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Abstract: Thinning is an important management practice for reducing plant competition and improv-
ing wood production in forests. The residues from thinning can contain large amounts of carbon (C)
and nitrogen (N), and the management methods applied directly after thinning can affect the input
of nutrients to soil, change the availability of substrates to soil bacterial communities, and thus affect
soil bacterial community structure. Our objective was to determine the effects of different thinning
residue treatments on soil bacterial community structure and diversity. Illumina high-throughput
sequencing technology was used to sequence the bacterial 16SrRNA V3–V4 variable region of the
soil (0–10 cm) of a Larix olgensis plantation to compare the composition and diversity of soil bacterial
communities following removal of thinning residues (tree stems plus tree crowns) (RM) and retention
of thinning residues (crowns retained with stem removal) (RT) treatments. Total soil carbon (TC) and
nitrogen (TN) content in the residue retention treatment were significantly greater than in residue
removal treatments (p < 0.05). The relative abundance of the dominant soil bacteria phyla were, in
descending order: Proteobacteria, Verrucomicrobia, Acidobacteria, Chloroflexi, Actinobacteria, Nitrospirae,
Planctomycetes, Gemmatimonadetes, and Bacteroidetes, with a total relative abundance of more than 80%.
Acidobacteria were enriched in the RM treatment, while Proteobateria, Actinobacteria and Bacteroidetes
were greater in the RT treatment. Rhizobiales and Rhodospirillales (belonging to the α-Proteobacteria)
were enriched in the RM treatment. Soil bacteria α diversity was not significantly different among
different treatments. Spearman correlation analysis showed that the α diversity index was signifi-
cantly negatively correlated with TC and TN. Lefse analysis revealed that 42 significant soil bacteria
from phylum to genus were found in the two different thinning residue treatments. Redundancy
analysis showed that soil TC and TN were the major drivers of variation in soil bacterial community
structure. Overall, thinning residue retention increased the availability of resources to the soil bacte-
rial community, thus changing bacterial community structure. This research provides a theoretical
basis for the regulation of plantation forest soil fertility and quality.

Keywords: Larix olgensis plantation; thinning residue management; bacterial composition; 16S rRNA;
high-throughput sequencing

1. Introduction

Forest plantations play an important role in both timber production and ecological
protection since China has the most extensive and largest plantation program in the
world. Thinning is the most widely employed plantation management practice, being
a major tool for achieving the goal of increasing tree growth or improving tree quality
and species composition on a sustainable basis [1]. With increasing demand for bioenergy
production, the use of forest residues as energy sources has become common, but this
will cause serious ecological problems [2]. Although most logging residue harvested
for energy use comes from clear-felled areas, part of it is harvested in connection with
the thinning of young stands [3,4]. As an important forest management method, forest
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thinning is of great significance to the sustainable and healthy development of forests and
wood products [5]. Thinning produces a large amount of nutrient-rich residues which are
important resources for soil organisms in terrestrial ecosystems, impact soil nutrient inputs
through decomposition, and provide energy and nutrients for soil microbial decomposition
and metabolism [6–8]. However, removal or retention of harvesting residues can produce
significant contrasting effects on topsoil nutrients [3,9,10]. In particular, when harvest
residues were removed, a large quantity of nutrients will be exported [9,10]. In Nordic
countries, residue removal during commercial thinning results in the removal of nutrients
such as nitrogen, phosphorus, and potassium from the forest [2,4,11–13]. In one Norwegian
study of thinning in a spruce forest, rates of soil net N and C mineralization after removal of
the whole tree following thinning were both lower than when only the stems were removed
following thinning [12]. Therefore, removal of thinning residues may be considered as
negative fertilization, where nutrients are removed from the forest. A previous study
showed that soil carbon and nitrogen contents increase during the residues retention
process [14], and the contents of soil total carbon (TC) and total nitrogen (TN) increased
by 45% and 32%, respectively, over 12–24 months [15]. In contrast, whole-tree removal
tended to cause losses in soil C, N and the soil organic matter (SOM) labile fraction was
reduced [16–22]. Additionally, as residue retention quantity increases, the content of
water extractable organic carbon (WEOC) and water extractable total nitrogen (WEON)
increases accordingly [15,23,24], which is due to the decomposition of the labile C and
N from leaves and branches in the residue. Therefore, relative to the removal of forest
residues, their retention improves the quality of the resource and compensates for the loss
of soil nutrients caused by thinning, which promotes plant growth and maintains the forest
nutrient balance [3,25].

Soil microorganisms are an important part of nature; they, akin to other organisms,
require nutrients to maintain cellular morphology and to decompose organic materials
for energy [26]. When exogenous organic materials are added to the soil, microbes will
respond to this new food supply. Plant residues are the primary source of soil organic
matter [25,27–30], and their decomposition will stimulate the increase in the availability of
carbon and nitrogen for microorganisms, thereby stimulating microbial metabolic activity.
The rate of microbial decomposition also varies with residue C/N. Microbial competition
for available nitrogen increases when decomposing plant residues have high C/N, reducing
the availability of N for plant growth, and is therefore not conducive to the growth of
higher plants. As plants mature, the ratio of protein in their tissues decreases, while the
concentrations of lignin and cellulose increase. This results in poorer substrate quality
for microbial communities. Clear-felling mainly occurs in mature forests, and residues
from this activity are of poorer quality than those from thinning operations [31,32]. In
fast-growing plantations, thinning generally occurs at a time when nutrient demand is at a
peak, resulting in a large demand for nutrients from the remaining trees. Therefore, recently
thinned stands may be sensitive to nutrient removal if residues are removed from thinned
stands [33,34]. The extent of the impact of this nutrient removal in thinning residues is
unknown with respect to that which happens with clear fell harvesting. Whole-tree removal
following thinning may result in a decrease in the availability of soil nutrients, in turn
reducing tree growth, and thereby reducing litter cycling and potentially impacting on the
composition of the soil microbial community. Soil microbial communities are responsible
for crucial soil functions, including nutrient cycling and availability, transformation and
breakdown of harvesting residues, and disease suppression or susceptibility. However,
the effects of changes in resource quality on soil bacterial communities due to different
management of thinning residues have been rarely studied [14,27]. Therefore, an in-depth
understanding of how soil bacterial communities respond to the retention or removal of
thinning residues is critical to maintaining forest productivity.

Soil bacteria are highly valued as they are the most abundant and widely distributed
microbial group in soils. They play an important role in the biogeochemistry cycle as
they are involved in the decomposition of organic matter [35,36], humus formation and
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energy transfer processes [27,32], which have become the focus of increasing research.
The diversity and composition of soil bacteria can regulate the health and stability of soil
ecosystems. Therefore, it is of great potential significance to study the classification and
characteristics of the soil bacterial community to maintain ecosystem stability and sustain-
able utilization. In the past, bacterial community studies used traditional culture methods,
which were unable to isolate and culture a large number of bacteria, so our understanding
of bacterial community diversity and structure was severely limited. In recent years, with
the development of molecular biology, 16sRNA high-throughput sequencing technology
has been widely used in microbial identification and typing. It enables those soil bacteria
that cannot be cultured to be identified by sequencing their genomic DNA fragments, thus
achieving a more comprehensive understanding of the soil bacterial community [37,38].

Larch (Larix spp.) is a fast-growing deciduous coniferous tree, and one of the main
plantation tree species in northeast China. The Chinese planting area and volume for larch
are approximately 3.14 million ha and 18.4 million m3, respectively [39,40], and make a
great contribution to the provision of timber products, as well as soil and water conservation
of the forest region. Presently, research on different Larch residue treatments following
thinning mainly focuses on changes in soil nutrient content. Interestingly, the effects of
different thinning residue treatments on soil microbial properties have been largely ignored.
Therefore, we investigated soil bacterial community composition and diversity in a Korean
larch (Larix olgensis) plantation using a 16sRNA high-throughput sequencing technique.
Our objective was to determine (1) whether different residue treatments following thinning
lead to changes in the quality of soil resources, (2) how such changes affect the composition
and diversity of soil bacterial communities, and (3) how these changes relate to each other.
Our findings will hopefully provide a scientific basis for the sustainable management and
maintenance of ecological function of plantations.

2. Materials and Methods
2.1. Site Description

The experiment was established in MengJiagang National Forest Farm, Heilongjiang
Province, Northeastern China (46◦20′16′′–46◦30′50′′ N, 130◦32′42′′–130◦52′36′′ E). The
study site climate is continental monsoon, with a mean annual air temperature and mean
annual precipitation of 2.7 ◦C and 535 mm, respectively. The average altitude is approxi-
mately 250 m and the soil type is Alfisol. The main vegetation types are plantation conif-
erous forest and secondary deciduous broad-leaved mixed forest with Quercus mongolica,
Betula davurica, Populus davidiana, and Betula platyphylla as the major tree species.

2.2. Experimental Design and Soil Sample Collection

The Larix olgensis plantation was manually felled with an intensity of ~20% (calculated
based on the standing trees before thinning) in August 2016 at an age of 21 years. At
the time of thinning, stand density was 1440 trees/ha, average Diameter at Breast Height
(DBH) was 13.9 cm, and average tree height was 14 m. The average DBH of the thinned
trees was 10.5cm, and the average amount of thinning residues produced was 11.3 m3/ha.
Different treatments included: retention of thinning residues (tree stem was removed but
the crown residues were retained) (RT); removal of thinning residues (tree stems plus tree
crowns) (RM). Three (20 × 20 m) study plots were set up for each treatment. In August
2018, 0–10 cm soil samples were randomly collected at 5 points in each plot. Five samples
in each plot were homogenized into a composite sample, which was passed through a
2 mm sterile soil sieve to remove roots, wood fragments and bark. Each treatment had
three composite samples. The soil was divided into two parts—one was taken back to
the laboratory for determination of soil pH, water content, TC and TN, and the other was
placed in a sterile centrifuge tubes and kept in an ice box. On the same day, these latter soil
samples were taken back to the laboratory and kept in a refrigerator at −80 ◦C for later
DNA extraction and bacterial diversity analysis.
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2.3. Soil Physical and Chemical Properties and Biological Analysis
2.3.1. Physicochemical Analysis

Soil total carbon content was determined by a multi N/C2100S analyzer (Analytik
Jena, Germany) [41]. Total nitrogen concentration was determined by the semi-micro-
Kjeldahl method [42]. Soil pH was measured using a potentiometric pH meter (soil: water
ratio of 1:2.5, w/v). Soil moisture was determined by the drying method (105 ◦C, 24 h) [43].

2.3.2. DNA Extraction and PCR Amplification

Total soil DNA was extracted from all samples using an E.Z.N.A.®DNA isolation
kit according to the manufacturer’s instructions (Omega Bio-Tek Co., LTD, Norcross, GA,
USA), and DNA quality was evaluated on a 0.8% agarose gel, with a Nano Drop ND-1000
UV spectrophotometer (Thermo Fisher Scientific, Wilmington, MA, USA). The extracted
DNA samples were stored at −20 ◦C prior to further analysis. Total DNA from each
soil sample was used as a template for PCR (polymerase chain reaction) amplification
of the highly variable V3~V4 region of the bacterial 16S rRNA. The bacterial 16s rRNA
gene was amplified using primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′-GGACTCHVCCCTNHTCTAAT-3′), which target the V3–V4 regions of the 16S rRNA
gene. PCRs were performed in triplicate with a 25 µL mixture containing 5 µL of 5×
Reaction buffer, 5 µL of 5× GC buffer, 2 µL of dNTP (2.5 mM), 1 µL of forward primer
(10 uM), 1 µL of reverse primer (10 uM), 0.25 µL of Q5 high-fidelity DNA polymerase,
3 µL of DNA template, and 7.75 mL of ultrapure water (ddH2O). The PCR thermocycling
conditions were as follows: initial denaturation at 98 ◦C for 5 min, followed by 25 cycles of
30 s at 98 ◦C, 30 s at 52 ◦C, 60 s at 72 ◦C and finally, at 72 ◦C for 5 min. The PCR amplicons
were extracted from 2% agarose gels. Target fragments were then cut from the gel and
purified using an Axygen DNA gel kit (Axygen Biosciences, Union City, CA, USA) and the
PCR amplicons were quantified with a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA) and microplate reader (BioTek, Winooski, VT, USA, FLx800). All
successfully amplified PCR products were prepared for sequencing libraries using the
TruSeq Nano LT DNA Library Prep Kit (Illumina, San Diego, CA, USA) following the
manufacturer’s instructions. To assess library quality, we used an Agilent High Sensitivity
DNA Analysis Kit (Agilent, Santa Clara, CA, USA), and libraries were quantified using a
Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA). Libraries
were performed on the Illumina Miseq PE250 instrument with 2 × 300bp paired-end
chemistry using the MiSeq Reagent Kit V3 (600 cycles). All 16S rRNA gene sequence data
sets derived from Illumina MiSeq sequencing were submitted to the NCBI Sequence Read
Archive (SRA) under accession number SRP274251.

2.4. Bioinformatics and Statistical Analyses

The QIIME (quantitative insights into microbial ecology) pipeline (version 1.8.0) was
used to conduct quality screening on the offline data using the sliding window method;
then, the chimeras were checked and removed to obtain individual sample effective se-
quences using USEARCH (version 5.2.236) tools. Subsequently, obtained sequences based
on 97% similarity level were merged, and OTUs were clustered using the UCLUST sequence
comparison tool of QIIME. The BLAST method was used to compare the representative
sequences with the SILVA database, and finally each sample OTU’s abundance matrix was
obtained. Soil bacterial α-diversity indices (Shannon index, Simpson index, ACE index,
Chao1 index) were calculated based on the OTU’s table in QIIME. Significant differences in
soil physical and chemical properties and bacterial α-diversity indices for different treat-
ments were tested by one-way analysis of variance (ANOVA). We used the Shapiro–Wilk
test to assess whether the data were normally distributed (p > 0.05). The homogeneity
of variances was assessed by Levene’s test for equality of variances (p > 0.05). The cor-
relation between bacterial α-diversity and physical and chemical properties of soil were
tested with Spearman correlation analyses. The Bray–Curtis distance matrix based on OTU
level was constructed and used for nonmetric multidimensional scale (NMDS) analysis to
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intuitively reflect similarities of thinning residue treatments on soil bacterial community
structures. Adonis analysis was used to determine whether bacterial community structure
was significantly influenced by different thinning residue treatments. A distance-based
RDA (db-RDA) was used to examine the effect of each physical and chemical soil param-
eter on the bacterial community (based on OTU composition). The above analyses were
conducted in statistical program R 3.6.3. The relative abundance at the genus level matrix
was submitted on the Galaxy web http://huttenhower.sph.harvard.edu/galaxy/ (accessed
on Saturday 6 February 2021 05:46:27 AM (UTC)). platform for LEfSe analysis to further
uncover taxa distribution differences between different treatment groups from the phylum
to the genus level.

3. Results
3.1. Soil Chemical and Physical Properties

Soil total carbon content (TC) and total nitrogen content (TN) were significantly
greater in residue retention (RT) than in residue removal (RM) treatments (p < 0.05, Table 1).
However, pH and soil water content (WC) showed no significant differences. Since TC
and TN contents in the residue retention treatment were all greater than in the removal
treatment, the carbon to nitrogen ratio (C:N) did not show a significant difference.

Table 1. Soil physicochemical properties in different harvesting residue treatments.

TC TN pH C:N WC

g/kg g/kg %

RT 51.42 ± 3.86 4.46 ± 0.34 5.83 ± 0.10 11.52 ± 0.12 31.08 ± 3.33
RM 38.72 ± 1.92 3.30 ± 0.26 5.76 ± 0.11 11.75 ± 0.34 30.15 ± 2.43

p-value 0.007 0.009 0.255 0.317 0.715
Note: Data are means ± SE (n = 3); a p-value < 0.05 indicates a significant difference. TC: total carbon; TN: total
nitrogen; C:N: soil C:N ratio; WC: soil water content. RT: residue retention; RM: residue removal.

3.2. OTU Statistics and Bacterial Community Diversity

After the original sequence of the paired-end sequencing of the PCR product was
optimized by filtering and removing the low-quality portion, a total of 253,542 effective
sequences were obtained. Each sample had an average of 42,257 subsamples, and 99.96%
of the sequence reads were between 400 and 450 bp. A total of 6226 OTUs were obtained
after removing rare OTUs, and the abundance of OTU units between different treatments
was compared (analyzing only the presence or absence of the OTU unit). The OTUs found
in both treatments were shared (3182), and those that were found in only one treatment
were considered unique (Figure 1). In total, 4494 OTUs were found in the RT treatment,
of which 1312 (21.07%) were unique, and 4914 OTUs were found in the RM treatment, of
which 1732 (27.82%) were unique.

Based on these OTUs, alpha diversity analysis was conducted. Simpson, Chao1, ACE
and Shannon indices were used to characterize species richness and diversity (Table 2).
The Simpson diversity index focuses on the probability of species in the population and
the Shannon Wiener Diversity Index focuses on describing the disorder and uncertainty of
individuals—the greater the uncertainty, the greater the diversity index. The Chao1 index
estimates the number of species contained in the sample, and the ACE index assesses the
richness and uniformity of species composition in the sample. Although the four diversity
indices from the RM treatment were greater than those of the RT treatment, there were no
significant differences between them (p > 0.05).

http://huttenhower.sph.harvard.edu/galaxy/
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Figure 1. The numbers of shared and unique bacteria species OTUs obtained from soil of the residue
retention (RT) and residue removal (RM) treatments.

Table 2. Soil bacteria α-diversity indices for different thinning residue treatments.

Simpson Chao1 ACE Shannon

RT 0.9949 ± 0.03 2792.84 ± 683.03 2798.22 ± 697.32 9.67 ± 0.52
RM 0.9969 ± 0.01 2932.78 ± 256.66 2976.28 ± 317.56 10.07 ± 0.11

p-value 0.270 0.756 0.708 0.253
Note: Data are the means ± SE; a p-value < 0.05 level indicates a significant difference.

Spearman correlation analysis was conducted between the soil physical and chemical
characteristics and the bacterial diversity index. Simpson and Shannon indices were
negatively correlated with TC (r = −0.89, p < 0.01; r = −0.77, p < 0.01) and TN (r = −0.89,
p < 0.01; r = −0.77, p < 0.01), respectively (Figure 2). In contrast, the soil carbon: nitrogen
ration (C:N) was positively correlated with Simpson (r = 0.66, p < 0.05), Chao1 (r = 0.6,
p < 0.05), ACE (r = 0.66, p < 0.05) and Shannon index (r = 0.6, p < 0.05).

3.3. Composition and Soil Bacterial Community Differences between Different Thinning
Residue Treatments

A total of 37 phyla were detected in the RT and RM treatment soil samples (Figure 3A).
The dominant phyla (with a relative abundance of at least 1% in each treatment) were
Proteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Actinobacteria, Nitrospirae, Plancto-
mycetes, Gemmatimonadetes, and Bacteroidetes, with a total relative abundance of more than
80%. The top three relative abundances at the phyla level were: Proteobacteria (RT—34.9%,
RM—33.5%), Acidobacteria (19%, 20.6%) and Verrucomicrobia (23.4%, 21.7%), respectively.
The relative abundance of Proteobacteria and Verrucomicrobia in the RT treatment was greater
than in the RM treatment, but the relative abundance of Acidobacteria was lower.

Proteobacteria, which ranked first in phyla relative abundance, was investigated further.
The α-Proteobacteria are the main class of Proteobacteria, with the highest relative abundance
in both treatments (Figure 3B). The relative abundance of β-Proteobacteria was lower than
α-Proteobacteria, and it was greater in RT (7.38%) than in RM (5.87%).

Burkholderiales and Pseudomonadales belong to β-Proteobacteria, and γ-Proteobacteria,
respectively, and were enriched in the RT treatment (Figure 4). Rhizobiales and Rhodospir-
illales belong to α-Proteobacteria and were enriched in the RM treatment. In contrast,
Sphingomonadales was enriched in the RT treatment. The relative abundances of these
five bacteria were 4.28%, 1.59%, 11.09%, 5.38%, and 0.96% in the RT group and 2.27%,
0.65%,11.45%, 6.67%, and 0.64% in the RM treatment, respectively.
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A LEfSe (LDA Effect Size) analysis was performed on 268 genera to reveal signifi-
cant differences in bacteria from the phylum to genus level between the two treatments
(Figure 5). Forty-two significant bacteria were identified as belonging to different taxo-
nomic levels—19 were enriched in the RT treatment and 23 in the RM treatment. At the
phylum level, there were three bacteria—Bacteroidetes, Firmicutes, Planctomycetes—and at
the class level, there were five—Planctomycetacia, Bacilli, Sphinggobacteriia, Flavobacteriia,
Acidimicrobiia. At the order level, there were eight species—Rhizobiales, Acidimicrobiales,
Streptomycetales, Frankiales, Planctomycetales, Bacillales, Sphingobacteriales, and Flavobacteri-
ales—and at the family level, there were 10—Acidimicrobiacea, Flavobacteriaceae, Bacillaceae,
Planctomycetaceae, Sphingobacteriaceae, Acidothermaceae, Bdellovibrionaceae, Streptomycetaceae,
Erythrobacteraceae, and Chitinophagaceae. The remaining 16 significant bacteria were at the
genus level.

3.4. Comparison of Soil Bacterial Community Structure and Its Relationship with
Environmental Factors

A nonsimilarity matrix between two treatments was established based on the Bray–
Curtis distance similarity coefficient at the OTU abundance level. Then, the similarity
of bacterial community structure was obtained by nonmetric multidimensional scaling
(NMDS) analysis (Figure 6A). The Adonis nonparametric test showed that there was no
significant difference in bacterial community structure among the RT and RM treatments
(r2 = 31%, p = 0.1), and the two-dimensional NMDS was in good agreement with the actual
samples (stress = 0.025).
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Figure 5. Significant bacteria in soils with different thinning residue treatments, for which the threshold on the logarithmic
LDA score was 3.0 according to the LEfSe method. Cladogram, indicating the phylogenetic distribution of microbial lineages
associated with two treatments (only display from the phylum to the order level), and taxonomic units with significant
differences are represented in the color of the most abundant class (red RM, green RT) (A). The vertical coordinate is the
taxonomic unit with significant differences between two treatments, while the horizontal coordinate is a bar chart to visually
show the linear discriminant analysis (LDA) score (log 10) of the corresponding taxonomy unit. Bar graph reports the group
of samples with a higher abundance corresponding to the taxonomy unit (B).

The RDA (db-RDA) analysis using the OTU abundance matrix of bacteria based on
the Bray distance was performed to determine the effects of environmental factors on soil
bacterial communities (Figure 6B). The first two axes explained 56.14% of the variability
of the bacterial community structure. The first axis was positively correlated with TC,
TN and pH, and was negatively correlated with C:N. The second axis was negatively
correlated with C:N and WC, and positively correlated with TC, TN and pH. RT treatment
bacterial communities were located in the positive region of the first axis, while the RM
group was located in the negative area of the first axis. The envfit function was used to
analyze whether the explanatory quantity of environmental factors on the distribution of
bacterial communities was significant, as shown in Table 3. A smaller r2 indicates that
the environmental factors have less influence on the distribution of bacterial communities.
TC (r2 = 0.97) and TN (r2 = 0.9798) had the largest impacts on the distribution of bacterial
communities and reached a significant level (p < 0.01) and therefore are dominant factors
driving bacterial community variation.
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Table 3. Significance test of the correlation between environmental factors and bacterial
community distribution.

Soil Environmental Factor RDA1 RDA2 r2 Pr (>r)

TC 0.9907 0.1362 0.9700 0.0041 **
TN 0.9776 0.2104 0.9798 0.0055 **
C:N −0.6029 −0.7978 0.8712 0.0514
pH 0.6577 0.7533 0.3531 0.5042
WC −0.0786 −0.9969 0.3779 0.5236

Note: r2 represents the determination coefficient of environmental factors on species distribution; Pr represents
the significance test of correlation. ** correlation significant at the 0.01 level.

4. Discussion
4.1. Response of Soil Bacterial Community Composition to the Different Thinning
Residue Treatments

Soil bacteria play an important role in the decomposition of organic matter and the
formation of humus in a variety of biogeochemistry soil processes [44,45]. The community
composition of soil bacteria is also influenced by the environment. It is well known
that Proteobacteria and Firmicutes respond rapidly to labile C sources and exhibit rapid
growth in a carbon-rich environment [10,46,47]. Two years after thinning a 21-year-old
stand of Larix olgenis, there were significant differences between our residue removal
treatments, which included whole-tree removal vs. stem only removal. Our results showed
that Firmicutes abundance was significantly different in the two treatments. However,
Proteobacteria tended to accumulate in the residue retention treatment (RT), although there
was no significant difference between RT and RM. Alphaproteobacteria, the main class of
Proteobacteria, was also not significantly more abundant in RT or RM. Although the relative
abundances of Burkholderiales, Pseudomonadales and Sphingomonadales, which belong to the
class Alphaproteobacteria, were greater in RT than RM, the relative abundance of Rhizobiales
was lower in RT. This is because the Rhizobiales order has beneficial properties of nitrogen
fixation, decomposition promotion of organic matter and plant growth [48,49]. In the RM
treatment, the relatively low nitrogen environment stimulated the growth of nitrogen-fixing
bacteria and increased their accumulation. The wax and wane of bacteria at the order level
could be one of the reasons for the lack of a significant difference in Proteobacteria between
RT and RM.
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Bacteroidetes is a copiotrophic bacterium and can take advantage of simple carbon
sources, usually occurring in cases of high resource utilization [46,47]. The LEfSe analysis
showed that the relative abundance of Bacteroidetes was significantly different at the phylum
level for two management treatments (Figure 5). Additionally, the relative abundances
of Flavobacteriia, Flavobacteriales, and Flavobacteriaceae belonging to Bacteroidetes were also
significantly different for both management treatments, and their relative abundances
were greater in the RT treatment. Changes in the relative abundances of these bacteria
under residue management were consistent with changing in soil TC and TN contents.
The β-Proteobacteria, including Bacteroidetes, are copiotrophic bacteria, and β-Proteobacteria
growth is closely associated with soil nutrient quantity and quality, and we observed that
its relative abundance in the RT treatment was greater than in the RM treatment.

Moreover, the relative abundance of Acidobacteria in RT was lower than that of RM.
This is due to the fact that Acidobacteria is an oligotrophic bacteria, its relative abundance
tends to be greater in the case of low resource utilization, especially in the case of low soil
carbon concentration [50,51], and so the increase in available carbon in the RT treatment
leads to a decline in Acidobacteria abundance. It also shows that residue treatment changes
the soil nutrient input, which leads to changes in soil bacterial community composition.
We attribute this change in bacterial community composition to changes in resource avail-
ability. The redundancy analysis of soil physical and chemical properties to the bacterial
community showed that TC and TN have the greatest influence on bacterial communities
(Table 3). The residue content was 11.3 m3/ha, which is not high; however, there was a
big difference between the nutrient element composition of the harvesting residue and
the litter. The branches and leaves of the harvesting residue are mostly growing tissues,
which contain more nutrient elements that are beneficial to microorganism decomposition.
Nonstructural materials (leaves, fine roots, and twigs) of harvest residues have high de-
composition rates during residue decomposition, and thus the nutrient release rate is fast
in the early decomposition stages. This may be the cause of differences in the abundance
of microorganisms that prefer a nutrient-rich environment [18]. However, structurally
complex residues (stumps, coarse roots and branches) have higher proportions of resistant
organic substrates compared with nonstructural residues, and thus it takes several years or
even decades for the C and N in the structurally complex residues to be released [52,53].

Additionally, the removal of trees can immediately modify the microclimate, i.e.,
forest soils receive more solar radiation, and then the soil temperature rises after thinning,
also reducing evapotranspiration due to loss of canopy trees, consequently increasing soil
water availability. The increased soil temperature and water content can enhance organic
matter decomposition [5]. Microorganisms need to input a certain amount of nitrogen in
the process of organic matter decomposition. However, the soil after residue removal in
thinning lacks the intake of exogenous nitrogen so that the microorganisms will consume
the soil nitrogen when decomposing organic matter, resulting in soil nitrogen decline,
thus stimulating the increase in nitrogen-fixing bacteria to meet the nitrogen demand
of soil microorganisms [54]. At the same time, after thinning, the forest will distribute
more photosynthates to the growth of the underground root system and improve the
root system’s ability to absorb water and nutrients to meet the growing needs of above-
ground plants, increase the fine root biomass of the remaining wood, and provide more
decomposing substances. When the soil is relatively nitrogen deficient, the organic matter
decomposition process will be slow, and nutrient release time will be prolonged. Residue
retention has more exogenous nitrogen intake than residue removal, and the nutrient return
rate of above-ground biomass is faster, which increases organic matter input. This may
also be the reason for the change in eutrophic microbial groups.

In managed young forests, thinning occurs at least once before they reach commercial
dimensions and then one to three times before clear-felling [4]. As the number of thinning
treatments increases, the amount of accumulated thinning residues increases, and the
removal of these residues will cause more nutrients to flow out of the forest. Additionally,
in the final harvest (i.e., clear-felling), the removal of residues will result in a lack of physical
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soil protection, and temperature and humidity may also change, which is very unfavorable
for microorganism growth [2,11]. However, our study was based on one thinning and
medium-intensity thinning measures. Therefore, in subsequent forestland practice, the
impact of harvest residues retention and removal on forest land nutrients and microbial
communities will be greater than we documented.

Nutrient changes lead to changes in bacterial community composition; however, there
was no significant difference in soil bacterial community structure between the two thinning
residue treatments (Figure 6A). This may be because many bacteria are not dependent
on their symbiotic hosts and have a high tolerance and flexibility to soil environmental
variations, which may lower their sensitivity. Therefore, the resistance of bacteria to a
reduction in survival resources caused by environmental changes can be improved [19,55].
In Hartmann’s study, it was also found that there was a relatively small difference in
soil bacteria community structure in whole-tree vs. stem-only harvesting treatments in
the taiga [30,56]. Overall, our study indicates that thinning residue retention or residue
removal had little effect on soil microbial community structure but had an impact on soil
bacterial composition; however, whether it has an effect on the ecosystem function remains
to be determined.

4.2. Effects of Different Thinning Residue Treatments on Soil Bacterial α-Diversity

Using DNA sequences obtained by OTU to calculate microbial diversity indices is an
effective method to evaluate microbial community diversity. Qualitative and quantitative
change in a soil microbial community is a sensitive index for monitoring change in soil
quality [37]. Assessing soil bacterial community diversity under different thinning residue
treatments is a useful approach to understand soil bacterial community structure and func-
tion and is an index of soil ecosystem health. Our study found that there were no significant
differences in OTU number and diversity index between thinning residue retention and
removal treatments, the number of OTUs in the RT treatment was 1312, which was less
than in the RM treatment (1732). Although the four diversity indexes show no significant
differences between the two treatments, they are all reduced in the RT treatment, which is
contrary to Peng Su’s study showing that organic matter addition promoted soil biological
diversity [57], but are similar to Che et al.’s and Fernandez et al.’s studies, showing that
fertilizer treatments reduced bacterial α-diversity and litter addition decreased microbial
α-diversity, respectively [25,58]. Previous studies show that environmental heterogeneity
can affect microbial diversity and for example, habitat types, vegetation cover, soil nutrient
content and land use types [59]. Factors affecting microbial diversity are not singular, but
rather the result of combined effects of a variety of complex ecological processes. Soil
pH, water content and nutrient contents are the main environmental factors affecting soil
microbial diversity in forest soils. Studies by Quanchao Zeng [60], Han Meng [61] and
Miaojing Meng [62] show that pH has a strong effect on bacterial growth and survival,
and the growth of some soil microorganisms can be inhibited or stimulated in different
pH ranges, and it is considered to be the most important factor affecting soil bacterial
community diversity. In Zhou’s study [63], the majority of microorganisms could not
survive below a certain pH, but some acidophilic microorganisms showed an extremely
high tolerance. In forest soils, greater soil water content reduces oxygen content, leading
to the formation of anaerobic microhabitats, thus reducing microbial diversity [61]. In
both treatments in our study, soil pH was about 5.5 and soil water content about 30%, and
they were not significantly different (Table 1). Hence, this may be the reason for the lack
of a significant difference in bacterial community diversity between the two treatments.
However, in addition to soil pH and water content, soil quality (SOC, TC, TN, C:N, etc.) is
also an important factor affecting soil bacterial diversity [62]. Due to the survival strategy
of soil microorganisms, some bacteria will have a preference for resource quality—for
example, copiotrophic bacteria are thought to be found under nutrient-rich conditions.
The relative abundances of copiotrophic bacteria such as Proteobacteria, Bacteroidetes and
β-Proteobacteria in our study were consistent with soil TC and TN variation, which is also
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consistent with previous studies [25,28,64]. Therefore, there were no significant differences
in the soil bacterial diversity among different thinning residue treatments. Moreover, the
reason why the RT treatment diversity was lower than the RM treatment was that there
were no significant differences in soil pH and water content. Nevertheless, residue reten-
tion improves soil quality and makes the environment more conducive to the growth of
the copiotrophic taxa, thus reducing the diversity and evenness of the communities.

5. Conclusions

We demonstrated that retention of thinning residues (tree crowns) increased soil TC
and TN contents, increased the availability of substrates for soil bacteria, and changed
the soil bacteria community structure. Copiotrophic taxa such as Bacteroidetes and β-
Proteobacteria were enriched in the soil environment where the stem was removed but the
crown residues were retained, and nitrogen-fixing Rhizobiales increased in the soil after
whole-tree removal. Changes in the soil bacterial community are mainly caused by soil
nutrient change. There was no significant difference in bacterial community diversity
among different thinning residue treatments, but residue retention treatment diversity
tended to be lower than that of the residue removal treatment. We attribute this to the
absence of significant differences in environmental factors such as soil pH and water
content, which can drive bacterial community diversity. Residue retention improves soil
quality and makes the environment more conducive to the growth of copiotrophic taxa,
thus reducing the diversity and evenness of bacterial communities. Generally, to some
extent, residue retention can alleviate the adverse effects of harvesting on soil nutrient loss.
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