road area are positive samples that include road
surfaces with dirt, gravel-covered road surfaces, humus-covered road surfaces and road
surfaces with vegetation projections. Superpixels in non-road areas are negative samples
that include the sky, tree trunks, branches, weeds, and bushes. The establishment of the
dataset provides an important foundation for the training and testing of the SVM model.
The detailed results of the online test of the SVM model are presented in Section 2.3.

2.3. Description of Unstructured Road Structure Based on 2D Lidar

The 2D lidar can obtain environmental information and compensate for the lack of
a visual camera [38]. Therefore, a 2D lidar was mounted on the test platform. The 2D
point cloud can be used to detect the azimuth and width information of the passable
area between the forests. In addition, it can be used to measure the distance relationship
between the UGV and the obstacles.

2.3.1. Lidar Point Cloud Acquisition and Processing

The acquisition and processing of point cloud data is also a key link in unstructured
road recognition. Owing to the complex environment of the forest area, the amount of
point cloud data obtained is relatively large. Therefore, the point cloud data must be
filtered. The purpose of filtering is to filter out a large amount of interference information
in the point cloud data, and it also facilitates the matching of the radar point cloud and the
visual image.

Straight-through filtering is an effective point cloud processing method. It trims the
point cloud within a specific coordinate range by specifying the interval range of each
coordinate axis to obtain the target point cloud. The processing method for the 2D point
cloud through filtering is: {

xmin − ∆x ≤ xi ≤ xmax + ∆x
ymin − ∆y ≤ yi ≤ ymax + ∆y

(18)

where (xi, yi) are the point cloud coordinates. In the forest environment, the main infor-
mation reflected by the 2D point cloud is the position and shape of the tree-level bushes
on both sides of the unstructured road. Point clouds that are too far away have limited
significance for the autonomous navigation of UGVs. In this research, xmin = −3 m,
xmax = 3 m, ymin = −3 m, ymax = 9 m, ∆x = ∆y = 0.5 m.

As shown in Figure 4, the red points represent the point clouds detected by lidar. The
blue dot represents the current position of the UGV. The sector is the lidar viewing angle.
The light green area is the range of thorough filtering. The point cloud in the non-light
green area is discarded, and only the point cloud after pass-through filtering is retained.
Therefore, after the point cloud data are processed, the area indicated by the white arrow
is the passable area. Only the point cloud on both sides of the current road is left. There
were a total of 1080 original point cloud data. After filtering, approximately 85 data remain
per frame.

2.3.2. Remap Transformation

The 2D point cloud boundary generated by the 2D lidar can obtain the depth and
width information of the environment, and the lidar can reasonably describe the parameters
of the target. However, the distance between the trees on both sides of the road does not
accurately define the road boundary.
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The calibrations of the camera and 2D lidar mentioned above (in Section 2.2) are the
external calibration parameters obtained under the joint calibration experiment after the
equipment was installed. On this basis, the image information and point cloud information
are remapped. The filtered 2D point cloud is remapped onto the image, and then the
coordinate ratio of the two boundaries on the image is used to find the approximate width
of the road. The principle of the algorithm is illustrated in Figure 5.
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The red dashed line represents the road boundary fitted to the image. The solid green
line is the horizontal line scanned by lidar. w2 is the distance between two obstacles in front
of the vehicle based on the 2D laser point cloud measurement. w1 is the width of the road
boundary in the image. p1 is the number of pixels corresponding to w1. p2 is the number
of pixels corresponding to w2.

According to the proportional equation, w2 can be obtained:

w1

w2
=

p1

p2
(19)

3. Experimental Results and Analysis

This section introduces the experimental results. The feasibility and effectiveness
of the proposed method are analyzed and explained through the establishment of the
road model.

3.1. Experimental Environment Configuration

The experiment was conducted in a wild forest environment. The image data are from
the dataset mentioned above (Section 2.2.2). The experiment considered the differences in
the appearance of vegetation caused by seasonal changes. The dataset also contains samples
from different seasons of winter and summer to ensure the diversity and completeness
of the data samples. Notably, there are no corresponding laser point cloud data in the
RUGD public data set. The road fitting related to the laser point cloud data is all the
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experimental data obtained from Jiufeng Forest Farm of Beijing Forestry University and
Liaocheng Forest Farm Test Base in Shandong, China. However, the images obtained from
the RUGD dataset can still be used to test and verify the effectiveness of the proposed
image-processing method.

3.2. Visual Image Processing
3.2.1. Superpixel Segmentation in Real-Time

In the process of superpixel segmentation, the initial number of segmentations K is set
by the programmer according to the actual situation. In practical applications, to balance
the calculation accuracy and time cost, it is necessary to set the K value according to the size
of the collected image and the configuration of the computer hardware. In this experiment,
K = 5 × 5.

To ensure the validity and reliability of the algorithm, we collected as many different
roads as possible. Figure 6 shows the effect of the superpixel segmentation. The number
(0–24) in each image in the figure is the label of each superpixel. Figure 6a–f are from the
RUGD public dataset. Figure 6g–k are from the Jiufeng Forest Farm of Beijing Forestry Uni-
versity. Figure 6l–p are from the Shandong Liaocheng Forest Farm Test Base. Figure 6a–k
are summer road scenes, and Figure 6l–p are spring and autumn road scenes. The figures
contain a variety of unstructured roads in forest areas, where Figure 6a,c,f are wet dirt
roads. Figure 6l–n are dry dirt roads. Figure 6b,d are gravel roads. There are shadows
of trees on the road in Figure 6i,j. There are mostly weeds on the roads in forest areas
in Figure 6a,e,g,h,i,k. There is a lot of humus on the road and roadside in Figure 6m,p.
Figure 6 shows that the improved SEEDS algorithm proposed in this study can segment the
road and non-road areas accurately and has a good superpixel segmentation effect under
various complex road conditions.

Forests 2021, 12, x FOR PEER REVIEW 11 of 19 
 

 

3.2. Visual Image Processing 
3.2.1. Superpixel Segmentation in Real-Time 

In the process of superpixel segmentation, the initial number of segmentations K is 
set by the programmer according to the actual situation. In practical applications, to 
balance the calculation accuracy and time cost, it is necessary to set the K value according 
to the size of the collected image and the configuration of the computer hardware. In this 
experiment, K = 5 × 5. 

To ensure the validity and reliability of the algorithm, we collected as many differ-
ent roads as possible. Figure 6 shows the effect of the superpixel segmentation. The 
number (0–24) in each image in the figure is the label of each superpixel. Figures 6a–f are 
from the RUGD public dataset. Figures 6g–k are from the Jiufeng Forest Farm of Beijing 
Forestry University. Figures 6l–p are from the Shandong Liaocheng Forest Farm Test 
Base. Figures 6a–k are summer road scenes, and Figures 6l–p are spring and autumn road 
scenes. The figures contain a variety of unstructured roads in forest areas, where Figures 
6a,c,f are wet dirt roads. Figures 6l–n are dry dirt roads. Figures 6b,d are gravel roads. 
There are shadows of trees on the road in Figures 6i,j. There are mostly weeds on the 
roads in forest areas in Figures 6a,e,g,h,i,k. There is a lot of humus on the road and road-
side in Figures 6m,p. Figure 6 shows that the improved SEEDS algorithm proposed in 
this study can segment the road and non-road areas accurately and has a good superpixel 
segmentation effect under various complex road conditions. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 6. Cont.



Forests 2021, 12, 820 12 of 19
Forests 2021, 12, x FOR PEER REVIEW 12 of 19 
 

 

    
(m) (n) (o) (p) 

Figure 6. Superpixels segmentation and calibration results of unstructured roads based on improved SEEDS algorithm in 
forest areas. (a–f) are from RUGD; (g–k) are from Jiufeng Forest Farm; (l–p) are from Liaocheng Forest Farm. 

3.2.2. Online Recognition of Road Area 
Based on superpixel segmentation, the feature operator of superpixel τ is extracted. 

The trained SVM model classifies whether the superpixel represents the road area ac-
cording to the feature operator of the superpixel in real-time. Binarization is performed 
on classified superpixels. As shown in Figure 7, the road area is marked in blue, and the 
non-road area is marked in black. 

  
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

Figure 7. SVM-based binary images of road areas and non-road areas, and extraction of irregular road boundaries. (a–f) 
are from RUGD; (g–k) are from Jiufeng Forest Farm; (l–p) are from Liaocheng Forest Farm. 

Figure 6. Superpixels segmentation and calibration results of unstructured roads based on improved SEEDS algorithm in
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3.2.2. Online Recognition of Road Area

Based on superpixel segmentation, the feature operator of superpixel τ is extracted.
The trained SVM model classifies whether the superpixel represents the road area according
to the feature operator of the superpixel in real-time. Binarization is performed on classified
superpixels. As shown in Figure 7, the road area is marked in blue, and the non-road area
is marked in black.
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The images in Figure 7 correspond to the images in Figure 6. As shown in Figure 7,
the shape and boundary of the superpixels are irregular. Owing to the influence of light
or grass plants on the road, the non-road area and road area may extend mutually during
the superpixel segmentation process. As a result, some incorrectly classified patches may
appear in the SVM detection results. These patches have an impact on area division and
road boundary fitting. Therefore, open operation in morphology is used to eliminate the
patch caused by the classification error in the road area. In this way, the road and non-road
areas will be separated.

The road boundary was obtained using the Canny edge detection algorithm. Then, by
obtaining the real outline of the road image, the road boundary is extracted. We use the
position of the pixel in the image coordinates to find the farthest point on the contour as
the dividing point. The left and right boundary separation results are presented in Figure 7.
The red and green polylines are the left and right borders, respectively.

Unstructured road areas and boundaries were also obtained. The detection and
recognition of unstructured road areas in forest areas is a prerequisite for establishing
road models.

3.2.3. Road Model Establishment

The boundary of the unstructured roads in the forest area is very irregular. To use road
recognition results for UGV autonomous navigation, an irregular road boundary needs to
be fitted and a road model established. The extraction of the road boundary provides a
basis for the establishment of the road model. A polynomial is used to fit the point set of
the left and right boundaries. The error function is:

Lε =
nl

∑
i=0

[
L(xi)− LXi

]2
(20)

Rε =
nr

∑
i=0

[
R(xi)− RXi

]2
(21)

When the error function is not greater than the preset minimum value, the fitting
requirements are met, and the fitting curve equations of the left and right boundaries are
obtained. The results of the final fitted smooth road boundary curve are shown in Figure 8.
Figures 7 and 8 show one-to-one correspondence.

The red curve in Figure 8 is the road boundary line. The road between the two
boundary lines is considered a passable area. The black curve represents the middle line of
the road. After obtaining the road model, the matching experiment of the image and point
cloud data is shown in Figure 8g–p. The sampling point coordinates in the UGV coordinate
system are obtained.

The road model not only includes the road boundary line and the road centerline but
more importantly, the conversion of an unstructured road to a structured road model. This
is of great significance for the navigation of the UGV. The road boundary line explicitly
defines road and non-road areas. The centerline of the road can guide the UGV away from
the road boundary, which improves driving stability and safety. Moreover, in the forest
environment, the smoothness of the road boundary is poor, and the centerline of the road
is obtained by averaging the sampling points of the boundary. This method plays a role in
mean filtering for the construction of the road centerline. Therefore, the centerline of the
road is smoother than the boundary line. The road centerline can be directly used for the
autonomous navigation of a UGV.
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4. Discussion
4.1. Road Structure Evaluation

Based on the road model, the effect of road boundary fitting is further evaluated. Here,
we first evaluate the road model from the perspective of image segmentation. Generally,
based on the results of manual calibration, the results of the algorithm are compared
with the results of manual calibration to evaluate the image segmentation effect of the
algorithm. A total of 300 images are randomly selected from the test set of the three data
sources mentioned above. These images were manually calibrated by the annotation tool
“LableMe”. The calibration results are compared with the algorithm fitting results. The
comparison is shown in Table 1.
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Table 1. Evaluation of unstructured road models in forest areas from the perspective of image segmentation.

Data Sources
MIoU Precision Recall F1 MAE

SLIC Improved
SEEDS SLIC Improved

SEEDS SLIC Improved
SEEDS SLIC Improved

SEEDS SLIC Improved
SEEDS

RUGD 0.8649 0.9005 0.8704 0.9097 0.9346 0.9618 0.9013 0.9332 0.0598 0.0301

Jiufeng
National

Forest Park
0.8762 0.9028 0.8843 0.9125 0.9398 0.9746 0.9112 0.9425 0.0465 0.0297

Liaocheng
Forest Farm 0.8835 0.9173 0.8961 0.9241 0.9502 0.9795 0.9224 0.9526 0.0328 0.0216

In Table 1, the method proposed in this study is compared with the Simple Linear
Iterative Cluster (SLIC) superpixel segmentation method. Here are five indicators selected
to evaluate the effect of road segmentation from multiple aspects. It can be seen from
the table that the improved SEEDS algorithm is better than the SLIC algorithm in all
indicators. Based on the improved SEEDS, MIoU is above 90% and an F1 is above 93%.
More importantly, during the experiment, it found that the average time for the SLIC
algorithm to process each frame of image is about 700 ms. This is unbearable for systems
with high real-time requirements. The algorithm proposed in this article means that
the average processing time of each frame of image is 89.3 s. In addition, as can be
seen, the statistical results of Shandong Forest Farm are slightly better than the other
two. The reason may be that the logging road of Shandong Forest Farm is undergoing
logging operations during the test period, and the road boundary is clearer and more
recognizable. Therefore, it is more accurate in manual labeling and algorithm recognition.
Considering the unstructured characteristics of forest roads, Table 1 shows that the road
model established by the algorithm matches well with the road area manually calibrated.

The matching between the corresponding points of the image and the point cloud
provides an important guarantee for the parameterization of the road model. Therefore, it
is necessary to further analyze the road detection error under the remapping relationship
according to the experimental results. The analysis of the remapping errors is shown in
Table 2. Figure 8g–p are used for statistical analysis. Taking the abscissa of the sampled
image as the benchmark, a sampling point is taken every 20 pixels on the boundary
fitting curve. Through remapping, the position coordinates in the UGV coordinate system
corresponding to the sampling points are determined.

Table 2. Remapping error analysis.

Distance Eup (pixel) Evp (pixel) Eud (m) Evd (m) Eξ (m)

1 m–2 m 25.4572 3.1517 0.0833 0.0086 0.0390
2 m–3 m 28.3554 3.6740 0.1309 0.0127 0.0584
3 m–4 m 32.3748 4.0512 0.1971 0.0221 0.0831
4 m–5 m 35.9710 4.3476 0.2564 0.0272 0.1190

Eup refers to the U-axis pixel average error between the road boundary pixel sampling
point and the corresponding point cloud. Evp refers to the V-axis pixel average error be-
tween the road boundary pixel sampling point and the corresponding point cloud. Table 2
shows that the horizontal average error and the vertical average error of the boundary
sampling points both increases with increasing distance. However, in comparison, the
U-axis error of the road boundary is greater. In the control process, the influence of the
lateral error on the heading angle is particularly obvious. It also has a greater impact on
the lateral stability and safety of vehicles. To reflect the fitting error more intuitively, Eud
and Eup are introduced. Eud and Eup refer to the actual errors corresponding to Eup and
Evp, respectively.
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In the process of UGV tracking control, the management of the previous steps has the
most significant impact on the adjustment of the UGV attitude. During the control process,
the road model and control parameters change dynamically. In addition, the roads in forest
areas are uneven, and UGVs are generally traveling at low speeds (v < 1.5 m/s). A long-
distance prediction has a limited impact on system movement. This causes unnecessary
memory occupation and increases the computing costs. Therefore, the error analysis range
is kept within 5 m of the front of the UGV. During the experiment, we measured the error
in each interval at intervals of 1 m. It can be seen from Table 2 that the remapping error
increases with the increasing distance.

In Table 2, the centerline of the road is the actual trajectory of the UGV tracks. Eξ is
introduced, which refers to the lateral average error of the sampling points of the road
centerline. The road centerline is obtained by averaging the sampling points corresponding
to the left and right boundaries. This is equivalent to implementing mean filtering and
effectively reduces the fitting error of the road centerline. The maximum average error of
the road centerline within 5 m is 0.119 m. The above-mentioned fitting road width is in the
range of 2–3 m. The average relative error does not exceed 6%. The image and radar data,
therefore, match well. The road model can meet positioning and tracking requirements.

4.2. Algorithm Real-Time Evaluation

In addition to measurement accuracy, algorithm real-time performance is another
important indicator of system performance.

For the improvement of SEEDS algorithm, this study reconstructs the energy function
in the algorithm to adapt to image segmentation in a specific environment of the forest
area. The boundary terms and the compactness term are introduced to properly control the
compactness of the superpixels. At the same time, the superpixel segmentation effect and
convergence speed are improved.

The boundary and compactness terms are essentially controlled by the superpixel
boundary penalties, but they are implemented in different ways. The boundary term
adjusts the boundary by selecting a superpixel boundary patch. The compactness term
controls the overall shape of a superpixel using geometric constraints. In principle, this
method has a wide range of adaptability. In this study, in a specific forest environment,
the environmental features such as branches, trunks, and weeds in the collected images
have irregular boundaries. To ensure the true road boundary as much as possible, these
two weights were set to be small. The construction of the energy function provides an
important guarantee for the fast and accurate segmentation of superpixels.

In order to further ensure the real-time performance of the system, the superpixels
are not directly used as input parameters. Instead, superpixels are described by feature
operators composed of features with eight dimensions. It is used as the input to train and
test the SVM. Through the training of a large number of positive and negative samples, the
SVM model can quickly realize the classification of superpixels and the discrimination of
road areas in the actual working environment. On the other hand, given the characteristics
of fewer people, cars, and houses in the forest areas, this research only focuses on the
acquisition of road areas and does not specifically distinguish the specific semantics and
components of non-road areas. Under the system configuration described above, the
average time for the system to process each frame of the image is 89.3 ms. This can meet the
basic requirements of the autonomous navigation platform to process forest scene images
at 10 frames/s.

5. Conclusions

This study aims to improve the automation and intelligence of forestry engineering
and proposes an unstructured road detection and recognition method based on a combi-
nation of image processing and lidar. The challenge of road recognition in forest areas is
that, on the one hand, it lies in the road area recognition and real-time requirements in the
complex environment of forest areas; on the other hand, it is the construction of reasonable
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road models that can be truly used for unmanned vehicle navigation. This research has
made great efforts to this end.

Forest roads are unstructured without obvious road boundaries. Because forest roads
lack effective reference objects and manual signs, they have high degrees of nonlinearity
and uncertainty. Aiming at the complex and rapidly changing forest environment, the
driverless navigation system needs to quickly and accurately identify the surrounding road
environment. Therefore, the unmanned vehicle system’s understanding of the collected
images is the primary problem faced by this research. During the experiment, it was found
that image processing consumes considerable computing power. Therefore, this study
adopts the strategy of “SEEDS + SVM” to achieve rapid image processing. This strategy
basically meets the real-time requirements and accuracy requirements of the system for
environmental recognition.

When a new sample appears, the upgrade and update of the training system can be
completed by adding the new sample to the training set to train and update the model.
This means that the system has good plasticity, robustness, and portability.

The images collected by the camera can reflect the color and texture characteristics
of the surrounding environment but cannot accurately reflect the location information
about objects in the environment. For an unmanned driving platform that navigates
under complex outdoor scenes in forest areas, it is necessary to have the ability to perform
real-time road detection and direction estimation simultaneously. Therefore, this study
uses a combination of a visual camera and a 2D lidar to perceive and detect forest roads.
Through remapping, the point cloud data and the corresponding points of the image data
are matched. The road boundary and road centerline that incorporates depth information
is directly converted into the vehicle coordinate system through coordinate conversion. The
road centerline containing coordinate information can provide a good tracking path basis
for autonomous mobile platforms. The centerline of the road can guide vehicles as far as
possible from the border to ensure the safety and reliability of trajectory tracking. Therefore,
the advantage of this research is also reflected in the establishment of a parametric road
model based on the vehicle coordinate system, which greatly improves the autonomy and
safety of UGV.

In response to the needs of autonomous and intelligent forest operations, this research
realizes the detection and identification of unstructured roads in forest areas. The algorithm
has good real-time performance, strong robustness and environmental adaptability. It can
provide a more accurate parametric road model for UGV navigation in forest areas. It
provides an important basis for environmental perception and autonomous navigation of
a UGV in a forest environment. In the field of forestry engineering, this technology has
important applications in autonomous inspection, skidding, transportation, autonomous
spraying, and nursery stock tending.
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