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Abstract: Transpiration represents more than 30% of the global land–atmosphere water exchange but
is highly uncertain. Plant hydraulics was ignored in traditional land surface modeling, but recently
plant hydraulics has been found to play an essential role in transpiration simulation. A new physical-
based representation of plant hydraulic schemes (PHS) was recently developed and implemented
in the Common Land Model (CoLM). However, it is unclear to what extent PHS can reduce these
uncertainties. Here, we evaluated the PHS against measurements obtained at 81 FLUXNET sites. The
transpiration of each site was estimated using an empirical evapotranspiration partitioning approach.
The metric scores defined by the International Land Model Benchmarking Project (ILAMB) were
used to evaluate the model performance and compare it with that of the CoLM default scheme (soil
moisture stress (SMS)). The bias score of transpiration in PHS was higher than SMS for most sites,
and more significant improvements were found in semi-arid and arid sites where transpiration was
limited by soil moisture. The hydraulic redistribution in PHS optimized the soil water supply and
thus improved the transpiration estimates. In humid sites, no significant improvement in seasonal
or interannual variability of transpiration was simulated by PHS, which can be explained by the
insensitivity of transpiration demand coupled to the photosynthesis response to precipitation. In
arid and semi-arid sites, seasonal or interannual variability of transpiration was better captured by
PHS than SMS, which was interpreted by the improved drought sensitivity for transpiration. Arid
land is widespread and is expected to expand due to climate change, thus there is an urgent need to
couple PHS in land surface models.

Keywords: transpiration; plant hydraulics; hydraulic redistribution; benchmarking analysis; land
surface model

1. Introduction

Globally, transpiration accounts for 30% of the land–atmosphere water exchange, or
60% (mean ± 1 standard deviation (s.d.)) of continental evapotranspiration [1,2]. The
transpiration proportion of evapotranspiration is related to an important scientific question
of how to dominate the biotic contribution in the land–atmosphere water exchange [3].
In recent decades, agriculturalists, ecologists, and climate change researchers have put
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great effort into understanding and improving the evapotranspiration partitioning es-
timates [4–7]. Several approaches have been developed to estimate evapotranspiration
partitioning at large spatial scales. For example, isotope data have been used to estimate
the percentage of transpiration in evapotranspiration [5]. Wei et al. [2] have built up empir-
ical relationships between leaf area index (LAI) and transpiration for different vegetation
types using satellite data and model estimation results. Both approaches have represented
large-scale transpiration partitioning well with reliable technical theories.

Process-based models have been recently used to partition evapotranspiration as well.
Land surface models, one of the most robust large-scale flux estimation tools so far, esti-
mate transpiration, soil evaporation, and canopy interception based on plant physiological
processes, canopy physical processes, and soil hydrological processes. However, many
land surface models have been found to underestimate the transpiration component of
evapotranspiration significantly. For instance, GSWP-2 (the Global Soil Wetness Project
2) estimates transpiration comprises 48% of evapotranspiration [8]. The global transpi-
ration partitioning estimated by CLM (the Community Land Model) has a mean value
of about 49% (CLM3: 41%, CLM3.5: 43%, CLM4CN: 56%, CLM4CNE: 56%, CLM4SP:
48%) [9,10]. Yoshimura et al. [11] attributed about 29% of land evapotranspiration (ET) to
transpiration (T) based on Iso-Matsiro. Wang-Erlandsson et al. [12] reported that STEAM
(Simple Terrestrial Evaporation to Atmosphere Model) estimates a mean global terrestrial
evaporation of 73,900 km3 year−1, of which 59% is transpiration. Most of these fractions
from process-based models are significantly lower than observations.

Previous studies have indicated that underestimating modeled transpiration maybe is
not the only, but probably one of the most important reasons for the lower-than-expected
transpiration fractions [10]. Soil water stress is the major constraint on modeled transpira-
tion through stomatal behavior; however, most soil water stress schemes are empirically
parameterized in land surface models [13]. The development of a plant hydraulic module
improves the representation of the plant water transport in the model. The physically-
based plant hydraulic stress (PHS) scheme replaces the empirically-based soil moisture
stress (SMS) parameterization in describing the physiological response to drought [14].
The hydraulic redistribution (HR) scheme refers to the passive water movement via plant
roots from relatively moist to dry soil. The HR schemes are supported by many field
experiments and scientific literature [15–17]. Ryel et al. [18] has developed the soil layer
connection model to represent HR, which calculates HR water flux according to soil water
potential in separate layers. However, the flows within the root system are not considered
in Ryel’s HR model. Amenu and Kumar [19] have incorporated radial water flow, and
axial water flow into the root system and, therefore, represent more realistic HR processes.
Community land Model Version 5 (CLM5) has incorporated PHS and represents HR as a
natural consequence of Darcy’s Law implementation [14]. Much effort has been expended
into developing HR models. However, the absence of direct measurements on transpiration
prevents the comprehensive evaluation of the plant hydraulic module.

A global database of plant sap flow measurement, SAPFLUXNET, has been widely
used to understand ecological factors driving plant transpiration and evaluate land surface
models [20]. Although the SAPFLUXNET dataset provides direct measurements on transpi-
ration from over 120 sites worldwide, the modeled transpiration at the stand level cannot
be directly compared with the sap flow measurement of individual plants. Upscaling
from the individual to the stand level may introduce additional uncertainties [20]. The
FLUXNET dataset is the most frequently used for the analysis of stand-level measurements,
including land-atmosphere flux measurements from more than 900 sites [21]. However,
FLUXNET data only provide latent heat or evapotranspiration as the land-atmosphere
water flux. Transpiration from the plant hydraulic module cannot be directly evaluated
against FLUXNET data. Alternatively, the empirical evapotranspiration partitioning ap-
proach proposed by Wei et al. [2] has been well-validated, and is widely used in estimating
large-scale, grid-based transpiration.
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Here, we evaluated the modeled transpiration against the observation-based estimates
of transpiration from 81 FLUXNET sites, and the specific information of each site is given in
Table S1. We conducted Common Land Model (CoLM) simulations with the PHS scheme
and the SMS scheme at each site, respectively. The simulated transpiration was compared
with that derived from the empirical evapotranspiration partitioning approach [2]. Two
metrics (the bias score and the root mean square error (RMSE) score) from the International
Land Model Benchmarking (ILAMB) system were used to evaluate the overall average and
the variability of the modeled transpiration. We aimed to answer whether or how much
the plant hydraulic module in land surface models improves modeled transpiration. Can
we identify what mechanisms the plant hydraulic module improves?

2. Materials and Methods
2.1. Model Description

We evaluate the transpiration modeled by CoLM PHS. The current release version
CoLM2014 is developed from an initial version of CoLM [22]. CoLM is a process-based land
surface model that includes soil thermal, soil hydrology, plant physiological, canopy radia-
tion, turbulence, and other processes [23,24]. The CoLM PHS employs a fine representation
of plant hydraulics. The root water potential is calculated at 10 different depths, equivalent
to the number of soil layers. Meanwhile, the numerical scheme for plant water stress was
significantly simplified. The new numerical scheme solves the stomatal conductance, plant
water potential, and water stress within the same iteration, whereas CLM5 PHS solves
them in three nested iterations; 86% of computational cost is saved by the new numerical
scheme in the plant physiological module.

The CoLM PHS calculates transpiration based on the concept of the soil–plant–
atmosphere continuum (SPAC). The plant water transport in the CoLM PHS is driven by
the water potential gradient from soil to leaves. The above vegetation water potentials are
solved at four aboveground vegetation nodes, including sunlit leaf, shaded leaf, stem, and
root at the soil surface. The water transport between two adjacent nodes follows Darcy’s
law, which is commonly used in plant hydraulic scheme of land surface models [14]:

qi←j = ki←j
(
Ψi −Ψj

)
(1)

where qi←j is water transport from j node to i node, and ki←j is hydraulic conductance
between j node and i node. Ψi and Ψj are water potential at i node and j node, respectively.
Transpiration of the sun leaf and shaded leaf can be derived by qlea f←stem(sunlea f , shalea f ).
The vegetation water transport from belowground is divided into axial and radial solutions.
In the radial solution, water is transferred between the soil and root.

The variation in plant and soil water potential in PHS is governed by three plant
hydraulic processes: plant embolization, HR, and stomatal water response. The plant
embolization process represents the reduction in hydraulic conductivity when plant water
potential declines due to drought. A transpiration attenuation function, which represents
the stomata response to water stress [25] and the vulnerability curve of hydraulic conduc-
tance [14], was introduced into PHS to depict the plant embolization process, which is
missing in SMS.

The HR process describes the vertical water transport through the root system, and
HR usually moves water downward during the wet season and lifts water upward during
the dry season. In SMS, root water uptake of each layer only depends on the dimensionless
ratio of each layer of the root. In PHS, the root water uptake is determined by the water
potential difference between the soil and root in each layer so that the HR process can
be represented.

The stomatal response process parameterizes the stomata conductance changes in
response to drought. Leaf water potential as a physical-based variable is used to quantify
the plant water stress on stomatal conductance. Plant water stress is described by a water
stress factor, which constrains the water response in photosynthesis and transpiration. In
SMS, the water stress factor is empirically determined by soil water potential, while in PHS,
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it depends on leaf water potential, which directly represents the relationship to stomata
conductance reduction [25]. The specific solution of PHS is given in Appendices A and B.

2.2. Forcing Data from FLUXNET Observations

We used half-hourly data for eight observed atmospheric forcing variables from the
FLUXNET2015 Dataset (https://FLUXNET.fluxdata.org/data/FLUXNET2015-dataset/
(accessed on 21 May 2020)) as the model input, which included downward solar radiation
at the surface (W m−2), downward longwave radiation (W m−2), precipitation (mm s−1),
temperature at the reference height (K), wind speed (u, v) (m s−1), atmospheric pressure at
the surface (Pa), and specific humidity at the reference height (kg kg−1).

To improve the accuracy of the evaluation, we use the quality control results of the
latent heat flux. Quality control results from 56 sites were given by FLUXNET directly, and
the missing data were filled using uncorrected latent heat flux. For the remaining sites for
which the quality control results were not given directly, we used the following tuning
equations to resolve the imbalance issue of the surface energy budgets [26]:

HL,cor = A HL,u =
Rnet − HG

HS,u + HL,u
HL,u (2)

where the variables with the subscript cor indicate the corrected variables, and u means the
uncorrected variables. HL,cor is the corrected latent heat flux, which we use as the quality
control result. HL,u is the uncorrected latent heat flux. HS,u is the uncorrected sensible
heat flux. Rnet and HG are the net solar radiation and ground heat flux, respectively. HG
is a direct measurement in FLUXNET data. Among the 25 sites that need to be corrected,
HG are available at 9 sites. When HG is missing, A is replaced by the alternative factor
A*, expressed as A* = Rnet/(HS,u + HL,u) [27]. Uncorrected latent heat fluxes were utilized
to replace the unrealistic values (too large) of corrected latent heat fluxes. We used the
corrected latent heat fluxes for the FLUXNET observations and quality control results to
validate the model in this study.

It is worth noting that this correction method ignores the energy storage terms, such
as soil energy storage, biomass energy storage, and air energy storage, by assuming these
terms are minimal and ignorable on a monthly scale.

A total of 81 sites were selected, including dryland cropland and pasture, irrigated
cropland and pasture, grassland, shrubland, mixed shrubland/grassland, savanna, decidu-
ous broadleaf forest, evergreen broadleaf forest, mixed forest, herbaceous wetland, and
wooded wetland as described by the United States Geological Survey (USGS) land cover
classification system (Figure 1). The specific information of each site is given in Table S1.

To test the performance of PHS between different moisture conditions and identify
the mechanisms that the plant hydraulic module improved, the 81 stations were divided
into four regions: humid (representing moist soil), dry (representing dry soil), high vapor
pressure deficit (VPD) area (representing low atmospheric humidity), and low VPD area
(representing high atmospheric humidity), which is based on the mean value of precipita-
tion and the median of VPD. Humid and dry were utilized to evaluate the performance of
PHS under different soil moisture conditions. High VPD area and low VPD area were used
to test the effects of atmospheric moisture on the PHS performance.

https://FLUXNET.fluxdata.org/data/FLUXNET2015-dataset/
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Figure 1. Distribution of FLUXNET sites used in this study. Colors represent the 12 vegetation
coverage types.

2.3. Validation Datasets

In this study, gross primary productivity (GPP) and soil water content were obtained
from the FLUXNET data directly. Soil moisture datasets are from Soil Moisture Visualizer
(https://airmoss.ornl.gov/visualize/ (accessed on 15 May 2021)). Transpiration (T) is
estimated in two ways: (1) sap flow data and (2) partitioning from eddy covariance water
flux data.

Sap flow data was obtained from SAPFLUXNET (http://sapfluxnet.creaf.cat/ (ac-
cessed on 8 May 2021)). In order to obtain stand-level T, we normalized the sap flow
of each tree to per area and averaged to each species in the datasets at first. Then we
multiplied it with the basal area of each species. The total species basal area at each site
in the datasets are more than 90% of the stand area. At the last, stand-level T could be
calculated by summing species-level T [28]. All the data mentioned above can be found in
the SAPFLUXNET.

Eddy covariance water flux data was obtained from FLUXNET. Evapotranspiration
(ET) was computed by dividing the latent heat by vaporization constant. T was estimated
based on a partitioning relationship from ET proposed by Wei et al. [2]:

T = (ET − Ig)aLAIb (3)

where a and b are regression coefficients, relating to six vegetation cover types (Table 1).
Since the canopy interception (Ig) was unavailable in the FLUXNET dataset, we retrieved
it from the global interception dataset provided by Wei et al. [2]. We also used the
MODIS (Moderate-resolution Imaging Spectroradiometer) leaf area index products [29] for
each site.

Table 1. Regression fitting coefficient values of six vegetation types.

Plant Cover Types a b

Needle-leaf forests 0.48 0.32
Broad-leaf forests 0.64 0.15
Mixed and forests 0.52 0.26

Shrubs and grasses 0.69 0.28
Crops 0.66 0.18

Wetlands 0.65 0.21

https://airmoss.ornl.gov/visualize/
http://sapfluxnet.creaf.cat/
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In the model evaluation, validation data was used to verify the modeled GPP, evapo-
transpiration and transpiration. Canopy processes in CoLM were based on two big leaf
models [23]. All these three variables in CoLM represent stand-level fluxes. The modeled
stand-level photosynthetic assimilation rate was compared with GPP from FLUXNET.
Modeled total water flux including transpiration, soil evaporation, and canopy interception
was compared with ET from FLUXNET. Modeled stand-level tree water use was compared
with the T from the ET partitioning relationship based on Equation (3).

2.4. Model Benchmarching

We used two metrics from ILAMB, the bias score and RMSE, to evaluate the perfor-
mance of the CoLM simulations [30]. The bias score indicates the overall performance,
represented by the average over time. The RMSE indicates the seasonal or interannual
variability.

2.4.1. Bias Score

First, the overall bias (bias) and the normalized bias (εbias) were calculated by the differ-
ence between the averaged observation vobs and the averaged simulation vmod over time:

bias = vmod − vobs (4)

Second, the bias was normalized by the centralized RMS (crms):

crms =

√
∑n

1 (vobs − vobs )
2

n
(5)

εbias =
|bias|
crms

(6)

where vobs is observation, n is the number of sample at different time. The bias score (sbias),
ranging from 0 to 1, was measured by an exponential function of the normalized bias:

sbias = e−εbias (7)

Higher scores indicate better model performance. The bias scores of vegetation
transpiration (T) were provided.

2.4.2. Root Mean Square Error (RMSE) Score

The centralized RMSE (crmse) and normalized RMSE (εrmse) were calculated as:

crmse =

√
∑n

1 ((vmod − vmod )− (vobs − vobs ))2

n
(8)

εrmse = crmse/crms (9)

where vmod is simulation. The RMSE score (srmse), ranging from 0 to 1, was measured by an
exponential function of the normalized RMSE. e.

srmse = e−εrmse (10)

The RMSE scores indicates the performance of seasonal or interannual variability. The
RMSE scores of T were provided.

3. Results
3.1. Seasonal Variation

Figure 2 compared modeled evapotranspiration with observational data. In all plant
types, the seasonal variation of evapotranspiration for both PHS and SMS agreed well with
the observations. Compared to the default SMS, the new scheme PHS evapotranspiration



Forests 2021, 12, 722 7 of 24

was significantly improved for the evergreen needle forest (ENF), grassland (GRA), and
savanna (SAV), where the bias reduced by 74.5%, 52.5%, and 92.5%, respectively. In decidu-
ous broadleaf forest (DBF) and cropland (CRO), the evapotranspiration only improved for
the summer but was overestimated in the winter. The seasonal variation of evapotranspira-
tion was small in evergreen broad forest (EBF) because most EBF sites were tropical. Slight
improvements were found only from November to February for EBF.
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Figure 3 compared transpiration simulated by PHS and SMS to observational data,
separately. For all plant types, both PHS and SMS schemes captured the seasonal vari-
ation of transpiration, while the annual mean of transpiration in PHS was closer to the
observed annual mean than those in SMS. The improvement in transpiration was much
more significant than evapotranspiration. Most improvements occurred in summer when
stomata regulation was dominated by soil water stress. For ENF, the transpiration in PHS
was highly consistent with the observation, whereas for DBF, CRO, GRA, and SAV, the
transpiration from the PHS scenario was slightly underestimated with significant improve-
ment during the summer season. For EBF, there was no significant difference between PHS
and SMS. Simultaneously, the climatological mean in the transpiration simulated by PHS
fell inside the variation range of the observation, while those simulated by SMS fell outside
the variation range for DBF in the summer and CRO in the spring.

Figure 4 compared gross primary productivity (GPP) simulated by PHS and SMS with
observational data, separately. PHS for ENF, DBF, CRO, and SAV were less biased in GPP
than those in SMS. In ENF, DBF, and CRO, GPP in PHS was improved in summer, whereas
GPP in the SAV sites was improved in all seasons. In EBF, GPP in PHS did not differ much
from SMS. In GRA, the GPP changed from slightly underestimated in SMS to slightly
overestimated in PHS. Overall, the seasonal variation in GPP by PHS was reliable because
the climatology means in PHS generally matched the observations. Since plant carbon and
water flux were coupled through stomata behavior, the validation in GPP added credit to
the transpiration evaluation.
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Figure 5A,B compared the modeled transpiration from both PHS and SMS with
SAPFLUXNET dataset at NL-LOO. PHS and SMS both captured the seasonal variation of
transpiration. Modeled transpiration was higher than observation in summer, and matched
well with observation in winter. The RMSE score of PHS (0.35) was slightly higher than
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SMS (0.34). The seasonal pattern of soil water content was opposite with transpiration.
The soil water content in PHS was lower than SMS at both shallow and deep soil layers
(Figure 5C,D). The difference is more significant in the deep soil layer than shallow soil
layer with more substantial seasonal variation.
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Figure 6A,B compared the modeled transpiration from both PHS and SMS with
SAPFLUXNET dataset at FR-FON. Modeled transpiration was significantly lower than
the sap flow data in summer. The difference of RMSE between PHS and SMS was small.
Both shallow and deep soil water content in PHS were significantly lower than SMS. The
difference was much smaller in summer than in winter at surface soil (Figure 6C) but with
no significant seasonal variation at deep soil (Figure 6D).

Figure 7 illustrated that the root water uptake changed at different soil depths. Positive
values indicate water flow from soil to root, while negative values represented the water
flow from root to soil. In all cases, the root water uptake was high in the shallow soil layers
due to the rich distribution of roots near the surface. At wet sites, both SMS and PHS
modeled higher root water uptake in the shallow layers than the deep layers because the
soil water was primarily stored in the upper layers due to precipitation. At dry sites, SMS
and PHS modeled a monotonical decrease in root water uptake with soil depth, because of
fewer roots in the deep soil. However, PHS root water uptake slightly increased in the deep
soil because the deep soil moisture was high. PHS relied on the water potential gradient
between soil and root more than SMS in modeling root water uptake. The root water
uptake of PHS was higher than that of SMS in deep soil, which was at depths between
1.3 and 3.8 m. The root water uptake of PHS was lower than that of SMS in superficial
layers, at depths between 0.1 and 1 m (Figure 7A). Root water uptake in wet sites was
much higher than in dry sites. In PHS, a higher fraction of water was taken from the deep
soil layer in dry sites than in wet sites, whereas in SMS we found no significant differences
in the proportion between deep and shallow soil water uptake (Figure 7A).
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Seasonal differences (Figure 7B) in root water uptake were much more significant than
the site differences (Figure 7A). The root water uptake in the mid and deep soil was much
higher in dry seasons than in rainy seasons (Figure 7B). However, the seasonal differences
were much weaker in SMS. There were no significant differences in the root water uptake
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in the shallow layers between PHS and SMS. Therefore, PHS simulated overall higher
transpiration than SMS due to the differences in deep root water uptake in dry seasons.

At drier sites (Figure 7C), PHS root water uptake during the rainy season can be even
negative at a depth of 0.8–2.0 m, which indicated soil water was transferred to these middle
soil layers during the rainy season. Such flow through the root system from shallow to deep
can be referred to as the so-called “hydraulic descent”. Similarly, during the dry season
in PHS, roots drew most water from deep layers instead of shallow layers. Negative soil
water uptake existed at every surface layer. Such flows from deep to shallow were referred
to as the “hydraulic lift”. In wetter sites (Figure 7D), although there was no negative root
water uptake simulated by PHS, the differences between PHS and SMS were greater in dry
seasons than in rainy seasons, especially for deep soil. These patterns indicated that strong
HR is simulated by PHS, while the root system played a critical role.

Figure 8 compared the modeled soil water content with observation at 3 FLUXNET
sites. PHS and SMS mostly captured the seasonal variation in soil water content, but were
just slightly lower than the observation in both shallow and deep soil layer. At US-Var, soil
water content in PHS and SMS matched with observation extremely well in shallow soil.
Although both PHS and SMS overestimated the deep soil water content in summer, soil
water content was slightly improved by PHS. At US-Wkg, the shallow soil water content
peaked in summer, when the rainy season came. This seasonal pattern was well captured
by both modules, although the deep soil water content was overestimated in winter and
underestimated in summer. Overall, both shallow and deep soil water content in PHS and
SMS was reasonable at these 3 FLUXNET sites.
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content at US-ARM in 2007 for shallow soil layer; (B) the comparison of soil water content at US-ARM in 2007 for deep soil
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content at US-Var in 2006 for deep soil layer; (E) the comparison of soil water content at US-Wkg in 2006 for shallow soil
layer; (F) the comparison of soil water content at US-Wkg in 2006 for deep soil layer.

3.2. Benchmarking Analysis

Figure 9 showed that the bias and RMSE score for 81 sites represented by different
colors was sorted by the precipitation from wet at the top to dry at the bottom. Wet sites
were separated from dry sites by a precipitation threshold, 728 mm, which was the median
of all sites. The bias score represented the bias in the temporal average (see details in
Section 2.4). The mean bias score was higher for wet sites than the dry sites for both PHS
and SMS, which indicated that the CoLM transpiration simulation at dry regions had a
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considerable potential to improve. At dry sites, the bias score was significantly higher in
PHS than SMS. The mean in PHS was 0.63, while the mean in SMS was 0.55. However, at
wet sites, the bias score was only slightly higher in PHS than SMS. The mean was 0.66 in
PHS and 0.63 in SMS.
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The RMSE score represented the bias in the seasonal variability (see details in Section 2.4).
The RMSE scores for transpiration at most sites were both between 0.4 and 0.8. The
differences between PHS and SMS in RMSE scores were less significant than the bias score.
The RMSE score indicated that the PHS modeled seasonal variability in transpiration better
than SMS at dry sites, but slightly worse seasonal variability than SMS at wet sites.

3.3. The Drought Sensitivity

Precipitation was the most dominant meteorological determinant of annual transpira-
tion, which explained over 90% variation in transpiration among various sites (Figure S1).
Based on the importance of precipitation, we defined “drought sensitivity” as the slope
of the linear regression of transpiration or GPP as a function of precipitation (Figure 10).
Among the arid and semi-arid sites, the drought sensitivity for transpiration in PHS
(0.39 mm/mm) better matched the observation (0.37 mm/mm) than in SMS (0.28 mm/mm)
(Figure 10E). The improvement in drought sensitivity for transpiration may explain the
increase in RMSE at arid and semi-arid sites. At humid sites, both PHS and SMS sub-
stantially underestimated the drought sensitivity for transpiration, which were 0.13, 0.14,
and 0.34 mm/mm for PHS, SMS, and observations, respectively (Figure 10F). The poorly
modeled drought sensitivity at wet sites by PHS may account for the lower RMSE in
Figure 6.
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At arid and semi-arid sites, drought sensitivity for GPP from models well matched
that from observations, which were 2.2, 2.1, and 2.0 g·C m−2 mm−1 for PHS, SMS,
and observation, respectively (Figure 10E). At humid sites, the drought sensitivity for
GPP from the models was significantly lower than those from observation, which were
0.3 g·C m−2 mm−1 and 0.45 g·C m−2 mm−1 for PHS and SMS, and 0.6 for observation,
respectively. Due to the coupling between photosynthesis and transpiration through the
stomata, underestimating drought sensitivity for GPP may explain the lower drought
sensitivity for transpiration.

Plant transpiration was supplied by the uptake of water by roots, which was the major
limitation in arid regions. The more pronounced response in PHS transpiration at dry sites
compared to SMS was mainly contributed to by deep soil water uptake, which ranged from
0.9 to 3.8 m (Figure 11A). Although the response in shallow root water uptake was slightly
weaker in PHS than SMS at depths from 0.2 to 0.9 m, the magnitude was much less than
the response in deep water uptake. Overall, HR, which enabled the function of the deep
root water uptake, provided a clear response in transpiration to the precipitation. At wet
sites, the modeled response to the rainfall is much weaker. Water supply was no longer the
limit of the transpiration. Water demand driven by photosynthesis became the primary
limit. Due to the underestimates of the photosynthesis response to the precipitation, the
PHS root water uptake only positively responded to the precipitation at the depth from 0.7
to 2.2 m, the magnitude of which was very modest.
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precipitation in dry areas; (B) is the same as (A), but for wet areas. Sensitivity refers to the regression coefficient between
root water uptake of each layer and precipitation.

4. Discussion
4.1. Benchmarking Analysis on Transpiration

Our conclusion that PHS improves transpiration modeling was based on the bench-
marking analysis framework. Metrics and benchmarks were two essential components in
benchmarking analysis [31]. In our study, we used the bias score to evaluate annual mean
transpiration, and we used RMSE score to assess the seasonal variability in transpiration.
Both metrics were adopted from the ILAMB project. These benchmarks quantified the
model performances and allowed for model comparisons and for comparisons of different
regions. For example, the bias score helped us identify that mean transpiration was slightly
better modeled by PHS for wet sites than dry sites; the bias scores were 0.66 and 0.63 on
average for wet and dry sites, respectively. But the improvements were more significant for
dry sites, where the bias score improved from 0.55 by SMS to 0.63 by PHS. Without these
metrics, the performance of the models was challenging to infer.

Benchmarks in our study defined the evapotranspiration, transpiration, GPP, and
their responses to the precipitation, and aimed to evaluate the performance and attribute
the bias of the transpiration simulation. Since direct measurement of transpiration at the
stand level was not available, we partitioned the evapotranspiration from FLUXNET into
transpiration based on its empirical relationship to LAI. This benchmark was data-derived
and contained some degrees of error. Nevertheless, the uncertainties were reduced by
using the ensemble mean of different FLUXNET sites distributed worldwide. Moreover,
the simulated evapotranspiration agreed well with the direct measurement of latent heat
from FLUXNET sites (Figure 2), which enhanced the credibility of the transpiration ob-
servation from the evapotranspiration partitioning method. In addition to transpiration
and evapotranspiration, we also included GPP as a benchmark. Since transpiration and
photosynthesis were usually coupled through the stomata, the inclusion of GPP as one of
the benchmarks would help evaluate the stomatal controls on transpiration.

To evaluate mechanistic processes in models, we evaluated modeled responses to
precipitation. The response of transpiration or GPP was measured using the slope of
the regression of all FLUXNET sites, which was between transpiration and precipitation,
or between GPP and precipitation (Figure 10). The slopes represented process-oriented
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responses. For example, the slopes for GPP in Figure 10C,D indicated how stomata
responded to precipitation. The benchmarking on these process-oriented responses was
essential, and provided practical and fundamental information about the models.

4.2. Plant Hydraulic Schemes (PHS) Improved the Evapotranspiration Partitioning

Benchmarking analysis on transpiration provided critical information on water cycle
modeling and thus improved the modeled interaction between transpiration and the
environment. Our results have identified higher modeled transpiration by PHS than SMS.
The bias score suggested significant improvements for most FLUXNET sites, especially
at the dry sites. The increase in transpiration by PHS has important implications on the
evapotranspiration partitioning since most models have underestimated transpiration,
including an earlier version of the CLM [10]. Although other factors, such as overestimated
soil evaporation, unconstrained vegetation traits, bias in soil hydrology, could contribute
to the underestimated evapotranspiration partitioning into transpiration, the absence of
the plant hydraulic scheme is at least one of the most important contributing factors. PHS
included the HR process that helped root more efficiently absorb deep soil water and,
therefore, increased plant transpiration, especially in arid regions.

Recent benchmarking analysis on CLM5 was consistent with our conclusions that the
plant hydraulic scheme significantly increased the fraction of transpiration in evapotran-
spiration in semi-arid regions, especially in the southern hemisphere [14]. The increased
evapotranspiration partitioning into transpiration by PHS indicated that plant physiology
should have played a more important role in future terrestrial water cycle models. The
dominance of the biotic impact on the land–atmosphere water exchange would be more
accurately captured by land surface models with PHS.

Overestimates in soil evaporation are possible another reason to explain the underesti-
mate in transpiration fraction in evapotranspiration [10], because soil evaporation competes
with transpiration in available soil water content. Overestimated in soil evaporation from
the surface soil might further lead to increase in moisture stress and, therefore, further
reduce the transpiration fraction. However, PHS plays a vital role in weakening the impact
of soil evaporation bias on transpiration fraction. The competition between transpiration
and evaporation was significantly reduced in PHS. Soil evaporation primarily uses the
water from surface soil. Plant water uptake, which contributes to the transpiration, is
mostly from deep soil layers in PHS, while it was initially from shallow soil layers in SMS
(Figure 7). Meanwhile, HR in PHS also supplements surface soil water from deep soil
layers. Therefore, transpiration and soil evaporation are able to use soil water more efficient
in PHS, which enhances the transpiration fraction as well.

4.3. Hydraulic Redistribution (HR) Implementation and the Implication

HR is one of the major processes developed in CoLM PHS. HR, as a widespread
phenomenon, has been well documented [32,33]. In recent decades, HR models have
successfully simulated “hydraulic lift” in the dry season and “hydraulic decent” in the wet
season. The non-negligible impact of HR on climate change modeling has been implied.
For example, HR indirectly influences the carbon cycle. More frequent wildfires might be a
vital climate change consequence in the future carbon cycle. HR-lifted water from deep
soil moisturizes the soil surface and suppresses fire [34]. HR also indirectly impacts the
nitrogen cycle. When HR strongly modulates N mineralization, immobilization, and plant
N uptake in the dry season, soil nitrogen decomposition and soil nitrate concentration
will be significantly decreased. N2O emission is thus reduced [35]. Moreover, HR affects
the land–atmosphere water exchange and further feedbacks on the climate. However, the
modeled HR magnitude is usually higher than those from the empirical literature. The
empirical literature proposed that the HR magnitude ranged from 0.04 to 1.3 mm H2O d−1,
whereas the modeled HR magnitude ranged from 0.1 to 3.23 mm H2O d−1 [36]. The lack
of data constraints is a major issue in the current development of HR models.



Forests 2021, 12, 722 16 of 24

On the one hand, the absence of water flow and water potential measurements in
the root system prevents simulations from being more accurate. On the other hand,
the unrealistic or simplified HR model structures prevent models from representing the
observed counterpart. Regarding the second issue, the more realistic model structure in
CoLM PHS might open up a new opportunity for the data constraint on the HR modeling.
The PHS in this paper combined the CLM5 PHS model and the HR model by Amenu
and Kumar [37]. The root water potential in the new PHS scheme is vertically resolved.
Incorporating the vertically resolved water potential into models will allow better data
constraints on both root water flow and root water potential. When more individual
measurements are available, HR modeling could be improved significantly.

To further improve HR modeling in land surface models, the optimization of soil
moisture prediction will provide a more accurate water supply environment for root water
uptake modeling. The implementation of HR we introduced was a complicated but more
realistic representation of water movement between the soil and roots. Compared to
SMS, the deep soil water uptake simulated by PHS with HR was much more sensitive to
changes in precipitation (Figure 11). The high quality of the deep soil moisture modeling
offers a solid foundation for further improvement in HR modeling. Deep soil moisture
is strongly related to the soil water table. Most previous land surface models simulate
the water table diagnostically, based on either pressure head profile or a parameterization
scheme [38,39]. A numerical framework, which explicitly tracks the soil water table, has
opened a novel avenue for soil hydrology modeling [39] and, therefore, improved the
quality of the deep soil moisture modeling. Also, the representation of soil hydrology
process, soil hydraulic parameters and soil thermal parameters introduce uncertainties in
soil moisture prediction [39–44]. Soil hydraulic and thermal parameters in land surface
models are constrained by soil property datasets and the pedotransfer function (PTF).
To minimize the individual bias, Dai et al. [45] used ensemble PTFs to develop global
high-resolution and high-quality data for soil hydraulic and thermal parameters. The
development in soil hydrology model structure and parameterization and the increasing
soil property dataset will reduce the uncertainties in soil moisture prediction and thus
improve HR modeling in the future.

4.4. PHS Improved the Transpiration Modeling in Arid or Semi-Arid Regions

Our results suggested that the new plant hydraulic scheme will result in higher tran-
spiration and photosynthesis during dry seasons or in arid regions due to the hydraulic
redistribution. Our findings offer an important insight for future climate change modeling.
Extreme events, such as drought, are likely to be more frequent in the future [46–49]. Simu-
lations by coupled climate-carbon-cycle models indicate that an Amazon rainforest dieback
could cause more than 100 GtC vegetation carbon loss due to a future drying climate [50,51].
The great vulnerability of the tropical rainforest has been a broad concern [52]. However,
stronger transpiration and photosynthesis in arid sites stimulated by PHS suggested that
the vegetation should be more tolerant to drought than traditional models using the SMS
scheme have suggested. Plants were able to utilize more deep soil water and, therefore,
experienced less water stress in our PHS simulations. Thus, PHS simulations suggest that
rainforest dieback will be less likely due to the higher water use efficiency.

The improvement in the RMSE (Figure 9) and the drought sensitivity for transpiration
(Figure 10A,E) indicated that PHS better simulated plant responses to precipitation. PHS
increased the drought sensitivity for transpiration by 33% compared to SMS (Figure 7E) and
better matched the observations. The increased drought sensitivity was mainly contributed
to by deep soil water uptake (Figure 11A). The deep soil water content depends more on
the long-term soil water budget than surface soil. It means annual rainfall is more critical
for the deep soil water content than the surface soil, where soil evaporation takes control.
Since SMS water uptake is mainly from surface water content, PHS is more sensitive to
the annual rainfall than SMS. However, such improvement was only found at dry sites.
For humid sites, the RMSE for transpiration was lower for PHS than SMS (Figure 9B).
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The drought sensitivity for both transpiration and GPP poorly matched the observation
(Figure 10F). Both transpiration and GPP were less sensitive than observations. The GPP
may be attributed to the insensitivity of transpiration at wet sites (Figure 10D,F), because
photosynthesis and transpiration are strongly coupled through stomata. To improve
the drought sensitivity for transpiration, we need to understand how GPP responds to
precipitation in the models. In current land surface models, the responses to precipitation
for GPP were controlled by (1) parameterizations in water stress, (2) stomatal response to
VPD, and (3) soil hydrology processes. The improvement in the above processes is essential
for future plant hydraulic model development.

4.5. Uncertainties Sources

The LAI derived from MODIS datasets may introduce some additional uncertainties.
Due to lack of field observation, it is unable to validate and correct that from the satellite-
observed LAI. Although MODIS LAI products have been used in various studies, it is well
known that the magnitudes and temporal variations of satellite-derived LAI are somewhat
different from those of the field measurements [2]. Meanwhile, we utilized LAI based
on empirical regression to obtain observational transpiration. However, there is not a
distinction between overstory and understory vegetation in the LAI dataset. In our model,
the transpiration of understory was ignored, even though some studies have pointed out
that the understory vegetation may contribute 10% to 50% of the evapotranspiration at
a stand, and this contribution was related to LAI [53,54]. It is essential to consider the
understory impact in model development. Moreover, the data of Wei et al. [2] employed
in the development of the regression equations showed a wide variation in transpiration
fraction, due to various measurement methods (such as isotopic and non-isotopic) involved.
It is well known that different methods showed significant discrepancies among different
methods. The inherent errors in FLUXNET and SAPFLUXNET products may also not be
negligible. For example, it was found that the energy imbalance problem exists in most
sites in the FLUXNET dataset, and scaling single point of sap flow to ecosystem level
includes great uncertainties.

5. Conclusions

Here, we evaluated modeled transpiration using CoLM PHS and SMS against FLUXNET
data, in which transpiration was separated from evapotranspiration based on an empirical
relationship to LAI. The bias score was significantly higher for PHS than SMS at dry
sites, which suggested that the improvement of PHS was most significant in dry regions.
Generally, the improvement can be interpreted by an increase in transpiration.

Specifically, the increase in transpiration includes two major implications. First, the
increase in transpiration results in a better estimate in evapotranspiration partitioning by
land surface models. PHS, including the HR scheme, enhances deep-water use. Thus,
plants play a more important role in land–atmosphere water exchange. Second, the increase
in transpiration, especially in dry regions, indicated that plants in land surface models
should have been more tolerant to drought than in previous simulations. The deep-water
use relieved plant water stress, and maintained photosynthesis by allowing the stomata
to remain open. The plant mortality under more frequent drought in the future should
be lower than previously predicted. Future developments in land surface models need to
incorporate PHS to improve water cycle modeling, especially in dry regions.

Our benchmarking analysis also identified issues in PHS. The sensitivity of tran-
spiration to the precipitation in wet sites was much lower than the observations. The
insensitivity of transpiration can be explained by the underestimate of the sensitivity of
GPP, if we assume that photosynthesis covaries with plant water demand by sharing the
same mass exchange pathway, the stomata. To better simulate the emergent relationship
between transpiration and precipitation, further developments in land surface models
may consider improving the parameterization of the plant water stress, soil hydrology
processes, or estimates in canopy VPD.
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Appendix A Processes and Parameterizations in the Plant Hydraulic Module

Vegetation water potential is the most fundamental variable for those key processes in
PHS. The vegetation water potentials are solved at four aboveground vegetation nodes,
and n belowground root nodes. The four aboveground vegetation nodes are sunlit leaf,
shaded leaf, stem, and root at the soil surface. By assuming the root system to be a big
single root, belowground root nodes represent roots located at different soil depths.

The solution of vegetation water potential depends on stomata conductance and envi-
ronmental conditions such as atmosphere vapor pressure and soil water matrix potential.
The water potential

(
Ψsunlea f , Ψshalea f , Ψstem, Ψroot,0

)
at the four aboveground nodes and

water flows between them follow the Darcy’s law:

qsun←stem = ksun←stem

(
Ψsunlea f −Ψstem

)
(A1)

qsha←stem = ksha←stem

(
Ψshalea f −Ψstem

)
(A2)

qstem←root = kstem←root(Ψstem −Ψroot,0) (A3)

ksun←stem, ksha←stem and kstem←root represent hydraulic conductance from stem to sun leaf,
stem to shade leaf, and root to stem, respectively. Hydraulic conductance loses with the
decline of the water potential. The surface root water potential Ψroot,0 is solved by coupling
Amenu and Kumar’s HR model [19]. The inputs of the HR model include the soil water
potential Ψsoil,i at each soil layer and the total root water uptake qroot,0:

Ψroot,0 = R(Ψsoil,i, qroot,0) (A4)

qsun←stem, qsha←stem, qstem←root represents the water flow from stem to sun leaf, from stem
to shade leaf, and from root to stem, respectively. The water flow at each node is water
conserved due to the assumption that no water is stored in plant organics:

Esun = qsun←stem (A5)

Esha = qsha←stem (A6)

qsun←stem + qsha←stem = qstem←root (A7)

qstem←root = qroot,0 (A8)

https://www.mdpi.com/article/10.3390/f12060722/s1
https://www.mdpi.com/article/10.3390/f12060722/s1
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Esun and Esha denote transpiration rate of sunlit leaves and shaded leaves. They
are products of non-stress transpiration (Esun,max, Esha,max) and transpiration attenua-
tion function. The non-stress transpiration is simulated by PHS without water stress
(βsun = 1; βsha = 1). Transpiration attenuation function represents the stomata response
to the water stress, which is empirically related to leaf water potential according to a
previous experimental study [25]. The attenuation function of transpiration rate varying
with leaf water potential (Ψsunlea f , Ψshalea f ) was introduced into the CoLM plant hydraulic
model [14]:

Esun = Esun,max × 2−(
Ψsunlea f

p50 )
ck

(A9)

Esha = Esha,max × 2−(
Ψshalea f

p50 )
ck

(A10)

Plant embolization causing serious water transmission capacity loss has also been
incorporated. The vulnerability curve [55–59] of the hydraulic conductance, ki←j declines
with water potential:

ki←j = kmax × 2−(
Ψj
p50 )

ck

(A11)

where kmax is the maximum hydraulic conductance (s−1), i represents the destination node
of the flow, and j represents the source node of the flow. Ψj is the water potential of the
source node j (Pa), and p50 is the water potential when the hydraulic conductance is lost by
50% (Pa), and ck is the shape parameter of the fragility curve.

HR in CoLM PHS adopts Amenu and Kumar’s HR model [19]. The hydraulic con-
ductivity in the root system contains axial hydraulic conductivity and radial hydraulic
conductivity. The axial hydraulic conductivity is expressed by Darcy’s law:

kax,i(Ψr,i −Ψr,i+1) = qax,i (A12)

where kax,i is the axial hydraulic conductivity from the root node at (i + 1) th layer to the
ith layer, qax,i is the water flow in ith layer, Ψr,i is the water potential of the root node at the
ith layer. i is from 1 to n − 1, and n represents the total number of soil layers.

Radial hydraulic conduction equation:

krad,i(Ψsoil,i −Ψr,i) = qrad,i (A13)

where krad,i is the radial hydraulic conductivity, qrad,i is the water flow from soil to root,
Ψsoil,i is the soil water potential at the ith layer. The water balance equation is:

qax,i + qrad,i = qax,i−1 (A14)

where i is from 2 to n. Thus, Equation (A14) represents n − 1 equations. In addition, from
the water balance equation at the surface layer, we can obtain:

qax,1 + qrad,1 = qroot,0 (A15)

By combining Equations (A12) and (A13) into (A14) and (A15), we obtain n sets of
linear equations about Ψr,i. These equations describe water flows in the root system, and
represent the hydraulic redistribution process as a natural consequence. To solve these
equations, Equation (A4) can be explicitly formulated.

The plant water stress is described by water stress factors (β), which constrains the
water response in photosynthesis and transpiration. In SMS, the soil water potential (Ψi)
determines the water stress factor (β), which is normalized by minimum water potential
(Ψmin) and saturated water potential (Ψsat):

β =
n

∑
i=1

f rootiβi (A16)
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βi =
Ψmax −Ψi

Ψmax −Ψsat
(A17)

While in PHS, the water stress is supposed to function through stomata closure:

βsun =
gs,sun

gs,sun,max
(A18)

βsha =
gs,sha

gs,sha,max
(A19)

where gs,sun and gs,sha respectively represent the actual stomatal conductance of the sunny
and shaded leaves, and gs,sun,max and gs,sha,max, respectively, represent the maximum stom-
atal conductance on the sunny and shaded leaves. The solution of water stress requires
coupling of the surface canopy turbulence parameterization scheme, Farquhar photosyn-
thesis model, and Ball–Berry stomatal model. The Ball–Berry stomatal model describes the
relationship between stomata conductance (gs) and photosynthetic rate

(
fphoto

)
, which is

modulated by the water stress factors on both sunlit leaf and shaded leaf:

gsun = g
(

fphoto(βsun)
)

(A20)

gsha = g
(

fphoto(βsha)
)

(A21)

The maximum or actual transpiration rate is calculated from maximum or actual
stomata conductance by a latent heat parameterization method similar to CLM5 (See CLM5
technique note, Equation (5.114) [60]:

Esun,max = E(gs,sun,max) (A22)

Esha,max = E(gs,sha,max) (A23)

Esun = E(gs,sun) (A24)

Esha = E(gs,sha) (A25)

By combining the above equations, the unknowns including plant water potentials
Ψsunlea f , Ψshalea f , Ψstem, Ψroot,0, Ψr,i, and water flows between vegetation nodes, qsun←stem,
qsha←stem, qstem←root, qroot,0, qax,i, qrad,i, Esun,max, Esha,max, Esun, Esha and stomata conduc-
tance gs,sun,max, gs,sha,max, gs,sun, gs,sha can be solved numerically.

Appendix B PHS Solution

To solve plant water potential, water stress, stomatal conductance, and leaf transpi-
ration rate, plant hydraulic module need to be coupled with the photosynthetic stomatal
model and surface canopy parameterization scheme. The aim is to solve 18 unknowns
from 18 equations in Appendix A. The 18 unknowns include four plant aboveground
water potentials (Ψsunlea f , Ψshalea f , Ψstem, Ψroot,0), eight water transmission rates (qsun←stem,
qsha←stem, qstem←root, qroot,0, Esun,max, Esha,max, Esun, Esha), four stomatal conductances
(Esun,max, Esha,max, Esun, Esha), and two water stresses (βsun, βsha). However, since im-
plicit equations were involved, we employed numerical solution to solve the problem.
Figure A1 showed the flow chart of PHS solution, and Table A1 showed the parameters in
PHS. The numerical solution includes:

(1) calculate the leaf temperature based on canopy model (Tl,sum, Tl,sha).
(2) calculate the maximum stomatal conductance based on photosynthetic stomata model

(gs,sun,max and gs,sun,max).
(3) calculate the maximum leaf transpiration rate according to the maximum stomatal

conductance (Esun,max and Esun,max).
(4) calculate the water stress (βsun, βsha).
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(5) update the water stress in the photosynthetic stomata model, and check whether the
intercellular carbon dioxide concentration is converged. If it converges, go to step (6);
Otherwise, repeat step (5).

(6) update the stomata conductance, and check whether the water stress converges. If it
converges, go to step (7); otherwise, go back to step (2);

(7) update the plant water potential and leaf transpiration, and check whether the leaf
temperatemperature based on canopy model n the plant hydraulic model are solved.
Otherwise, go back to step (1).
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Table A1. The values of important parameters in PHS.

Plant Hydraulic
Parameter Parameter Name Description Land Surface Cover Type Values Units

P50
Water potential at 50% loss of leaf

tissue conductance

Evergreen Needleleaf Forest −465,000.0

mmH2O

Deciduous Broadleaf Forest −270,000.0

Evergreen Broadleaf Forest −260,000.0

Cropland −340,000.0

Grassland −340,000.0

Savanna −340,000.0

h Canopy top

Evergreen Needleleaf Forest 17.0

m

Deciduous Broadleaf Forest 19.3

Evergreen Broadleaf Forest 35.0

Cropland 0.5

Grassland 0.5

Savanna 0.5

Kmax Maximum hydraulic conductance ALL 2.0×10−8 s−1

Ck Shape-fitting parameter for
vulnerability curve ALL 3.95

Stomatal Conductance
Parameter Parameter name Description Plant type Values Units

G0 Conductance-photosynthesis
interception

C3 9.0

C4 4.0

α1 Conductance-photosynthesis
slope parameter

C3 0.01 mol
CO2·m−2·s−1

C4 0.04
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