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Abstract: We investigated the effects of forest management on the carbon (C) dynamics in Romanian 

forest soils, using two model simulations: CBM-CFS3 and Yasso15. Default parametrization of the 

models and harmonized litterfall simulated by CBM provided satisfactory results when compared 

to observed data from National Forest Inventory (NFI). We explored a stratification approach to 

investigate the improvement of soil C prediction. For stratification on forest types only, the NRMSE 

(i.e., normalized RMSE of simulated vs. NFI) was approximately 26%, for both models; the NRMSE 

values reduced to 13% when stratification was done based on climate only. Assuming the 

continuation of the current forest management practices for a period of 50 years, both models 

simulated a very small C sink during simulation period (0.05 MgC ha−1 yr−1). Yet, a change towards 

extensive forest management practices would yield a constant, minor accumulation of soil C, while 

more intensive practices would yield a constant, minor loss of soil C. For the maximum wood 

supply scenario (entire volume increment is removed by silvicultural interventions during the 

simulated period) Yasso15 resulted in larger emissions (−0.3 MgC ha−1 yr−1) than CBM (−0.1 MgC 

ha−1 yr−1). Under ‘no interventions’ scenario, both models simulated a stable accumulation of C 

which was, nevertheless, larger in Yasso15 (0.35 MgC ha−1 yr−1) compared to CBM-CSF (0.18 MgC 

ha−1 yr−1). The simulation of C stock change showed a strong “start-up” effect during the first decade 

of the simulation, for both models, explained by the difference in litterfall applied to each scenario 

compared to the spinoff scenario. Stratification at regional scale based on climate and forest types, 

represented a reasonable spatial stratification, that improved the prediction of soil C stock and stock 

change. 
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1. Introduction 

Soil is the common element across ecosystems, from the natural to intensely 

anthropogenically modified ones. Due to societal needs, soil is modified through a range 

of disturbances, from direct and strong (e.g., for crops or infrastructure constructions) to 

indirect and light (e.g., through intervention on vegetation like in extensive grazing). Soil 

represents the largest biogeochemically active terrestrial carbon pool on Earth [1,2] by 

storing some 2300 Pg of carbon (C) down to 3 m soil depth [3]. Globally, soils are a CO2 
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sink [4] but locally, both natural and human-induced disturbances affect the carbon 

balance in both ways. 

In Europe, the soil C stocks appear to only change slightly even for the most exposed 

land categories, like agricultural lands under a range of climate change scenarios [5,6]. 

Within forests, the soils show a contribution to atmospheric exchange proportional to 

forest area [7,8], generally comparable to grasslands [9]. 

Sudden changes affecting forests, i.e., deforestation or natural disturbances, impact 

the soil C stocks and greenhouse gas (GHG) emissions, sometime with significant 

magnitudes. Historically, the cumulated loss of C from deforestation was an important 

driver of increasing CO2 concentration in the atmosphere [10]. By opposition, slow 

changes affect C stocks and GHG emissions from all forest pools, either negatively 

through insidious degradation [11] or positively through gains by afforestation and 

restoration of degraded forests [12]. In sustainably managed forest ecosystems, the soil 

carbon pool is often overlooked [13] given its low contribution to forest CO2 sink, despite 

that it generally represents a higher share of total carbon stock of the forests and for most 

of the other terrestrial ecosystems [1]. 

Lately, growing interest on the quantification of the GHG fluxes between the soil pool 

and atmosphere was driven by requirement to report anthropogenic GHG emissions and 

CO2 removals as part of the national GHG inventory under United Nations Framework 

Convention on Climate Change (UNFCCC) process for all land uses [14–16]. Given the 

rather stable pattern of forestry interventions at the national scale, there is a generally 

reasonable assumption that the C stocks remain rather constant in time, i.e., Tier 1 

assumption under Intergovernmental Panel on Climate Change (IPCC) [14,17]. 

Management changes and evolving climate change nevertheless challenges this approach 

[18–20]. Moreover, the participation in the emission reduction policy requires 

understanding and quantifying carbon stocks changes and non-CO2 fluxes from soils, i.e., 

the impact of forest management practices and natural disturbances. The practical 

implementation of GHG mitigation mechanisms requires subnational scale of the 

estimation, e.g., regional, local or ownership scale. A significant push for consistent soil 

carbon data was driven by including forest management on the list of eligible activities 

for emission reduction under Marrakesh Accords [21]. Since then, soil was maintained 

throughout all instruments, e.g., in the two commitment periods of the Kyoto Protocol 

2008–2012 and 2013–2020 [22], and finally under Paris Agreement [23], e.g., through 

Regulation (EU)2018/841, so called Land use, land use change and forestry (LULUCF) 

Regulation, applicable to the member states of the European Union. 

The calculation of the C stocks requires multiple empirical parameters like C content, 

soil apparent density and rock content for the relevant depth, while all of them are affected 

by uncertainty given the sampling scheme and processing method [24,25] or the forests’ 

particularity and spatial fragmentation [26]. Although some countries have long time 

series of robust monitoring and data on C stocks in all carbon pools of forests [27], they 

often have limited information on short term C stock change in mineral soils. As a result, 

they face challenges in using the available datasets to their full potential, e.g., for topsoil 

organic carbon content across Europe [28]. The few existing repeated national forests soil 

monitoring systems report a wide range of short time changes in soil C: loss in England 

and Wales [29] and gain in Finland [30] and France [19]. The large uncertainty of the 

estimates, though, makes the short time change almost undetectable. For example, 

according to Danish inventory design [31], the annual C stock changes must exceed 0.15 

MgC ha−1 y−1 to be detected.  

Models are often mentioned as suitable and economically convenient solutions to 

ensure soil related GHG reporting [17,32,33]. Most forest soil carbon models are driven by 

national forest inventories (NFI) data and need soil measurement from at least one 

moment in time for calibration and validation.  

The two models we used in this paper are CBM-CFS3 and Yasso15. They are used for 

both advancing the understanding of soil processes [32], for GHG inventory reporting, 
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i.e., Yasso15 in Austria and Finland and CBM in Ireland, or CBM for analysis of mitigation 

pathways in EU [33], or Canada [34]. Both are tools for projecting C stocks in forest mineral 

soils, while CBM allows enhanced representation of all key ecological processes, e.g., 

biomass growth and soils decomposition [35]. Yasso15 performed satisfactorily in various 

inter-model comparisons (for Finland [30,36]), calibration by litter bag decomposition 

experiments [17] or against measured data [37]. CBM-CFS3 provides a resolution at the 

level of 11 dead organic matter pools which allows matching to the three pools defined 

by [14], namely dead wood, litter and soils organic matter.  

Romanian forests have a strong altitudinal distribution, which is reflected in the 

climate, vegetation and soil properties [38]. Most of the existing studies in Romania are 

focused on soils’ spatial and geographical distribution [39] and few on the C stocks [40,41]. 

However, robust data on short term C stock changes is still missing.  

Romania completed the first systematic forest soil inventory as part of the national 

GHG inventory effort for LULUCF sector. The soil sampling scheme is fully embedded 

and run as part of the National Forest Inventory (NFI) framework [42–44].  

The aim of this study was to understand the soil organic carbon dynamics in 

Romanian forests under the impact of various forest management practices. Within this 

study we addressed three specific research questions: 

(1) Does including detailed soil organic carbon dynamic models, i.e., running carbon 

pools by CBM and chemical compounds by Yasso15, improve the simulations of the 

initialized C stock compared to measured ones? 

(2) Do models perform comparatively on short term assuming the same litterfall 

dynamic? 

(3) How do different harvesting scenarios for Romania’s forest affect the carbon 

simulations? 

For these purposes, we assessed the sensitivity of the CBM and Yasso15 models to 

harmonized biomass inputs and temperature at regional/local scale and compared 

simulated to measured NFI data. From a scientific perspective, we focused on how 

including a more detailed SOC estimation in the model initialization improves the model 

performance at regional vs. national scale, assuming default models parametrization. 

2. Materials and Methods 

2.1. Description of Soil Modules of CBM-CFS3 and Yasso15 

Both models run with annual time step and use litterfall and climate as driver data, 

while do not require other information on soil physical and chemical properties. CBM 

runs C pools, while Yasso15 runs biochemical compounds (Figure 1), while both are 

limited to simulation of mineral soils only. 

CBM-CFSv3 (CBM) is a forest carbon model for spatial, stand- and landscape-level 

dynamics [35]. CBM implements forest growth based on volume increment and 

conversion of volume to biomass, while estimates the litter inputs based on turnovers for 

each living biomass compartment. In old or unmanaged stands, the loss of living biomass 

due to natural processes represents additional mortality in the model. It incorporates a 

soil model which tracks nine dead organic matter subpools which strive to describe the 

decomposition process relative to (i) type of biomass input with annual time step (which 

refers to dead organic matter particles dimensions), (ii) forest species grouping (only for 

standing dead wood, i.e., snags in hardwood and softwood), (iii) positioning of 

decomposition above or belowground soil surface, and (iv) relative decay rate for each 

subpool according to four degrees (very fast, fast, medium and slow). According to Kurz 

et al. [35], the decomposition is modeled for each subpool by applying two factors to the 

base decay rate for the reference mean annual average temperature of 10 °C: (i) 

temperature-dependent decay modifier (which usually reduces the decomposition rate) 

and (ii) an open-canopy effect decay multiplier reflecting the stand characteristics (which 

usually enhances the decomposition rate). As effect, approximately 83% of the C lost by 
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any subpool is converted to CO2 emitted to atmosphere in time step of one year, while the 

rest is stored or transferred to other subpools. Physical transfers among certain subpools 

apply to each time step, e.g., from coarse to intermediary medium or fast, or from 

aboveground to belowground subpools. Specifically, CBM version we used to allow only 

one unique set of decomposition factors for all forest types and climates. How climate 

influences the decomposition is described for CBM by [35].  

 

Figure 1. Overview of the conceptual frameworks and approximation of C stocks and flows for CBM and Yasso15. Note: 

Solid flows of carbon are only shown on the graphs (i.e., fluxes are not shown): biomass accumulation (in green) and 

transfers from living biomass to dead organic matter of the soils (in brown). C pools (as horizontal and vertical blocks) 

and transfers among them are shown in black for CBM and in red for Yasso15. Horizontal black blocks correspond to CBM 

C pools, while red vertical ones to Yasso15 soil C pools. Horizontal dotted line imitates the aboveground and belowground 

processes. Decay of fresh dead organic matter (continuous arrows) and physical transfers (dotted arrows) are shown. Thin 

arrows show transfers among the soils C subpools (to humus). C stock in living biomass (137.5 tC/ha, ABG 83.8%, BGB 

16.1%). Living biomass turnover rates (% of standing stock): branches 2.7% softwood and 2.5% hardwood, coarse roots 

(stumps) 2%, fine roots 64.1% and for foliage 25% for softwood and 95% for hardwood species (excluding mineral 

components of biomass). Annual input to dead organic matter is shared between dead wood (DW, 8.1%) and litter (LT, 

91.9%), annual transfer rate from standing DW to laying DW (8.8%). From total annual DW input, 40% is represented by 

stem wood and 60% by branches. C stocks are presented for each subpool in tC ha−1 and in % as of total C stock in dead 

organic matter (100%). Values are estimated as average over simulated period in the BAU scenario. Pools and transfers 

are shown according to Kurz et al. [35] and Pilli et al. [33] for CBM and Tuomi et al. [45] for Yasso15. 

Yasso15 simulates the decomposition of organic carbon by representing the state in 

five pools based on their solubility: Acid (A), Water (W), and Ethanol (E) soluble 

compounds as well as lignin based insoluble compounds (N) [30,46]. It is not autonomous 

on deriving inputs for which reason it is attached to other biomass models (e.g., EFISCEN, 

CO2fix). In addition to these four is the Humus (H) pool which contains stable, long-lived 

carbon compounds. The litter input can be also fractioned in four AWEN pools, thus 

connecting the carbon input directly with the state variables within the model. 

Dimensions of the litter inputs are dealt with by defining a threshold to discriminate 

between the coarse woody and the fine litter. The size of particles affects the 

decomposition speed: the larger the diameter is, the slower the AWEN pool 

decomposition rate will be. As carbon compounds are broken down in each pool, it is 

transformed to compounds belonging to the other pools or released to the atmosphere as 
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CO2. The decomposition rate is affected by soil temperature and moisture, with air 

temperature and precipitation used as indicator drivers here, as well as the size of the 

litter. Litter input is external to the model, so it can be attached from any other model (e.g., 

CO2fix, EFISCEN) and the equilibrium will reflect the average litter fall described by the 

vegetation model. 

2.2. National Forest Inventory 

Romanian NFI1 (first cycle covers 2008–2012) records 6.98 mil. ha of forests [47] for 

the mid-year 2010, out of which 6.07 mil. ha represented forest available for wood supply 

(FAWS). In this study, we considered only FAWS. Within NFI-2 (second cycle covers 

2013–2018) with the mid-year 2015, the reported forest area was 6.93 million ha. NFI 

records 73 tree species in Romanian forests. In FAWS, the most representative species is 

beech (31%), coniferous (26%) and oaks (16%). Only 22% of area is occupied by pure 

stands, 26% by two species stands, while rest have three to eight, or more, tree species. 

Their distribution within standing stock and increment shows similar shares. Overall, 53% 

of forest area is in age classes younger than 60 years, with the 2nd age class representing 

alone 21% of total area. According to NFI, forests show an average standing merchantable 

volume (excluding stumps) of 247.43 m3 ha−1, with an average current annual increment 

of the standing stock of 6.86 m3 ha−1 yr−1. 

2.3. Forest Soil Inventory 

NFI soil data was available from national GHG inventory database [44]. Sampling 

forest soil organic carbon scheme was integrated within NFI sampling according NFI field 

data collection protocol [48]. Specifically, the sampling methodology considered the three 

“traditional” pools: organic matter of the mineral soil, litter and dead wood. Such 

classification should correspond to the pools defined by IPCC [14], and implemented by 

CBM [35]. A total of 5036 NFI plots were considered for mineral soil and dead wood 

analysis (one plot per cluster) on a 4 × 4 km grid in mountain and hilly areas and 2 × 2 km 

grid in plain area. Mineral soil (excluding litter) was sampled in pits on geometric 

horizons until 150 cm depth or the bedrock. Skeleton content was estimated in the field. 

The soil apparent density was extracted from digital maps available [49] and checked 

against existing national references on soil types [38]. Litter pool was sampled from the 

same plot as the soil, in a subset of 1158 NFI plots. For each sampling point, four samples 

were collected and processed individually throughout. Processing in the laboratory 

consisted in exclusion of biomass of non-woody grass and mineral residues through 

incineration. Dead wood volume was sampled as a regular NFI procedure [42], and 

conversion to C was done using standard wood density for the relevant tree species in the 

plot. All samples were collected in 2012 and 2013, so we assume 2013 as reference year for 

C stocks in soil. Lowest number of soils samples included in this analysis (n = 125, 2.4% of 

total samples) was available for Robinia pseudoacacia forests which cover some 250 

thousand ha. 

2.4. Litterfall Estimates 

“Litterfall” is a generic term used here for the amount of living biomass transferred 

to forest floor, i.e., annual input of biomass to dead organic matter pool. Such transfers 

occur to either one of IPCC [14] carbon pools: dead wood as standing and lying with 

threshold diameter over 10 cm, and soil’s litter pool containing non-woody, i.e., wood 

smaller than 10 cm in diameter, dead leaves and fine roots. The transfers from 

merchantable standing stock to dead wood pool were assumed larger than 10 cm in 

diameter (consistent with NFI definitions). Given data availability, only biomass from 

trees is included, so assuming that biomass from other vegetation types is negligible (e.g., 

understory). 
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For a harmonized initialization, simulation and validation of both models, FAWS 

was stratified for eight forest types across five climates (Table 1).s  

Table 1. The simulated forest types and the forest area (ha) in FAWS. In mixed forest, the proportion 

of each coniferous and broadleaved species is approximately 50%. 

Abbrev Forest Types (the share of main tree species) Area (ha) 

FS Fagus sylvatica (>90% beech) 914,359 

PA Picea abies (>90% Norway spruce) 674,483 

QR Quercus sp. (all oak species) 505,508 

RP Robinia pseudoacacia (black locust) 123,069 

OB Other broadleaved (>90% broadleaved species) 2,668,032 

OC 
Other coniferous (including Abies alba, silver 

fir, >90% coniferous species) 
32,861 

ConBroad Mixed coniferous and broadleaved species 527,284 

PreCon Predominantly coniferous (>70% coniferous species) 330,923 

Forest status data is derived for NFI1, while all forest change parameters (e.g., 

increment, mortality) are derived from NFI1 and NFI2 [47]. Forest type characteristics like 

biomass allocation factors, species specific wood density (including for mixed forests 

types) and C content were implicitly captured in the CBM results on simulated carbon 

stocks or fluxes. Annual amount of litterfall is derived from CBM simulations and used 

by both the CBM as well as Yasso15 models for the initialization and simulation of soils C 

stocks for 50 years, a similar method was used by [50]. We assumed that our research 

questions would reasonably be addressed through analyzing the three selected scenarios 

for a short-term projection, i.e., only 50 years, rather than running period comparable to 

at least one rotation cycle. Thus, litterfall is derived for each type of biomass compartment 

from the simulations by CBM: merchantable wood (i.e., stemwood with bark), other wood 

(i.e., aboveground stumps and branches with bark), foliage, fine and coarse roots 

(diameter < 5 and >5 mm, respectively) according to [35]. 

Stands subject to silvicultural interventions experience litterfall also as residues 

resulting from harvesting operations. Their estimation is based on merchantability criteria 

(e.g., share of tops and stumps left as residues) and disturbance matrix defined for each 

type of disturbance. Stands without silvicultural interventions experience the transfers to 

dead organic matter as a result of the natural processes only. In order to estimate 

quantities of litterfall, CBM incorporates a turnover based solution for each biomass 

compartment. The analysis in this research included the most significant natural 

disturbance in Romania, the windstorms, with assumption that during simulated period 

annual events may occur within the range registered during 1990–2010 and that only 50% 

of biomass is removed by salvage logging compared to regular fellings. 

Harmonization of litter input was performed for both initialization and simulations. 

Harmonization attempted mimicking the same input in Yasso15 as simulated by CBM, for 

both spin-off and actual simulation. By default, CBM implements internally a processing 

of the age-dependent and disturbance driven standing biomass dynamic on forest types, 

which cannot be extracted in that detail from the standard outputs. Consequently, the 

input to Yasso15 consisted in the average values corresponding to the most detailed 

stratification (Figure 1) extractable from CBM outputs (spatial grouping of climate, forest 

type and silvicultural interventions), where age is an implicit factor. Initialization 

consisted in determining the C stocks in the initial year of the simulation (i.e., 2013) 

corresponding to sampled NFI data. Validation was performed by comparing the total 

soil organic carbon initialized against NFI measured total soil carbon for the respective 

climate and forest type or their combinations. 
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2.5. Harmonization of the Decomposition Process 

Romanian forests show a strong altitudinal stratification, with forests present up to 

1700 m a.s.l., with the lowest temperatures and highest precipitations in high altitudes 

and vice versa. In order to capture the vertical and spatial distribution of forests, NFI plots 

were allocated to five climatic units descripted by the multiannual averaged temperature 

and precipitation from ROCADA [51]. Consequently, the Romanian forests were 

associated to five climatic units with mean annual temperature ranging from 4.7 to 11 °C. 

Thus, climate consistent data, but appropriate to each model’s requirements, was used 

(Table 2). 

Table 2. Annual mean (Tm, °C), highest (Tmax, °C), and lowest (Tmin, °C) monthly temperature 

and annual precipitation (mm) for each climate unit (CLU) as input in CBM or Yasso15. Tamp (°C) 

represents the half of the difference between maximum and minimum monthly temperatures. 

CLU Code Tm Tmax Tmin Tamp Precipitation 

44 4.7 19.3 −9.6 14.4 886.3 

35 6.7 22.0 −8.4 15.2 823.1 

34 8.3 24.2 −7.4 15.8 751.7 

26 9.8 26.2 −5.7 15.9 748.7 

25 11.0 27.7 −4.6 16.2 678.2 

2.6. Scenarios 

Historical forest management practices and implicit harvest levels on forest types 

were retrieved from NFI2 and NFI1 database, so reflecting actual interventions rather than 

theoretical approaches from forestry guidelines. They were modeled in CBM as function 

of stand age and intensity of interventions. Since harvest has a significant impact on the 

litterfall amount, we performed simulations on three forest management scenarios: (1) 

business as usual (BAU) scenario where the annual harvest was approximately 60% of the 

volume increment or between 0.10 and 0.14% of the standing stock (ratios based on NFI’s 

estimates), (2) no harvest scenario (noDist) which maximizes the biomass accumulation 

in the standing stock but also drives an increase in the mortality rate, which can be 

considered as the extreme case of “extensive” forest management practices, and (3) 

maximum intensity of silvicultural interventions (maxH) where the harvest volume 

equaled the annual biomass growth, which can be considered as the extreme case of 

“intensive” of forest management practices. Notably, there was a significant change in 

forest management in Romania over the last 50 years, which was not necessarily captured 

as modeling assumptions: the forest management was more systematic and intensive in 

the pre-1990 period compared to post-1990 [52]. 

2.7. Data Processing 

Scenarios were run with annual time step until 2060. Harmonization of various 

databases regarding forest types (from NFI), climate (from ROCADA) and soil organic 

matter (from IFN) were processed in R, ArcGIS and MS Access. A Yasso15 version was 

run in R. The comparison of the models’ performances was performed through analysis 

of residuals of simulated against measured data with the use of normalized root mean 

square error (NRMSE) as the relevant performance metric. 

Additional analyses were only performed for CBM outputs as it allows a split of the 

total soil carbon on three sub-pools measured by NFI, whereas Yasso15 does not provide 

such a split. For such comparisons, it was assumed a CBM-NFI correspondence: soil organic 

matter (SOM) represents the C pool of stable organic matter in the mineral part of the soils 

which has turnover time of 300–500 years or even more while it also represents the largest 

share in the total stock in soils. Comparatively, litter and deadwood pools represent dead 

organic matter pools with turnovers generally between 1–3 and 5–20 years, respectively. 
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3. Results 

3.1. Litterfall Amounts during Spinoff 

The amount of the litter input to DOM used for the spinoff (initialization) varied by 

two or more orders of magnitude among the selected forest types, apparently closely 

reflecting the altitudinal distribution (Figure 2). To optimize the harmonization of the 

initialization of both models, the data was extracted from results of CBM, run for 50 years 

at the lowest possible spatial disaggregation which potentially allowed representing the 

optimal approximation of input to DOM, i.e., intersection of forest type, climate, 

disturbance regime and criteria for stratification. Thus, a non-age-dependent input was 

used for Yasso15 spin-off. 

 

Figure 2. Amount of litterfall (tC ha−1 yr−1) used for the spin-off (initialization) for each forest type 

selected. Bars represent the maximum and the minimum values over the 50 years of CBM 

simulations assimilated to spin-off dataset. The abbreviations for forest types are shown in Table 1. 

3.2. Model Performance for the Initialization of Total C Stock 

Based on NFI database, total soil C stock was the highest in mountain forests, 

dominated by Picea abies (PA) and the lowest in lowland forests dominated by Robinia 

pseudoacacia (RP) and Quercus sp. (QR) (Figure 3). The altitudinal trend of increasing C 

stock is both recognized for forest types (Figure 3a) and climates (Figure 3b). On forest 

type, the variation coefficient ranged from 40% up to 125% depending on the forest type 

being lowest for PA and largest for RP. 

Both models tended to slightly underestimate the total C stock, especially when the 

stratification was on forest types only (Figure 3a) rather than on climate only (Figure 3b). 
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Figure 3. Measured and modeled initialized total C stock (tC ha−1) on forest types (a) and on CLUs (b). Forest types and 

CLUs are represented following the altitude increase, from left to right. Decreasing number in the CLU indicates increase 

in mean annual temperature. See the abbreviations for the forest types in Table 1. 

The NRMSE values of simulated vs. measured NFI data was approximately 26% (of 

the average C stock, for both models) for both, when stratification was done by forest 

types only and when stratification was done by climate and forest types. NRMSE reduced 

to 13% (for both models) when the analysis considered stratification on climate only. Still, 

CBM performed slightly better when analyzed as the absolute difference to the measured 

values, i.e., the differences were approximately 15% smaller than those of Yasso15. Figure 

4 shows that simulated values for the projected period matched better for smaller C stocks 

rather than for higher values. For the upper range of C stock, there seems to be some 

overestimation by Yasso15, especially for mixed forests of coniferous and broadleaved 

species. 

 

Figure 4. Reciprocal achievement of simulated values by the two models. Grouping of values on 

the graph is related to the stratification on forest types and climates. Green line represents 1:1 

match. 
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Figure 5 shows the agreement (i.e., lower RMSE values) between NFI and both, CBM 

and Yasso15 estimates, when CLU (climatic unit) was used as a driver for the output 

representation. However, currently, the CLU has no practical value thus far, as the 

forestry sector rely on forest type stratification, rather than other criteria. 

 

Figure 5. Measured and modeled C stock when the data is pooled on forest type (a), forest type and CLU (b), and CLU 

alone (c). Yasso15 is denoted with blue and CBM with red color. Green line represents 1:1 value on the OX and OY axes. 

3.3. Initialization of C Stocks in the Soil Subpools 

The share of SOM in total C stock was 85–90% and 95–98% by CBM simulations and 

for NFI measured data, respectively. Further on, for both litter and dead wood, CBM 

generally simulated within one to four order of magnitude smaller C stocks than 

measured ones (Table 3). 

Table 3. Range of NFI measured (within 95% confidence interval of the mean) and initialized C stocks (tC ha−1) in the 

subpools of CBM on forest types and CLUs. SOM = soil organic matter, LT = litter, DW = dead wood, Total = sum of the 

three subpools. Values without range represent an average of a small number of samples in the available data pool. Totals 

are rounded to the integer. See the abbreviations for forest types in Table 1. 

Source Pool PA ConBroad FS QR OC OB PredCon RP 

NFI 

SOM 131.1–195.3 103.9–149.2 113.1–158 101–158.8 89.9–139.3 117.6–169.9 131.4–138 120.5–129.9 

LT 8.1 4.5 4 2.9 5.2 1.6 4.7 2.2 

DW 0.6–1.6 0.7–1.7 0.5–1.2 0.1–0.4 0.2–2.4 0.1–2.3 0.5–2.1 0.2–1.1 

Total 135–205 108–155 117–163 104–162 95–145 119–172 137–143 123–128 

CBM 

SOM 88.4–100.8 124–153.7 126.7–151.9 96.4–106.3 90.4–103.2 100–110.3 113.8–139.9 104.7–111.3 

LT 5.7–11.6 14–28 11.8–23.6 7.2–11.7 5.7–11.5 6.5–10.8 11.5–23.2 5.6–8 

DW 3.4–4.9 4–5.1 4.4–6.5 2.6–3.4 3.4–4.7 2.6–3.5 2.7–3.6 4.3–5.5 

Total 97–117 142–187 143–182 106–121 99–119 109–125 128–167 115–125 

Overall, the coefficient of variation of measured C stocks on forest type was 87% (43–

132%) for SOM, 8% (6–23%) for litter and 368% (129–387%) for dead wood, which is on 

average some 174% for the total C stock. In the background calculation of SOM, the 

coefficient of variation for the C concentration in soil samples for SOM was only 27% (13–

45%). 

3.4. Litterfall Dynamic for the Scenarios 

The amount of annual litterfall simulated by CBM was around 3% of the standing 

stock for the BAU scenario. Despite general comparable levels, the three scenarios showed 

particular trends (Figure 6). On average, when compared to spinoff values, the litterfall 
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input was 15% and 41% higher for BAU and maxH, respectively, or equal for noDist 

scenario. The harmonization of litterfall between models resulted in 16% higher input in 

Yasso15. 

The noDist scenario was associated to a progressive increase of the litterfall, while 

the maxH scenario resulted in a decrease of litterfall. Litterfall input was notably higher 

for mixed coniferous-broadleaved (e.g., PredCon, ConBroad) and Fagus sylvatica forests 

compared to the pure species forests. There were also some peaks or steeps in litterfall on 

forest types over the projected period, but those were caused by the assumptions 

regarding the management or natural disturbances. 

 

Figure 6. Trend of the litterfall averaged for all forest types, over the simulated period associated 

to the three scenarios: business as usual harvest scenario (BAU), no disturbances scenario (noDist), 

and maximum harvest scenario (maxH). 

The largest contribution to litterfall was represented by foliage (Table 4). The woody 

components, i.e., merchantable and other woody, sourced from the aboveground biomass 

compartments represented some 20–24% of total litterfall. Fine and coarse roots 

contributed from 42% (for noDist scenario) to 52% (for maxH scenario), with BAU in 

between (45%). Different shares of contribution for spin-off and noDist by BAU and maxH 

scenarios is explained by the presence of silvicultural interventions, with the spin-off and 

noDist representing counterfactual situations where only processes simulating natural 

dynamics of biomass occur (i.e., mortality and other compartment turnovers). 

Table 4. Contribution to litterfall from natural processes (i.e., consequence of natural turnovers of the biomass 

compartments) and from forest residues (from silvicultural operations) in the spin-off (initialization) and for the 

simulation of the three scenarios. NA applies for residues from forest operations in noDist scenario. 

Scenario Litterfall Origin 
Merchantable 

Standing Stock 

Other Woody 

Compartments 
Foliage Fine Roots Coarse Roots 

Spin-off Natural turnovers 8 (2–17)% 12 (4–25)% 38 (3–58)% 30 (19–52)% 12 (7–22)% 

BAU 
Natural turnovers Forest 

operations residues 

6 (2–11)% 

15% 

16 (4–40)% 

16% 

28 (2–55)% 

37% 

36 (17–50)% 

13% 

16 (9–33)% 

39% 

maxH 
Natural turnovers Forest 

operations residues 

5 (2–13)% 

25% 

19 (1–48)% 

29% 

24 (1–50)% 

24% 

27 (14–53)% 

11% 

25 (12–52)% 

45% 

noDist 
Natural turnovers Forest 

operations residues 

7 (2–11)% 

NA 

14 (4–24)% 

NA 

36 (7–59)% 

NA 

30 (20–52)% 

NA 

13 (7–21)% 

NA 
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Overall, woody amount is generally some three orders of magnitude lower than non-

woody inputs, while the actual quantity strongly depended on silvicultural intensity 

interventions (Figure 7). 

 

Figure 7. The litterfall dynamic split on large dead wood (diameter > 10 cm) and small-wood and 

non-woody components (diameter < 10 cm, foliage, fine roots) for the three scenarios. 

The litterfall shares linked to silvicultural interventions were rather small. The large 

wood fractions, i.e., large dimensions of stem wood with commercially relevant 

dimensions, represented only 15% under BAU. For the other two scenarios, it was much 

smaller, given the total harvesting of available biomass (under maxH) or limited to the 

contribution from natural mortality (under noDist). In fact, the harvest-based demand led 

to silvicultural interventions on only approximately 4% of the total forest area annually. 

On average, it represented an area of 60 kha that was a subject to final cuts and 200 kha 

that was subject to thinning operations annually, which explains the low contribution of 

silvicultural interventions to total litter input. 

3.5. Projections of Soil Total C Stock and Dynamics of the Annual C Stock Change 

Generally, both models simulated a similar development in the total C stocks within 

different scenarios (Figure 8a). In BAU, there were very few changes over time (Figure 

8b). Such a flat dynamic under BAU shows both consistent litterfall input and consistent 

decomposition for the simulated period compared to initialization (as shown in Figure 6). 

The C stock was the highest by the end of the simulation period in the noDist scenario. By 

opposition, maxH scenario showed the smallest one. The short time increase and, 

respectively, the decrease of C stocks in the first two decades simulated under maxH and 

noDist show primarily an unbalance of litterfall inputs between simulation compared to 

initialization. 
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Figure 8. Total C stock in the dead organic matter pools, averaged for all forest types (a) and annual change (b) in total C 

stock, corresponding to the three scenarios. The values are averaged for all eight forest types. 

Toward the end of the simulated period both models consistently converged toward 

an equilibrium where the soil acts as a small sink of approximately 0.05 tC yr−1 for BAU. 

Despite overall similar trends between the models, there were slight deviations in the two 

counterfactual scenarios which result in roughly double loss of carbon by Yasso15 for 

noDist scenario and a double C gain by CBM for maxH scenario. With exception of BAU, 

both counterfactual scenarios also showed either convergence or divergence toward 2050, 

which is, most likely, related to decomposition given the unbalanced input to DOM in the 

initialization and each scenario. BAU was the most consistent one, as there were negligible 

differences of litterfall input in the initial simulated year. 

The scenarios with simulations of silvicultural interventions demonstrated that total 

soil C storage was strongly affected. Specifically, both models projected decreasing C 

stocks for BAU and maxH, compared to noDist. 

For the first 10 years of the simulations, the C stock changes were larger than for later 

period in all scenarios (Figure 8b), i.e., showing a start-up effect. In fact, the effect was 

stronger in the initial year and was decreasing sharply afterwards. Moreover, the largest 

initial effect was shown in the case of maxH scenario where litterfall inputs in the first 

simulated year is on average 25% higher (from 11 to 46% on forest types) compared to 

BAU’s and spin-off, as well, in case of noDist scenario, it was 15% lower (−6–−30% on 

forest types). 

3.6. Simulated Soil Carbon Stock Change by Subpools 

The SOM, that presented the slowest decomposition rate, showed negligible changes 

during simulation period, whereas the dead wood subpool showed the greatest change 

(Figure 9). Overall, there was a moderate, significant correlation across forest types (r = 

0.25–0.35, p < 0.05) between litter input and annual C stock change of the fast-decomposing 

subpools simulated by CBM, when the simulated values for the first 10 years were 

excluded. For the slow decomposing subpool, the correlation was not significant (p > 0.05). 
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Figure 9. Simulated C stock change in each C subpool and litterfall by CBM for one climatic region 

for BAU scenario. The values presented are averaged for all eight forest types. 

The C stock in SOM, which had the slowest decomposition rate as simulated by CBM, 

diverged negligibly from BAU along simulated period reaching at the end of simulation 

−0.2% for noDist scenario and +0.5% for maxH scenario. 

4. Discussion 

Romanian forests are compositionally diverse: 27% of forest area is based on single-

tree species, while 46% of forests contain more than three species [42]. Empirical data from 

NFI shows that the more diverse forests contain a higher total C stock in the soils, which 

may be caused by the higher C stock in dead wood [53]. This is confirmed by our 

simulations (Figure 2) where mixed forests (predominantly coniferous and mixed 

between coniferous and broadleaved) showed the largest litter inputs and the largest soil 

C stocks (Figure 3). This comes in contradiction to findings that showed coniferous stands 

to have a greater capacity to sequester SOC compared to broadleaved forests [19]. 

Simulated C stocks varied noticeably among climate units for the same forest type (see 

SOM values in Table 3). This means that the spatial soil continuum is not recognized in 

these simulations because of our choice for a discrete stratification on forest types or/and 

climates. Data was run on homogenous strata, i.e., representing large spatial areas, 

although running the models on granular, individual NFI plots, is recognized to produce 

better results for more robust C stocks and stock changes estimates [17,18,33]. Moreover, 

a single management approach is assumed for each type of forest, while in fact a range of 

approaches may occur in practice from the extensive to highly intensive. Low C stock for 

Robinia pseudoacacia (RP) and other coniferous (OC) forests was most likely related to their 

presence on poorest sites, which was represented in the litterfall data, as site productivity 

was not included in the biomass simulation. On the other side, both models operate with 

average environmental conditions and annual time step, which support the option of 

validation at the regional scale, rather than granular one [37]. Including environmental 

parameters, as well as better consideration of continuous and categorical features, on top 

of forest type specificity, improves the predictability of soil C stocks [54,55]. In opposition, 

models running based on average climate data, as in our case, omit extreme weather years, 

e.g., the impact of droughts to the decomposition of organic layers [36]. 

Matching the litter input to DOM in the two models was only partially achieved for 

the initialization. Despite harmonization efforts, we succeeded to run Yasso15 by 

averaged inputs on forest strata, while CBM ran at much more detailed level, i.e., stand 
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age by time step of one year. The question remains whether such a simplified approach 

rendered Yasso15 less sensitive to time variation of the biomass inputs to DOM. Based on 

the results presented in Figure 3, we found no evidence that the strata averaged input vs. 

age-dependent input had a meaningful impact on the initialized amounts, since we did 

not observe any bias. This may be due to the large number of iterations achieved during 

the initialization, i.e., mimicking hundreds of years of interaction of litter inputs and 

decomposition of organic matter. When analyzed at national scale, the NRMSE values 

were practically similar when simulated values by each of the two models were compared 

to NFI data. 

For the Romanian forests, the biomass input to soils in Picea abies (PA) forests was 

less than half of the amount in other forest types (to which Picea abies tree species 

contributes, like for coniferous broadleaved mixtures), while both models simulated 

similar C stock values for both initialization and simulated period. As far C stock 

estimated by NFI is accurate [38], it seems there was a failure to reasonably simulate either 

the living biomass compartments or the turnover rates that allows litterfall inputs. In our 

case, the underestimation of soil C stock in PA forests by both models, it is most likely 

linked to the amount of litterfall simulated, so further linked to the compartmentation of 

the living biomass and/or turnover rates for this forest type as implemented into the CBM. 

In fact, a recent intermodel comparison exercise with harmonizing input data for biomass 

(i.e., yield and growth, biomass expansion) showed difference in the initialized C stock in 

all C pools by CBM compared to IFN reference data (+6% for initialized standing biomass) 

and +30% more total C in the soil, attributable to data preprocessing as the input into CBM. 

The total soil C stock seems rather realistically simulated in our study when looking 

to other studies. Dincă et al. [38] estimated similar stock values based on the soil 

parameters regularly sampled as part of the Romanian forest management planning (the 

majority of the forest experiences a planning every 10 years). In Hernández et al. [56], the 

country-wide averaged C stock was estimated as about 57 (27–82) tC ha−1, which is rather 

half or less, compared to the NFI estimates in this study. Lower values in [56] are most 

likely explained by the underestimation of the litterfall input which was generated from 

forest management planning database which demonstrates less standing stock and less 

net annual increment of forest compared to NFI estimates [47,57]. This proves once again 

the importance of the accuracy of litterfall inputs in modeling realistic soil C stock. This 

refers further to the assumptions on contribution of non-woody litter from understory 

vegetation and turnovers of fine roots. On the other side, any variation in stands’ 

horizontal and vertical structures is assumed fully captured by our empiric-based 

approach as of NFI data, e.g., reduction of average leaf area index, so is expected to be 

reflected implicitly within each scenario. 

There is ample evidence about the effects of management on the amount of C stock 

in the organic layers of the forest floor, but there is much less information about 

measurable effects of management on stable C pools in the mineral soil [18]. Harvesting, 

particularly clear-cut harvesting, generally results in a reduction in soil C stocks, 

especially in the forest floor and upper mineral soil [20,58]. The cumulated effect at 

national scale depends on the extent of the land subject to management, i.e., a small area, 

some 9% of area is affected annually by silvicultural practices, and further on only 0.49% 

is actually subject to clear-cuts according to our BAU scenario (built on NFI data). 

However, the impact cumulates over time as shown by diverging trends of total C stocks 

by the three scenarios. 

Slightly better match of the initialized C stocks by CBM to measured data may be 

explained by the “non-equilibrium” modeling approach by CBM compared to 

“equilibrium” approach by Yasso15 (see Figure 3). Indeed, CBM and Yasso15 have 

different initialization procedures and therefore initialize different moments for stands’ 

age dynamics. According to Kurz et al. [35], CBM provides the C content in all C subpools 

in the initial year of the simulation (i.e., 2013) approaching a non-equilibrium soil 

condition. It does that by applying wildfires as a solution to saturate the soils C in the 
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‘slow’ subpool. ‘Slow’ subpool is composed of aboveground DOM (i.e., F, H and O 

horizons) and belowground DOM (e.g., humified organic matter in the mineral soil). 

Wildfire disturbance means that the living biomass and other subpools like litter and dead 

wood are fully burned, from every few decades to few hundreds of years, under specific 

parametrization of user-defined stand-replacing fires. Therefore, a significant weight is 

given to ‘SOM slow’ subpool saturation over the ephemerous pools corresponding to the 

rest of litter and dead wood pools which have half-lives more than 10-times smaller than 

SOM pool. Thus the ‘slow’ pool amount is stabilized based on the 1% convergence of the 

‘slow’ subpool. However, there is an additional step performed to complete the 

initialization, which consists of further 10 repeated cycles without natural disturbances 

and one last user-defined management disturbance (i.e., clear cut in our case) before litter 

input from growing stand to the age recorded in the forest inventory. This way, CBM 

ensures the SOM stabilization which is indeed less prone to short term impacts like 

disturbances. 

Another explanation for the difference between simulated and measured values may 

be the missing input from understorey vegetation in the simulation of biomass. As local 

data is not available in our case, we assumed to have a negligible contribution to litterfall, 

despite studies showing that litter input from understorey may be significant, e.g., as in 

northern Finland [36]. Even NFI data shows presence of bushes in Romanian forests on 

more than 50% of total forest area [42], but no quantitative measurement are performed 

on bushes. 

Particularly in the case of counterfactual (maxH, noDist) scenarios, there is a 

“startup” or “coldstart” effect, i.e., over the first 10 years of the simulations (Figure 8b). 

Most likely that arises from the quantitative difference between litterfall input to DOM in 

the first years of the actual simulation and that of the initialization. 

Our simulation showed a very small increase in SOM in the long run under the BAU 

scenario. Although, metadata research shows that the long-term impacts of forest 

managers’ decisions on soil organic carbon (SOC) remain unclear given restructuring of 

soils C on soil profile [59]. Harvesting level though shows a clear impact on both litter 

input and dead organic matter dynamics. Extreme and counterfactual scenarios, noDist 

and maxH, lead to significant levels of change and opposite trends in time. No 

intervention assumption (noDist scenario) results in a reduced input early in the 

simulation period which increases back later through accumulation mostly due to 

increasing fraction of dead wood (+12% total input to soils compared to BAU while large 

wood mortality remains around 8% from total input). In contrast, when harvesting the 

entire amount available by maxH results in a high accumulation during first years of 

simulation given the high inputs from silvicultural operations. On the other side, when 

looking into SOM dynamics simulated by CBM under noDist (extensive management) 

and maxH (intensive management) scenarios, it seems the SOM stock dynamic does not 

confirm the metadata analysis which shows that harvesting the residues would result in 

medium duration of C loss [20]. In opposition, no disturbance scenario results in a 

negligible loss of C from total soil pool. However, Jonard et al. [19] suggest further studies 

are required to elaborate forest management guidelines, so helping GHG management 

and forestry adaptation, i.e., climate smart forestry measures [60]. 

For Romania, the only available C stock change estimates were simulated by Yasso07 

[56], showing a country-wide average gain of 0.05 MgC ha−1 yr−1, with a variation from a 

gain of 0.14 MgC ha−1 yr−1 for hardwood forests to a loss of 0.01 MgC ha−1 yr−1 for softwood 

forests. Under BAU, our simulated values stabilize long term at similar level. They are 

also comparable to the gain of 0.12 Mg C ha−1 yr−1 simulated for Finland [30]. Depending 

on harvesting particularities, larger gains are reported for Germany, either simulated by 

Yasso15 of +0.25 ± 0.10 Mg C ha−1 yr−1 or measured of +0.39 (±0.11) Mg C ha−1 yr−1 [37]. For 

France it is reported a gain of +0.35 Mg C ha−1 yr−1 based on repeated measurements [19] 

or a gain simulated by Yasso07 +0.45 (±0.09) tC ha−1 yr−1 vs. observed of +0.34 (±0.06) tC 

ha−1 yr−1 in a soil survey [61]. 
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The performance of the models depends, first of all, on the adequate estimation of 

the litter inputs and model parametrization. The decomposition parameters between the 

two models could not be harmonized as CBM runs the decomposition of physical C 

subpools, while the Yasso15 runs decomposition on biochemical compounds. 

Nevertheless, given low values of NRMSE, the default parametrization of each model we 

tested here seems to provide an acceptable solution for simulations of C stock and C stock 

change when stratification is performed by forest type and climate. 

Each model has its own particularities: Yasso15 provides estimates of soil aggregated 

pools, while it is very flexible in using localized data (e.g., at NFI plot). The CBM version 

used here implemented a unique set of decomposition parameters across all strata (e.g., 

climate units and forest types). Although not confirmed in this study, this may make the 

model less flexible in simulating C stock across smaller areas or territories with large 

combinations of climates. Parameters involved in decomposition equations and transfers 

between pools may not fully reflect the climate variation in Romania, especially for dead 

wood and litter, for all forest types (despite overall good match) when strata instead of 

plots are considered. 

According to NFI measured data, SOM represents the largest share of total SOC stock 

(>95%), a result that could not be reproduced by CBM. Despite clear definition and 

understanding of the three soil C pools, it remains very complex to parametrize and 

validate against measured values, while avoiding double-counting of litter layers or 

missing parts of the sample which can lead to underestimation. Nevertheless, with all 

these in mind, we expect that the total C stock is not underestimated given the actual 

method implemented in sampling all C subpools on the ground by the NFI (i.e., where 

parts not sampled in one subpool are sampled in another). As response to such complex 

reality, Yasso15 reports a total C stock, and the split on subpools (e.g., like IPCC pools) is 

not possible without making additional assumptions and simplifications on the results. 

Overall, methodological shortcomings and knowledge gaps affecting soil studies may be 

strengthened by simultaneous use of multiple models [62]. 

NFI calculated C stocks also show inherent uncertainty. Total C stock estimates 

showed a high coefficient of variation (i.e., 174% on average) compared to C concentration 

in the mineral parts of the soils (i.e., 27%). This may be linked to the stratification on forest 

types, while variation may be expected to be lower on soil types. Additionally, NFI only 

collected data on C concentration and skeleton content while soil apparent density was 

obtained from model-based procedure [49], being known that soil density has a significant 

influence on the C stock [24]. Scarce and nonsystematically sampled data on soil apparent 

density exists nevertheless in Romania, having the same order of magnitude as those used 

here [38,63]. 

5. Conclusions 

The two models performed satisfactorily in predicting soil C dynamics under 

harmonized climatic and litterfall input, despite their totally different modeling 

principles. The default decomposition parametrization seems to provide an acceptable 

solution for simulations of soil C stocks when forest type strata are combined with climate 

units. Both models showed similar performance for the forests with both high and low C 

stocks for the mineral soils sampled in NFI. Regional/local scale, as the alternative to 

national one, represents a reasonable spatial area for the validation of soil modeling 

outputs against empiric NFI data. 

The availability of measured soil data for only one moment in time supports the 

initialization and simulation at regional scale. A methodological challenge related to 

“forward” calibration, i.e., assimilation of new data, increases, as repeated data from 

successive soil monitoring becomes more often available. Limitations of the models are 

mostly related to availability of data for understorey vegetation, data for living biomass 

and turnover rates in standing forests. 
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Results of C stocks and C stock changes can be taken into account for the reporting 

of the national GHG inventory of Romania, including for the demonstration that forest 

soils do not represent a net source of emissions given current mix of forest management 

practices. Results show that increasing the management intensity through more intense 

silvicultural interventions most likely results in small losses from total soil C stock, or 

contrary to small to negligible increases of C stocks when harvest is significantly reduced. 

Author Contributions: Conception and design of study by V.N.B.B.; J.L.; L.K.; T.V. and M.M.; 

acquisition of data by G.M., G.G.; analysis and/or interpretation of data by V.N.B.B., L.K., T.V., I.D. 

and M.M.; drafting the manuscript (V.N.B.B., L.K., T.V.) and revising the manuscript critically for 

important intellectual content (L.K., I.D.). All authors have read and agreed to the published version 

of the manuscript. 

Funding: The research associated to this article was developed as part of contract 88/2014 with 

Ministry of Environment (Romania) and project ERA-GAS/ERA NET’s FORCLIMIT contract 

82/2017 by UEFISCDI Romania. Academy of Finland (grant numbers 297350, 277623) and ERA-NET 

FACCE ERA-GAS project FORCLIMIT are acknowledged for financial support which has received 

funding from the European Union’s Horizon 2020 research and innovation programme under grant 

agreement No 696356. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Acknowledgments: We thank the anonymous reviewers whose comments and suggestions helped 

improving the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

Reference 

1. Scharlemann, J.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial 

carbon pool. Carbon Manag. 2014, 5, 81–91, doi:10.4155/cmt.13.77. 

2. Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, 

and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445, doi:10.1146/annurev-ecolsys-112414-054234. 

3. Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 

2000, 10, 423–436. 

4. Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.; Shvidenko, A.; Lewis, S.L.; Canadell, J.; et 

al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993, doi:10.1126/science.1201609. 

5. Yigini, Y.; Panagos, P. Assessment of soil organic carbon stocks under future climate and land cover changes in Europe. Sci. 

Total. Environ. 2016, 557-558, 838–850, doi:10.1016/j.scitotenv.2016.03.085. 

6. Lugato, E.; Smith, P.; Borrelli, P.; Panagos, P.; Ballabio, C.; Orgiazzi, A.; Fernandez-Ugalde, O.; Montanarella, L.; Jones, A. Soil 

erosion is unlikely to drive a future carbon sink in Europe. Sci. Adv. 2018, 4, eaau3523, doi:10.1126/sciadv.aau3523. 

7. Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258, doi:10.1016/j.foreco.2005.08.015. 

8. De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Carnicelli, S. Benchmark values for forest soil carbon stocks 

in Europe: Results from a large scale forest soil survey. Geoderma 2015, 251-252, 33–46, doi:10.1016/j.geoderma.2015.03.008. 

9. Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; Van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic 

carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Chang. Biol. 2011, 

17, 2415–2427. 

10. Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B Chem. Phys. 

Meteorol. 1999, 51, 298–313. 

11. Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing Forest Degradation. Trends Ecol. Evol. 2015, 30, 622–632, 

doi:10.1016/j.tree.2015.08.001. 

12. Bernal, B.; Murray, L.T.; Pearson, T.R.H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon 

Balance Manag. 2018, 13, 1–13, doi:10.1186/s13021-018-0110-8. 

13. European Commission. Soil: The hidden Part of the Climate Cycle; Publications Office of the European Union: Luxembourg, 2011. 

14. IPCC. Agriculture, Forestry and Other Land Use. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H., 

Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; INGES Japan: Hayama, Japan, 2006; Volume 4. 

15. IPCC. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; Hiraishi, T., Krug, T., Tanabe, 

K., Srivastava, N., Baasansuren, J., Fukuda, M., Troxler, T.G., Eds.; Intergovernmental Panel on Climate Change: Geneva, 

Switzerland, 2014. 



Forests 2021, 12, 795 19 of 20 
 

 

16. IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, 

A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, 

Switzerland, 2019. 

17. Didion, M.; Repo, A.; Liski, J.; Forsius, M.; Bierbaumer, M.; Djukic, I. Towards Harmonizing Leaf Litter Decomposition Studies 

Using Standard Tea Bags—A Field Study and Model Application. Forests 2016, 7, 167, doi:10.3390/f7080167. 

18. Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How 

strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268, 

doi:10.1016/j.geoderma.2006.09.003. 

19. Jonard, M.; Nicolas, M.; Coomes, D.A.; Caignet, I.; Saenger, A.; Ponette, Q. Forest soils in France are sequestering substantial 

amounts of carbon. Sci. Total Environ. 2017, 574, 616–628. 

20. James, J.; Page-Dumroese, D.; Busse, M.; Palik, B.; Zhang, J.; Eaton, B.; Slesak, R.; Tirocke, J.; Kwon, H. Effects of forest harvesting 

and biomass removal on soil carbon and nitrogen: Two complementary meta-analyses. For. Ecol. Manag. 2021, 485, 118935. 

21. UNFCCC The Marrakesh Accords; United Nations: New York, NY, USA, 2002. 

22. UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 

1998. 

23. United Nations. Paris Agreement; United Nations: New York, NY, USA, 2016. 

24. Jurgensen, M.F.; Page-Dumroese, D.S.; Brown, R.E.; Tirocke, J.M.; Miller, C.A.; Pickens, J.B.; Wang, M. Estimating Carbon and 

Nitrogen Pools in a Forest Soil: Influence of Soil Bulk Density Methods and Rock Content. Soil Sci. Soc. Am. J. 2017, 81, 1689–

1696, doi:10.2136/sssaj2017.02.0069. 

25. Zhang, W.; Chen, Y.; Shi, L.; Wang, X.; Liu, Y.; Mao, R.; Rao, X.; Lin, Y.; Shao, Y.; Li, X.; et al. An alternative approach to reduce 

algorithm-derived biases in monitoring soil organic carbon changes. Ecol. Evol. 2019, 9, 7586–7596, doi:10.1002/ece3.5308. 

26. Meeussen, C.; Govaert, S.; Vanneste, T.; Haesen, S.; Van Meerbeek, K.; Bollmann, K.; Brunet, J.; Calders, K.; Cousins, S.A.O.; 

Diekmann, M.; et al. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 2021, 759, 143497. 

27. Lacarce, E.; Le Bas, C.; Cousin, J.L.; Pesty, B.; Toutain, B.; Houston Durrant, T.; Montanarella, L. Data management for mon-

itoring forest soils in Europe for the Biosoil project. Soil Use Manag. 2009, 25, 57–65. 

28. Aksoy, E.; Yigini, Y.; Montanarella, L. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe. PLoS ONE 

2016, 11, e0152098, doi:10.1371/journal.pone.0152098. 

29. Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon losses from all soils across England and Wales 1978–

2003. Nature 2005, 437, 245–248, doi:10.1038/nature04038. 

30. Rantakari, M.M.; Lehtonen, A.; Linkosalo, T.; Tuomi, M.; Tamminen, P.; Heikkinen, J.; Liski, J.; Mäkipää, R.; Ilvesniemi, H.; 

Sievänen, R. The Yasso07 soil carbon model—Testing against repeated soil carbon inventory. For. Ecol. Manag. 2012, 286, 137–

147, doi:10.1016/j.foreco.2012.08.041. 

31. Callesen, I.; Stupak, I.; Georgiadis, P.; Johannsen, V.K.; Østergaard, H.S.; Vesterdal, L. Soil carbon stock change in the for-ests 

of Denmark between 1990 and 2008. Geoderma Reg. 2015, 5, 169–180. 

32. Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, 

R.E. Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ. Res. Lett. 2017, 

12, 124007, doi:10.1088/1748-9326/aa9c5c. 

33. Pilli, R.; Grassi, G.; Kurz, W.A.; Fiorese, G.; Cescatti, A. The European forest sector: Past and future carbon budget and flux-es 

under different management scenarios. Biogeosciences 2017, 14, 2387–2405. 

34. Smyth, C.E.; Xu, Z.; Lemprière, T.C.; Kurz, W.A. Climate change mitigation in British Columbia’s forest sector: GHG re-ductions, 

costs, and environmental impacts. Carbon Balance Manag. 2020, 15, 1–22. 

35. Kurz, W.; Dymond, C.; White, T.; Stinson, G.; Shaw, C.; Rampley, G.; Smyth, C.; Simpson, B.; Neilson, E.; Trofymow, J.; et al. 

CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009, 220, 

480–504, doi:10.1016/j.ecolmodel.2008.10.018. 

36. Lehtonen, A.; Linkosalo, T.; Peltoniemi, M.; Sievänen, R.; Mäkipää, R.; Tamminen, P.; Salemaa, M.; Nieminen, T.; Ťupek, B.; 

Heikkinen, J.; et al. Forest soil carbon stock estimates in a nationwide inventory: Evaluating performance of the ROMULv and 

Yasso07 models in Finland. Geosci. Model Dev. 2016, 9, 4169–4183, doi:10.5194/gmd-9-4169-2016. 

37. Ziche, D.; Grüneberg, E.; Hilbrig, L.; Höhle, J.; Kompa, T.; Liski, J.; Repo, A.; Wellbrock, N. Comparing soil inventory with 

modelling: Carbon balance in central European forest soils varies among forest types. Sci. Total. Environ. 2019, 647, 1573–1585, 

doi:10.1016/j.scitotenv.2018.07.327. 

38. Dincă, L.C.; Dincă, M.; Vasile, D.; Spârchez, G.; Holonec, L. Calculating organic carbon stock from forest soils. Not. Bot. Hortic. 

Agrobot. 2015, 43, 568–575. 

39. Vintilă, R.; Munteanu, I.; Cojocaru, G.; Radnea, C.; Turnea, D.; Curelariu, G.; Nilca, I.; Jalbă, M.; Piciu, I.; Râşnoveanu, I.; et al. 

The Geographic Information System of Soil Resources of Romania “SIGSTAR-200”: Development and Main Types of 

Applications. In Proceedings of the XVII National Conference of Soil Science, Timisoara, Romania, 2004; pp. 439–449. 

40. Dincǎ, L.C.; Spârchez, G.; Dincǎ, M.; Blujdea, V.N.B. Organic carbon concentrations and stocks in Romanian mineral forest soils. 

Ann. For. Res. 2012, 55, 229–241. 

41. Dincǎ, L.; Spârchez, G.; Dincǎ, M. Romanian’s forest soils gis map and database and their ecological implications. Carpathian J. 

Earth Environ. Sci. 2014, 9, 133–142. 



Forests 2021, 12, 795 20 of 20 
 

 

42. Marin, G.; Bouriaud, O.; Nitu, D.M.; Calota, C.I.; Dumitru, M. Inventarul Forestier National din Romania. Ciclul I (2008–2012); 

Editura Silvica: Voluntati, Romania, 2019. 

43. Bouriaud, O.; Marin, G.; Hervé, J.-C.; Riedel, T.; Lanz, A. Estimation Methods in the Romanian National Forest Inventory; Nova 

Science Publishers, Inc.: Hauppauge, NY, USA, 2020. 

44. Blujdea, V.N.B. Raport Final la Contractul 88/2014 MMSC Privind Privind Administrarea Sectorului Folosinţa Terenurilor, Schimbarea 

Folosinţei Terenurilor şi Silvicultură al INEGES (CRF Sector 4) în Acord cu Obligaţiile sub Convenţia Cadru a Naţiunilor Unite Asupra 

Schim; Manuscript ICAS Bucuresti, Romania, 2014. 

45. Tuomi, M.; Laiho, R.; Repo, A.; Liski, J. Wood decomposition model for boreal forests. Ecol. Model. 2011, 222, 709–718, 

doi:10.1016/j.ecolmodel.2010.10.025. 
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