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Abstract: Haloxylon ammodendron (C.A.Mey.) Bge. is crucially important for stabilizing sand dunes in
the desert area of the Junggar Basin and has thus been widely planted in the oasis–desert ecotone
for windbreak and sand fixation purposes since the 1980s. The spatial distribution and structural
characteristics of Haloxylon ammodendron plantations of three different ages—planted in 1983 (36a),
1997 (22a), and 2004 (15a)—on the southwestern edge of the Gurbantünggüt Desert were studied.
The results showed that the spatial distribution patterns for the different stages of growth showed a
trend of cluster that was random during the transformation from seedlings to juvenile and mature
trees. Forest density for the 15a, 22a, and 36a plantations was, respectively, 1110, 1189, and 1933
plants ha−1; the base stem diameter for the main forest layer was 5.85, 8.77, and 6.17 cm, respectively,
and the tree height was concentrated in the range of 1.5–3.0 m, 2.0–3.5 m, and 1.5–2.5 m. In the
regeneration layers, the proportion of seedlings was the largest in all three stand ages, followed by
juvenile trees, and mature trees only appeared in the 22a plantation. The proportion of deadwood
in the 36a forest was the highest, and there were no mature trees in the regeneration layer. These
results indicate that the three Haloxylon ammodendron plantation stages were in the period of rising at
15a, stable and degenerate with increasing age at 22a, and at 36a the regeneration ability was very
weak and presented degradation due to species competition for soil moisture, because of too many
seedlings and mature plants. In this case, measures such as thinning could be taken to prevent rapid
degradation and to accelerate regeneration when the stand age exceeds 20 years. Considering the
sand fixation effect, the pressure of competition for water resources, and forest capacity for renewal
and sustainability, the most suitable forest density in the Haloxylon ammodendron plantation would be
8.5–9 m2 per plant.

Keywords: spatial patterns; population dynamics; planting density; Haloxylon ammodendron plantation

1. Introduction

Arid areas make up about 30% of China’s total territory and are expanding every
year [1]. The oasis-desert ecotone plays an important ecological role in the arid region and is
characterized by sparse vegetation, shortage of water resources, and fragile environment [2].
Ecological protective projects have been effectively established in China to protect the oasis-
desert ecotone, which is itself essential for protecting the ecological environment and
maintaining the stability of the oasis [3].
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As the largest and most concentrated species in the Gurbantünggüt Desert, Haloxylon
ammodendron forest acts as a natural barrier protecting the edge of the oasis from sand-
storms [4]. However, excessive logging, grazing, and unreasonable reclamation during the
1970s and 1980s caused serious damage to the natural Haloxylon ammodendron forest within
20–50 km of the Junggar Basin. In the 1980s, the area of Haloxylon ammodendron forest was
only 68.4% of that occupied in 1958 [5].

Haloxylon ammodendron is a dominant xerophyte species of large ecological importance
in stabilizing sand dunes [6]. As an excellent biological sand fixation species, Haloxylon
ammodendron has strong adaptability and tolerance to high temperature, drought, and
salinity in desert ecosystems [7,8], and it has been the preferred tree species for artificial
afforestation around the Junggar Basin since the 1980s [9]. The sand-fixing system estab-
lished in the Mosuowan reclamation area and the Manas River Basin has been viewed as
a successful model of artificial ecological engineering in desert regions [10,11]. However,
artificial vegetation in the Mosuowan region is characterized by single-species plantations
of high density and is experiencing varying degrees of decline after nearly 40 years [12].
Hence, it is necessary to clarify the spatial patterns of plant populations and the reasons for
the decline of plantations.

Spatial patterns of plant populations are closely related to ecological processes [13–15].
Spatial distribution patterns and interactions play a major role in explaining the coexistence
of species, the relationship between species and habitat, and the ecological processes of
populations [16,17]. For example, clustered spatial distribution patterns of vegetation may
result from heterogeneous microhabitats, facilitative interactions, or local seed dispersal,
while uniform spatial patterns may indicate homogeneous habitat conditions [18–21]. Spa-
tial interactions help to reveal the complex balance between competition and facilitation,
and demonstrate how competition and facilitation exist simultaneously—for example, un-
der favorable environmental conditions, competition predominates, while under stressful
conditions, facilitation prevails—and different spatial interactions may result in specific
spatial patterns [22,23]. Increased understanding of spatial distribution patterns and inter-
actions may provide insights into forest succession as well as give early warning signs of
vegetation degradation [24–27].

The transitional regions between oases and deserts with fragile ecosystems are re-
lated to the ecological security of the oasis [28–30]. Investigating the characteristics and
spatial patterns of artificial sand-fixing plants contributes to exploring the main causes
of vegetation degeneration, and the evolutionary processes and driving mechanisms of
artificial sand-fixation plants, and would provide reference for plantation construction and
management in other oasis-desert ecotones [31].

The Junggar Basin, located in Northern Xinjiang, is recognized as one of the world’s
most sensitive regions to global change [32]. The Mosuowan reclamation area is located
in the southwestern margin of the Junggar Basin. There is stable snow cover in this
area in winter, with a maximum snow thickness of more than 20 cm. Melting snow in
early spring provides favorable conditions for the growth and development of desert
plants [33,34]. Haloxylon ammodendron is one of the most important and commonly used
sand-fixing species in the Junggar Basin [35], the distribution area of which in Xinjiang is
account for 68.1% of the total area of China [36]. While investigating the characteristics
and spatial patterns of artificial sand-fixing plants contributes to exploring the main causes
of vegetation degeneration, this case would also be beneficial for further study of the
evolutionary processes and driving mechanisms of artificial sand fixation plants, and
would provide some reference for plantation construction and management in other oasis-
desert ecotones.

The specific objectives of this study were to: (1) determine whether the artificial
Haloxylon ammodendron forest experience a recession with the increasing of stand age?
(2) explore the main reasons for the recession and to provide theoretical basis for the
renewal and sustainable development of artificial shelterbelt in this area.
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2. Materials and Methods
2.1. Study Area

This study is centered on the intersection of oasis-desert on the southwestern edge of
the Gurbantünggüt Desert, near the Mosuowan Desert Research Station (86◦1′ E, 45◦7′ N)
of the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (Figure 1).
This area is a typical temperate arid desert. The annual average precipitation is less
than 120 mm, as shown by the 1980–2007 precipitation presented in Figure 2, and the
annual evaporation is about 2000 mm; precipitation is mostly concentrated in winter and
spring [37,38]. The average annual temperature is 6.6 ◦C, with a mean maximum above
40 ◦C in July and a minimum of less than −40 ◦C in January. The groundwater depth
decreased from 8 m in 1998 to 12 m in 2007, and it is still declining at a rate of 0.35 m per
year [39,40].
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contents of clay (<0.002 mm), powder (0.002–0.05 mm), and sand (0.05–2 mm) of 3.12%,
32.63%, 64.25% respectively. The vegetation cover of the study area is ~20–30%, and the
dominant species is Haloxylon ammodendron accompanied by a few other species such as
Tamarix chinensis, Calligonum leucocladum, and Nitraria sibirica [41,42]. Single Haloxylon
ammodendron species were planted at different stages, spaced 3 m in rows and 1 m in
columns, to prevent the desert spreading to the oasis.

2.2. Field Investigation

In 2019, three plots of different planting stages, from 1983 (36a), 1997 (22a), and
2004 (15a), were selected for investigation in the study area. These were chosen with
consideration of the appropriate scale for structure-related and spatial-pattern study [43]
and of the consistency of the plot sizes at different stages, based on the study of spatial scale
of shrubs by Zuo and Zheng [21,44], a 50 m × 60 m survey plot was selected for each site.
The selected plots are uniform in topography and are not disturbed by grazing and logging.
No other artificial tending measures such as fertilization, irrigation, or pruning were
adopted after the afforestation project had been completed for all plots. The DGPS global
positioning system (iHand A10, DGPS) was used to determine the coordinate information
(x, y coordinates) of all living trees in each plot. The investigation parameters included
plant height, crown width, base stem diameter, and relative proportions of dead branches.

The vertical structure of the Haloxylon ammodendron plantations can be divided into
two layers: main forest layer and regeneration layer. The main forest layer is the Haloxy-
lon ammodendron plantation, and the regenerated layer includes all naturally regenerated
seedlings and saplings in the stand [12]. Additionally, the individual plants in the regener-
ation layer are divided, according to their ground stem, into seedlings (<1.2 cm), saplings
(>1.2 cm and <6.5 cm), and mature trees (>6.5 cm) [45,46].

2.3. Data Analysis

R software was used to analyze the spatial distribution patterns of Haloxylon ammod-
endron in each plot. Plants are represented as points and are mapped individually with
Cartesian coordinates within a plot [47–49]. The L-function of univariate spatial analysis
was chosen to describe the spatial patterns of all trees in the three developmental stages.
The L-function [50] is derived from the Ripley’s K-function [51]. An approximate variance-
stabilizing transformation for the K-function is the square root. The L-function stabilizes
and linearizes the variance of the K-function, which simplifies the interpretation of results.
The edge-effect correction method can be applied for rectangular study areas extended by
Goreaud and Pelissier based on Ripley’s local weighting factor [52]. So, spatial patterns
can be described as random, regular, or aggregated, respectively, when the values of L(r)
fall within, below, or above the confidence envelope [53]. The univariate estimators of the
K- and L-functions are calculated as:

K(r) =
A
n2

n

∑
i=1

n

∑
j

w−1
ij Iruij (1)

L(r) =

√
Kr

Π
− r (2)

where A is the area of the plot; n is the number of trees; uij is the distance between two
points i and j; Iruij is the indicator function, Iruij = 1 if uij ≤ r, when uij > r, Iruij = 0; and
wij is the weight value for edge correction [54].

SPSS (version 20.0, IBM, New York, NY, USA).) software were used for statistical
analysis. The base diameter and height of the main forest layer were completed using
Origin (version 9.1, OriginLab, Northampton, MA, USA). The spatial analysis L-function
was completed using the “spatstat” package of the statistical software package R [55]. The
spatial distribution map of basal stem diameter was completed by the “ggplot2” package of
the statistical software package R [21]. Semivariance analysis was used to further describe
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the spatial dependence of plant populations, and the geostatistical analysis was completed
with the software package GS + version 7(Mail Gamma Design Software, LLC, Plainwell,
MI, USA).

3. Results
3.1. Basic Characteristics of Haloxylon ammodendron Plantations

There were significant differences in the basic characteristics of plantations between
different developmental stages (Table 1). The survival rate of the main forest layer was
30.4%, 17.7%, and 55.9%, respectively, for the 15a, 22a, and 36a plots. The deadwood
proportion presented a trend similar to the survival rate with increasing forest age, reaching
41.15% at the 36 years stage. The height, crown width, and basal stem diameter all present
trends that increase then decrease with increasing forest age. The average basal stem
diameter and height at 36a were 6.17 cm and 2.59 m, which were smaller than 8.77 cm and
4.51 m at 22a.

Table 1. Basic characteristics of the main forest layer at different stand ages.

Traits
15a 22a 36a

Initial Column and Row
Spacing (m): 1 × 3

Initial Column and Row
Spacing (m): 1 × 3

Initial Column and Row
Spacing (m): 1 × 3

Number of current
individuals 304 177 559

Density/individual (m2) 0.104 0.059 0.186
Survival rate (%) 30.4 17.7 55.9

Height (cm) 235.49 ± 78.91 289.44 ± 91.79 200.66 ± 52.32
Crown width (m2) 3.41 ± 0.61 4.51 ± 0.69 2.59 ± 0.39

Base stem diameter (cm) 5.85 ± 2.61 8.77 ± 3.42 6.17 ± 2.46
Deadwood proportion (%) 29.70 ± 25.65 15.65 ± 15.76 41.15 ± 23.79

The semi-variance analyses of height, crown width, diameter of base stem, and
the deadwood proportion in Haloxylon ammodendron in the three stages are shown in
Figure 3. The semi-variance function can be simulated by exponential and spherical models
respectively. The semi-variance function values of each of the indicators in 15a increased
rapidly with the increase of distance in the range of 0–5 m, then became stable in the 5–30 m
range, and decreased with the increase of distance in the 30–40 m range. For the 22a plot,
the indicators increased rapidly with the increase of distance in the range of 0–40 m. In
the 36a plot, all values increased rapidly in the range of 0–5 m and reached a relatively
stable situation after 5 m. Additionally, the 22a plot showed high variation in tree height,
crown width, diameter at the base stem, and deadwood proportion, indicating strong patch
patterns. The results show that the degree of spatial heterogeneity in the three stand stages
is 15a < 22a < 36a.

3.2. Structural Characteristics of the Main Forest Layer

The diameter class distribution of Haloxylon ammodendron in the main forest layer
showed the trend of concentration–dispersion–concentration with the increase of stand age.
The basal stem diameter of 15a stands ranged mostly from ~2–4 cm, 4–6 cm, to ~6–8 cm,
with the majority of individuals measuring ~2–8 cm, accounting for 74.67% of the total.
The basal stem diameter class width of 22a was divided into seven, with the stem diameter
distribution becoming obviously loose; however, the proportion of individuals with a
diameter of ~6–12 cm was the largest (58.76%). The basal stem diameter class width of 36a
was also divided into seven, although the center of diameter distribution moved down to
~4–10 cm (76.03%). The results showed that the main forest layer appeared to differentiate
after ten years of growth. The growth of the base diameter of the main forest layer of
Haloxylon ammodendron can therefore be divided into three periods: growth rising stage
(15a), growth stabilization stage (22a), and growth decline period (36a).
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The height of the main forest layer in Haloxylon ammodendron plantations shows a
similar trend to the base diameter (Table 1; Figure 4). The tree height class of 15a is relatively
concentrated. Although it includes 11 tree height classes, most individuals are concentrated
in the ~1.5–3.0 m segments, which account for up to 66.45%. For the 22a plot, ten height
classes were presented with relatively scattered distribution, although mainly concentrated
in the range of ~2.0–3.5 m, which accounts for up to 61.02%. In the 36a plot, the tree height
center has moved down to the ~1.5–2.5 m segments, which account for up to 79.57%, and
indicate that the center of height was declining. The growth trend of height in the main
forest layer therefore also showed a trend of growth, stability, and decline.
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The density distribution contour map of the deadwood proportion was drawn using
the Kriging interpolation algorithm (Figure 5). It can be seen from the figure that in the
15a plot, 0–40% of deadwood proportion accounts for more than 85% of the total; in the
22a plot, 0–20% of deadwood proportion accounts for more than 91%; and in the 36a plot,
20–60% accounts for more than 93%. According to the average proportion of dead branches,
in the 15a plot the deadwood proportion reached 29.7%, the 22a plot was 15.65%, and 36a
was 41.15% (Table 1). The deadwood proportion shows a trend of first decreasing, and
then increasing with the increase of forest age.
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3.3. Structural Characteristics of the Regeneration Layer

The tree density of the regeneration layer in the 15a stage plot was 3226 plant ha−1,
with seedlings, juvenile trees, and mature trees accounting for 97.73%, 2.27%, and 0%,
respectively (Table 2; Figure 6). The stage has a stable seedling regeneration ability, while
the regeneration ability of juvenile trees is rather weak, resulting in no mature individuals.
For the 22a stage, the individuals increased to 7120 plant ha−1, with seedlings, juvenile
trees, and mature trees accounting for 91.39%, 7.96%, and 0.65%, respectively. At the 36a
stage, the plant individuals had increased to 7423 plant ha−1, with seedlings, juvenile trees,
and mature trees accounting for 99.07%, 0.93%, and 0%, respectively. While there is obvious
seedling regeneration, the number of juvenile trees is very small, and these did not grow
into mature trees. All three stand ages showed good seedling renewal status. In the 22a
stage plot, juvenile trees and mature trees were present in the regeneration layer.
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Table 2. Basic characteristics of the regeneration layer at different stand ages.

Traits
15a 22a 36a

Seedling Juvenile Mature Seedling Juvenile Mature Seedling Juvenile Mature

Survival 946 22 / 1952 170 14 2227 21 /
Frequency (%) 97.73 2.27 0 91.39 7.96 0.65 99.07 0.93 0
Density (m2) 0.315 0.007 / 0.651 0.057 0.005 0.742 0.007
Height (cm) 20.79 ± 12.11 91.36 ± 27.18 / 21.29 ± 15.86 142.79 ± 50.11 211.07 ± 36.38 32.14 ± 13.56 73.52 ± 30.36 /

Crown width (m2) 0.015 ± 0.015 0.47 ± 0.06 / 0.013 ± 0.014 0.64 ± 0.13 0.94 ± 0.16 0.039 ± 0.014 0.19 ± 0.049 /
Base diameter (cm) 0.28 ± 0.21 1.42 ± 0.34 / 0.27 ± 0.19 2.58 ± 1.42 10.04 ± 3.74 0.39 ± 0.18 1.67 ± 0.52 /
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3.4. Spatial Patterns of Haloxylon ammodendron Individuals at Different Forest Ages

The spatial patterns of Haloxylon ammodendron at three stages of development are
shown in Figure 7. The left-hand column presents maps showing the locations of individual
trees. The size of the trees is indicated by symbols sized in proportion to the diameter of the
base stem. The right-hand column shows univariate results from the L-function—plots of
L-functions against distance that are below the lower confidence interval indicate discrete
spatial patterns, while those that are above the upper interval indicate clustered patterns,
and those within the confidence intervals indicate random spatial patterns. The results
indicate that trees in the 15a stage showed clustered patterns when the distance was >2 m.
Trees in the 22a stage were randomly distributed at distances of 1–12 m, and aggregated
when the distance was <1 m. Additionally, in this stage the forest gap appeared due to
enhanced self-thinning and alien-thinning of the Haloxylon ammodendron plantation, which
creates the conditions for seedlings to grow into juvenile and then mature trees. Trees in the
36a stage were randomly distributed when the distance was >2 m and also aggregated when
the distance was <2 m. The self-thinning effect of the Haloxylon ammodendron population
did not increase significantly. The Haloxylon ammodendron plantation at this stage is in
obvious decline; there is no evident forest gap, so the individual competition of the large
basal stem diameter of the main forest layer is still strong.
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4. Discussion
4.1. Growth Dynamics of the Haloxylon ammodendron Plantations

The survival rate of the main forest layer at different forest ages is significantly dif-
ferent. The 36a survival rate is the highest, at up to 55.9%, and the 22a survival rate is the
lowest, results which are inseparable from local precipitation and soil water content fac-
tors [34]. Heat surplus and water deficiency are one of the important natural characteristics
in arid areas, the water balance of soil is the main factor restricting the growth and renewal
of desert vegetation [9]. Snow water supply in early spring is the main environmental
factor affecting the survival of seedlings of Haloxylon ammodendron [56]. Therefore, the
precipitation at the planting year is one of the main factors affecting the final survival rate
of Haloxylon ammodendron plantation.

With the increase of the age of Haloxylon ammodendron plantation, the competition
within the main forest layer is increasing, and the emergence of regeneration layer seedlings
make the population structure more complex [12]. The height and diameter class structure
of 22a was more differentiation than 35a, and the population structure was more single
and the deadwood proportion in 35a plot is the highest. The population structure is
characterized by rapid change in the early stage, stable in the middle stage and decline
in the later stage. Li obtained the same conclusion about growth trend by used different
stem-level structure to represent the stand age of Haloxylon ammodendron plantation [57].
Therefore, this included that the Haloxylon ammodendron can be divided into three periods
of growth rising stage (15a), growth stabilization stage (22a) and growth decline period
(36a), respectively.

The tree height and the basal stem diameter structure of the main forest layer showed
obvious differentiation in the 22a plot, with the results showing that, after the competition
and self-thinning stage, some dominant individuals entered the stage of rapid growth,
while others with weak competitiveness were in the stage of slow growth. The tree height
and base diameter mostly concentrated at ~3–3.5 m and ~8–10 cm, respectively, which
reflected that there are more individuals in the upper canopy of the main forest layer, and
most of the individuals can grow to the forest canopy layer. In the 36a plot, tree height and
base stem diameter obviously stagnated or even returned to a smaller value than the 22a
stage (Figures 3 and 4). This phenomenon may be principally due to rodent damage, since
our investigation found that the young branches of whole trees had been bitten off by rats.
Additionally, the survival rate both in the main forest layer and the regeneration layer of
the 36a plot were both higher than in the 22a plot, which inevitably increased interspecies
competition and restricted the growth of individual plants [58,59].

In the regeneration layer, the density of seedlings was greatest in the 36a plot, while the
transformation of seedlings to juvenile trees was quite low, with no mature trees appearing.
This characteristic reflects the obvious decline of reproductive growth of the Haloxylon
ammodendron 36a plantation, while the preservation rate and canopy density of the stand
remain high, providing a great obstacle for the seedlings to grow into juvenile or mature
trees. In the 22a plot, seedling density in the regeneration layer was slightly lower, but
the ratio of seedling growth to juvenile trees and mature trees was the highest, mainly
because significant forest gaps were presented (Figure 5). In the process of stand succession,
some individuals of Haloxylon ammodendron died due to the change of local precipitation or
microenvironment, or interspecies competition resulting in forest gaps, which provided
favorable conditions for the regeneration-layer seedlings to grow into mature trees [60].

Plant regeneration is the process from seed generation, diffusion, germination, and
seedling formation to juvenile tree construction, and seedlings are a potential regeneration
pool for population succession [61]. In this study, the proportion of seedlings in the regen-
eration layer were the greatest in all three stand ages, and these sufficient seedling pools
can provide a strong guarantee for the regeneration and succession of the population [21].
However, natural regeneration is not simple replacement, and the continued existence
of a large seedling bank cannot guarantee good regeneration [12]. Sufficient juvenile or
mature trees are the key to ensure the natural regeneration and sustainable development
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of the Haloxylon ammodendron plantations. This study shows that the growth of larger
individuals (juvenile and mature trees) in the regeneration layer was good in the 22a stand,
which indicated that the Haloxylon ammodendron plantation had the potential for continuous
regeneration and succession under this environment. However, limitation factors such as
drought and water shortage may always restrict the emergence, settlement, and growth of
regeneration individuals [21]. So, artificial management intervention would be beneficial
for the sustainable regeneration of stands.

4.2. Spatial Patterns of the Haloxylon ammodendron Plantations at Different Stand Ages

The univariate spatial analyses clearly revealed the different spatial patterns of Haloxy-
lon ammodendron plantations at the different stand ages. At large scales (>2 m), cluster
patterns were present in the 15a stage, and random distributions occurred in the 22a and
36a stages. At small scales (<1–2 m), random patterns were present in the 15a stage, and
cluster distributions occurred in the 22a and 36a stages. These results were consistent with
the former study by Stoll and Bergius [20], which found that the spatial distribution of
conspecifics under tree-size asymmetrical competition can shift from initially clustered,
via random, to regular, as a result of density-dependent mortality. At the same time, these
results were different from the former study which documented that spatial patterns of
Haloxylon ammodendron plantations in Minqin of 30–40 years and >40 years were in the
clustered mode [21]; this can be interpreted as the obvious self-thinning and decline of
the Minqin Haloxylon ammodendron plantation over 30 years. While the main forest layer
of the 36a plot of Haloxylon ammodendron plantation in Mosuowan did not show obvious
self-thinning, and the survival rate was high, it can be seen from the distribution map of the
deadwood proportion that this is highest in the 36a stage, indicating that the high survival
rate is not conducive to plant succession and renewal.

L(r)-function showed that the distribution of the Haloxylon ammodendron plantations
presented a clustered—random trend during the transformation from seedlings and ju-
venile trees to mature trees. This was similar to the findings of a former study in the
Gurbantünggüt Desert [4,29]. The 22a stage exhibited high variation in all four variables,
while the changes in 36a were the most gentle, followed by 15a. Additionally, the variation
of 22a was significantly higher than that of the other two stand ages, at two to three times
the others, which showed that the spatial heterogeneity was highest in the 22a plot.

4.3. Main Factors Affecting the Spatial Patterns

Spatial patterns of plant populations are the result of the combined effects of localized
dispersal, abiotic stresses, biotic interactions, and disturbance [62]. In this study, the
main factors affecting the spatial patterns were the interactions between conspecifics and
abiotic heterogeneity. While water shortage is one of the important natural features in arid
desert areas, the water balance of the soil is the main factor for restricting the growth and
regeneration of desert vegetation [9]. So, the soil moisture is the main environmental factor
affecting the survival of seedlings in Haloxylon ammodendron plantations [63].

Soil water balance is thus the main factor restricting the growth and regeneration of
desert vegetation [64]. Although Haloxylon ammodendron is much more tolerant to water
shortage than other plants, soil moisture is still the main environmental factor for the
survival of its seedlings and the sustainable development of plantations [65]. The water
use strategies of different ages of Haloxylon ammodendron are different [34]. Seedlings
mainly use surface water and 150 cm surface soil water, while trees of ten or more years
mainly use 150–200 cm soil water and groundwater, and those of 20–30 years mainly use
groundwater [66]. So, no competition for surface water will ensure a large number of
seedlings in the plantation, while young trees and mature trees will compete with the main
forest layer for water [67]. However, the seedlings that are most sensitive to environmental
changes are strongly screened by water-dominated environmental factors and often die
before growing to the juvenile or mature stage [42]. Therefore, in the desert area around
Junggar Basin, measures such as thinning would prevent the rapid decline of Haloxylon
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ammodendron plantations and accelerate regeneration. From Table 3, the initial planting
density in this area can be considered to be no more than 3333 plants ha−1 (row spacing of
3 m× 1 m), which is more than the number given in a former study of 1666 plants ha−1 [11].

Table 3. Survival characteristics of Haloxylon ammodendron plantations at different stand ages.

Number of Individual Trees 15a 22a 36a

Main forest layer 304 177 559
Regeneration layer (Juvenile) 22 170 21
Regeneration layer (Mature) 0 14 0

Total in plot 326 354 580
Initial plant density (plant ha−1) 3333 3333 3333

Preservation Density (plant ha−1) 1086 1180 1933

5. Conclusions

In the past few decades, Haloxylon ammodendron plantations of different forest ages
have undergone different processes of succession. They were initially planted uniformly,
but declined to different degrees and resulted in non-uniform spatial patterns, which
resemble as the natural vegetation, with the representative self-organized characteristics
of patchy distribution. The characteristics of the main stand layer and the regeneration
layer may provide direct and comprehensive knowledge for the healthy development of
a sand-fixing plantation. Promoting natural regeneration can greatly reduce the cost of
regeneration. When the age of the plantation is more than 20 years, or where no juvenile or
mature trees have appeared in the forest, pruning measures can be taken to control stand
canopy density and promote the regeneration of seedlings to form a more stable structure
in ecological function. When the age is more than 30 years, intercropping measures can be
taken to alleviate degeneration and promote the renewal of juvenile and mature trees to
complete the gradual replacement of the old ones. Ultimately, the preferable initial planting
density of the Haloxylon ammodendron plantations (3333 plants ha−1) is basically reasonable
in the Mosuowan reclamation area. Additionally, the expected effects optimum pruning
and intercropping measures in the later stage will prolong the ecological service period of
the Haloxylon ammodendron plantations in the oasis-desert ecotone.
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