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Abstract: Accurate forest biomass estimation at the individual tree scale is the foundation of timber
industry and forest management. It plays an important role in explaining ecological issues and
small-scale processes. Remotely sensed images, across a range of spatial and temporal resolutions,
with their advantages of non-destructive monitoring, are widely applied in forest biomass monitoring
at global, ecoregion or community scales. However, the development of remote sensing applications
for forest biomass at the individual tree scale has been relatively slow due to the constraints of spatial
resolution and evaluation accuracy of remotely sensed data. With the improvements in platforms
and spatial resolutions, as well as the development of remote sensing techniques, the potential for
forest biomass estimation at the single tree level has been demonstrated. However, a comprehensive
review of remote sensing of forest biomass scaled at individual trees has not been done. This
review highlights the theoretical bases, challenges and future perspectives for Light Detection and
Ranging (LiDAR) applications of individual trees scaled to whole forests. We summarize research on
estimating individual tree volume and aboveground biomass (AGB) using Terrestrial Laser Scanning
(TLS), Airborne Laser Scanning (ALS), Unmanned Aerial Vehicle Laser Scanning (UAV-LS) and
Mobile Laser Scanning (MLS, including Vehicle-borne Laser Scanning (VLS) and Backpack Laser
Scanning (BLS)) data.
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1. Introduction

Accurate forest biomass estimation is the foundation of timber industry (timber,
fiber and bioenergy) and forest management (forest plantation and natural resources).
It is the key to ecological research and the basis for a range of fields including forest
productivity, energy flux, carbon and nitrogen cycling, nutrient cycling and forest dynamics.
Additionally, it is a critical biophysical parameter to describe the characteristics of forest
ecosystems [1-4]. In the past, the focus of forest biomass estimation has been on timber
quality and quantity [5], but this has shifted to forest carbon sequestration under the
impetus of global climate change [6]. Studies of forest biomass play an important role
in monitoring forest carbon sequestration and the role of forest function on regional and
global carbon flux [7-9].

One way to measure carbon storage in forest ecosystems is to calculate the product
of forest biomass and carbon content [10]. Therefore, it is important to accurately and
rapidly monitor forest biomass to understand the impact of climate change on forest
carbon sinks and implement policies to mitigate the influences of climate change on forest
ecosystems [11-13].
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Estimating forest biomass at the individual tree scale can advance accurate forest
biomass investigation. Perhaps more importantly, evaluating forest biomass and dynamics
at the individual tree scale is the foundation of understanding specific ecological process
(e.g., the impact of environment factors on tree growth, competition between individual
trees, etc.). The challenge is to replicate forest biomass estimation at population, community,
ecoregion and global scales.

Monitoring forest biomass at the individual tree scale has two strengths: (1) sum-
ming growth responses of individual trees can follow species shifts at multiple ecological
scales [2], and (2) forest biomass estimation at the individual tree scale could reduce the
bias arising from spatial and temporal heterogeneity [14], including species-specific forest
biomass estimation [15], habitat-specific forest biomass estimation [16] and management-
specific forest biomass estimation [17]. Both environmental factors and forest management
polices influence variation among individual trees in the forest ecosystem [7] and global
climate change is predicted to further affect the metabolism of individual trees [18,19]. This
will ultimately impact forest ecosystem heterogeneity. Forest biomass growth rate at the
individual tree scale is an indicator of ecological response to a variety of ecological process,
including ontogeny, intensity of individual competition, impact of environment factors
on individual tree growth and succession [20-22]. Therefore, research in the field of forest
biomass estimation would benefit from a focus on individual tree processes.

Remotely sensed images, with variable spatial and temporal resolution, with their
advantage of non-destructive monitoring, are widely applied in forest research, espe-
cially following the first Landsat satellite launch [23]. Comparing methods of measuring
forest biomass in the field (i.e., destructive sampling and allometric equations based on
Diameter at Breast Height (DBH) and tree height), remote sensing techniques have two
non-fungible advantages: continuous monitoring of forest biomass dynamics [24,25] and
forest biomass heterogeneity mapping [26]. Remote sensing techniques have been widely
studied as a forest biomass estimator since the first Landsat satellite was launched in 1972.
Intuitively, optical remote sensing imagery (e.g., AVHRR, Landsat, MODIS and SPOT)
should have advantages over ground-based methods to monitor temporal dynamics of
forest biomass [25-31]. Most commonly, optical remote sensing focuses on tree biomass
estimation at the global, ecoregion or community scale. In contrast, ecological research
emphasizes tree biomass sampling at the individual and population scale, and then gener-
alizes to forest biomass at community, ecosystem, ecoregion and global scales. However,
the low accuracy of optical satellite imagery with moderate or low spatial resolution has
inhibited advances in forest vegetation population or vegetation community prediction.
Due to spatial resolution constraints with and evaluation accuracy of remotely sensed
data, the development of remote sensing estimation of forest biomass at the individual tree
and population scales has been relatively slow [32] compared to that at global, ecoregion
and vegetation community scales. With improvements in platform spatial and spectral
resolution (e.g., QuickBird and Worldview?2), along with the continual development of
remote sensing techniques, the potential to identify single tree crown boundaries [13] and
tree species [33] has been demonstrated. Nevertheless, optical remotely sensed data has
failed to consistently estimate forest biomass because it has not been possible to image
three-dimensional (3D) forest structure. Light Detection and Ranging (LiDAR) data has
changed this with its potential to precisely measure forest biomass at the plot, forest stand
or regional scale [34].

Therefore, it represents a significant advance for forest biomass estimation to promote
LiDAR applications at the individual tree scale for its potential contributions to concepts
and techniques in ecological remote sensing. Nevertheless, a comprehensive review of
LiDAR applications for forest biomass at the individual tree scale has not been done.
This review will fill that gap by summarizing the literature of forest biomass estimation
at the individual tree scale using LiIDAR operated from four platforms: terrestrial laser,
airborne, Unmanned Aerial Vehicle (UAV) and mobile laser (i.e., vehicle or backpack). This
review will discuss the theoretical bases and challenges of LiDAR application in forest
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aboveground biomass (AGB) estimation at the individual tree scale, and identify future
perspectives for forest biomass estimation of individual trees using LiDAR data.

2. Current Methodology and Challenges for Forest Biomass Estimation at the
Individual Tree Scale

2.1. Allometric Equation (Traditional Forest Estimation at the Individual Tree Scale)

Direct measurement of forest biomass is based on time-consuming, destructive meth-
ods. Increasingly, to mitigate the drawbacks of such sampling, studies have focused on
models to estimate forest biomass in tropical, temperate and boreal ecosystems. The na-
tional forest inventory of China also proposed to monitor forest biomass at the individual
tree scale in 2009 [10]. Forest biomass models built at the individual tree scale are largely
allometric equations based on DBH [35] or both DBH and tree height [36]. Some allo-
metric equations also include the ratio of tree height and DBH, crown diameter, crown
height and basal area [1,3]. Because the relationship between biomass, DBH and tree
height varies among tree species, and affects statistical indicators of optimum biomass
selection [16,37,38], the forest biomass model developed for one region may not globally
apply to other regions or ecosystems. Hofstand’s [1] research indicates that the accuracy
of a DBH-based allometric model exceeds 95% in arid regions and tree height does not
contribute to tree biomass estimation. However, Zeng et al.’s [36] research suggests that
the allometric equation developed using both tree height and DBH is superior to that using
DBH only for Chinese pine (Pinus tabulaeformis Carr.). Ter-Mikaelian and Korzukhin [39]
reviewed 803 forest biomass models for 65 tree species in North America, and the sum-
marized results show that allometric model parameters are significantly different even
though they are all built based on DBH only. Oliveira et al.’s [15] research indicates that
allometric algorithms vary among gene types of the same tree species. In conclusion, these
allometric equations are often region-specific (i.e., equations built in one region are not
applicable for other regions, vegetation community or ecoregions), due to different tree
species, environmental factors, management policies, stand density and age.

To develop forest biomass models at the individual tree scale with high accuracy and
wide application, researchers have made significant modifications to forest stand-specific
and species-specific forest biomass models by adding tree species as dummy variables
into allometric equations and enlarging samples to reduce the impact of heterogeneity
within and among forest ecosystems. Dong et al. [40] separated the allometric equation
for forest biomass estimation for conifer and hardwood mixed forest, conifer mixed forest
and khingan fir forest in boreal forest regions of China. Tahvanainen and Forss [41] also
established forest biomass models for individual Scots pine (Pinus sylvestris), Norway
spruce (Picea abies), downy birch (Betula pubescens) and silver birch (B. pendula) in Finland.
Some studies have considered tree species as dummy input variables for forest biomass
models to reduce the influence of species on biomass model accuracy [42,43]. Fu et al. [43]
enlarged the sample size in all types of forest ecosystems in China to integrate heterogeneity
effects into allometric equations for forest biomass estimation. Some research has concluded
that, even for the same tree species, the relationship between DBH and height varies
significantly among locations [14]. Stand age [44], stand density [15], environment [3],
forest management [17] and the difference between plantation and natural forest [42] have
the potential to cause significant differences in allometric biomass algorithms. However,
few studies have focused on the influence of those factors on allometric biomass equations.
Therefore, a fruitful future direction may be to analyze the habitat- and management-
specific allometric algorithms for forest biomass at the individual tree scale.

2.2. Applying LiDAR for Forest Biomass Estimation at the Individual Tree Scale

Unlike forest stand biomass estimation, forest biomass and tree size are strongly
related at the individual tree scale [45,46]. LiDAR remote sensing has been shown to
be able to measure forest biophysical parameters automatically with high accuracy [47].
This has been especially useful to capture forest vertical structure [48], an estimate of



Forests 2021, 12, 550

40f19

tree size that is closely related to tree biomass [49]. In the literature, LIDAR remote
sensing precisely measured tree size and structure parameters including height, crown
boundary, stand density, crown projected area, tree bounding volume, basal area and
canopy height [5,6,8,50-52]. LiDAR systems include full-waveform recording and discrete
returns [48]. Full-waveform LiDAR digitizes the entire reflected amplitude from a return
to measure a complete vertical vegetation profile compared to discrete-return LiDAR that
records single or multiple returns from a given laser pulse to form point clouds representing
intercepted forest vertical features [48,53]. LIDAR remote sensing is usually classified by
the five primary platform types: Terrestrial Laser Scanning (TLS), Airborne Laser Scanning
(ALS), Unmanned Aerial Vehicle Laser Scanning (UAV-LS), Mobile Laser Scanning (MLS,
Simultaneous Localization and Mapping (SLAM) or Portable Canopy LiDAR (PCL) carried
by a backpack or vehicle) and Spaceflight LIDAR Systems (SLS, normally with satellites
as platforms; e.g., the Advanced Topographic Laser Altimeter System (ATLAS) carried on
LCESat-2 satellite and (GLAS) carried on ICESat-1 satellite) [53].

This section focuses on applying LiDAR for individual tree biomass estimation (the
reader is referred to the review of LiDAR applications for larger area forest characteris-
tics [48] and the review on the advantages and disadvantages of the five main LiDAR
systems for forest research [53]). Applications of TLS, ALS, UAV-LS and MLS are discussed
here, but we exclude SLS due to its shortcomings in single parameter extraction.

2.2.1. Terrestrial Laser Scanning (TLS)

TLS is a ground-based LiDAR scanning system for measuring three dimensional (3D)
forest structure using wavelengths in the visible or near-infrared domains [54]. Where it is
impractical to measure forest biomass destructively, TLS offers a promising, non-destructive
alternative with high spatial detail for [55,56]. Robust allometric algorithms significantly
improve AGB estimation [57], but traditional forest biomass estimation based on allometry
is affected by low accuracy measurements, especially for large trees (at the individual tree
level) [58], and varies among tree species, stand densities, stand ages, environmental con-
ditions and management practices [3,14,15,17,43,44]. TLS-derived biomass data, capturing
large areas and spatial variability, expands sampling for allometric model and AGB model
calibration, complementing traditional forest inventory methods to measure abiotic and
biotic effects [56]. TLS-derived forest structure parameters are treated as ground validation
of forest biomass models at large scales [56]. TLS has great potential to extract DBH, tree
height, stand density, leaf area index (LAI), leaf angle distribution, basal area, effective
number of layers and AGB at both plot and individual tree scales [54,56,59,60].

For forest biomass estimation from TLS at the single tree scale, discrete-return instru-
ments are more popular than full-waveform instruments due to expense considerations.
Some studies indicate that full-waveform TLS gives similar results as discrete-return TLS
(Riegal VZ-400) for single trees [61]. Preprocessing of data acquired from these two in-
struments is significantly different. Preprocessing steps for full-waveform TLS-acquired
data include identifying one or multiple hits with peak return energy, converting those
hits to reflectance and recording these as points with coordinates and attributes [62]. The
preprocessing of discrete-return TLS-acquired data focuses on filtering to reduce noise
from terrain and intensity [63]. Point cloud data with high quality are generated from both
TLS forms for future identification of forest structures at the single tree scale.

A growing number of studies have used TLS point cloud datasets to measure stand
volume and AGB through a variety of tree reconstruction models [56]. Tree volume
and AGB estimation at the individual tree scale strongly rely on trees being accurately
delineated and segmented, and great efforts were made in this work to improve model
accuracy to this end. In early models, only cylindrical sections were identified in TLS point
clouds because tree stand volumes were estimated based on simple tree stem models [64].
Quantitative Structure Model (QSM) and Outer Hull Model (QHM) were widely used for
trunk volume estimation [57,65]. Researchers later added leaf and branch components
(i.e., unreplaceable components for AGB of individual trees) into the reconstruction to



Forests 2021, 12, 550

50f19

develop a voxel method of 3D reconstructions of individual trees [66]. Olsen et al. (2016)
developed a high-fidelity tree voxel model (VoxLAD) for the TLS point cloud to improve
the accuracy of canopy segmentation at the single tree scale [61]. Wichmann et al. (2018)
reported an 80% improvement in single tree delineation accuracy for interlinked tree crowns
using hemispherical photographs as reference data [63]. Tang et al. (2015) developed a
photorealistic 3D reconstruction technique from TLS point clouds with high efficiency
and accuracy without the need to first segment leaves and branches [67]. Wu et al. (2015)
developed a comparative shortest-path algorithm (CSP) for both trunk detection and crown
segmentation that significantly improved the accuracy of single tree segmentation [68].

Along with the development of point cloud processing, techniques can also extract
single tree components from TLS point clouds; in particular, leaves (i.e., important for
photosynthetic processes and a large part of AGB) [54,57]. Procedures for separating AGB
components from TLS point clouds are, first, to separate leaves and woody parts, then
partition woody parts (e.g., stump and crown), and finally further divide wood point
clouds into stump meshing, stem and branch [56]. It is still challenging to accurately and
automatically segment leaf and wood, stump and crown from TLS point clouds [56]. The
separation of leaf and wood from single tree point clouds has been attempted using TLS by
developing a generic, unsupervised method (LeWoS) [54] and combining unsupervised
classification of geometric features and shortest path analysis [69].

Although TLS estimates forest AGB at the individual tree level with high accuracy
(particularly true for distinguishing biomass among tree components), the acquisition of
TLS point clouds is time consuming [58] and occlusion effects still limit the processing
efficiency for estimating AGB at the single tree scale [70]. This is not suitable for measuring
single tree AGB in large study areas. It is also a challenge to use TLS to estimate AGB at
individual tree scales in dense forests, especially at the leaf-on stage, because occlusion and
overlap contrast among neighbor tree crowns [56]. Moreover, TLS is limited in its ability to
distinguish upper canopy structure, especially in forests with complex vertical structures.
However, TLS with multiple scans is an improvement over TLS with a single scan [70].
Therefore, some studies have extracted upper canopy structure using ALS point clouds,
and lower canopy structure and DBH from TLS point clouds [65].

2.2.2. Airborne Laser Scanning (ALS)

ALS shows promise for forest biomass mapping over large areas (i.e., regional or na-
tional scales) because of its ability of measuring 3D structures [71]. This is an improvement
over TLS in this function. For example, ALS data coverage of Finland in 2008 not only
provided a detailed terrain elevation map, but also collected explanatory variables for
AGB estimation [72]. ALS is also superior to TLS in canopy structure extraction, including
crown size and form and dominant tree height [73]. Approaches for forest AGB estimation
include both area-based and single tree-based approaches [73]. The area-based approach
often uses statistical and empirical models of ALS-extracted structure metrics and decon-
structive ground-based measurements [74]. Tree height, crown dimensions and other tree
size attributes that are closely related to AGB estimation could be measured from ALS
point clouds using individual tree detection and crown segmentation directly with high
efficiency and accuracy [73].

Using single tree-based approaches with ALS point clouds for forest AGB biomass
estimation usually relies on traditional allometric models [47,75]. Even though ALS is
a promising technique to accurately and efficiently measure individual tree height, it
remains a challenge to monitor DBH using ALS [6] with existing allometric tree volume
models. Studies suggest that DBH estimation inaccuracy biases allometric models [75].
Vauhkonen et al. [75] studied individual tree biomass estimation in a mixed forest (Scots
pine, Norway spruce and birch) and obtained root mean square errors (RMSE) of 13% for
DBH, 3% for height and 31% for volume. Researchers have tried two approaches to solve
this problem: (1) estimate DBH from LiDAR-extracted tree size parameters (e.g., tree height)
based on statistical models [11], and (2) use forest biomass algorithms that do not rely on
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DBH. Popescu [47] first introduced biomass allometric equations using tree height and
crown diameters. However, Usoltsev et al.’s [76] comparative results show the accuracy of
an allometric model with ALS-derived tree height and crown dimeter is significantly lower
than that with ground-measured tree height and DBH. Fu et al. [77] built a statistical DBH
model from crown projection area and tree height. Allouis et al.’s [12] research shows that
crown projection area has good potential to estimate tree DBH and Anjin et al.’s [8] research
indicates that crown diameter can also effectively estimate DBH. However, the bias of DBH
estimation compared to other tree size parameters could introduce more errors to biomass
allometric models. Therefore, Popescu et al. [47] established the concept of allometric
algorithms for forest biomass estimation using ALS-derived tree size parameters including
tree height, crown diameter, crown height and basal area. Popescu et al.’s results show that
ALS-derived crown diameter alone explained 78% of the variation of tree biomass and 83%
of the variation of tree volume [47]. Wan-Mohd-Jaafar et al. [78] estimated forest biomass
using ALS-extracted crown diameter, crown height and tree height (R? = 0.63 for AGB
estimation at the individual tree scale). Giannico et al. [51] evaluated forest biomass based
on ALS-derived basal area and tree height, improving the correlation (R? = 0.81 for tree
volume estimation and 0.77 for AGB estimation). Some studies also argue that multiple
linear regression using ALS-derived geometric and statistical point metrics as explanatory
variables is better than the existing allometric models using ALS-derived height and crown
diameter as input parameters for AGB estimation for individual trees [71].

No matter which model was used for AGB or tree volume estimation for single
trees, eventually, the accuracy of individual tree detection and crown segmentation was
fundamental. Complexity of forest conditions, sparse ALS point density and inaccurate
tree species identification can create uncertainty and lower the accuracy of tree detection
and crown segmentation [74]. Determining single tree size attributes requires ALS with
higher pulse density than area-based approaches, and the required point density also
varies among forest ecosystems [73]. However, Kaartinen et al. [74] found that the ALS
point density has less impact on individual tree crown segmentation than other methods.
ALS-based individual tree detection has a varying accuracy, from 40 to 93%, but the portion
of variation caused by forest condition or the methods remains unclear [74].

The effects of forest conditions on individual tree detection and crown segmentation
will be discussed in Section 2.3. Here, we focus on the methods and algorithms for tree
detection and crown segmentation for individual trees. In early studies, the accuracy
for ALS-based individual tree detection and crown segmentation ranged from 29.7 to
48.3% [72]; the development of the Canopy Height Model (CHM) significantly improved
the accuracy for tree detection at the single tree level [79]. CHM is associated with the
canopy maxima algorithm to detect tree tops from the rasterized canopy heights from ALS
point clouds [80]. High commission or omission rates might bring basis into individual
tree detection outputs from CHM due to forest structure complexity and different tree
species [81]. Therefore, previous studies tried to use marker-based watershed algorithms
to improve the accuracy of individual tree detection based on CHM [82]. Zhang et al. [81]
proposed a hybrid framework using ALS point clouds based on the configurations from
CHM. This significantly reduced commission errors produced by local maxima filtering
and increased overall accuracy by 10%. To improve its accuracy, manually set thresholds
and parameters were normally required [80]. To improve the processing accuracy and
provide comparable results among locations, automatic individual tree detection was
attempted. Heurich [83] delineated individual tree crowns using automatic recognition for
ALS-derived tree height and crown diameter that achieved an overall accuracy of 79.6% for
individual tree detection from the upper canopy. Dong et al. [80] developed an automatic
single tree detection method using gradient orientation clustering (GOC) based on the
rasterized CHM from ALS point clouds, significantly improving accuracy. Other efforts
were made to detect individual trees using ALS fusion and optical imagery [73], alternative
methods (e.g., nearest-neighbor estimation [84]), ALS-derived shape metrics and structure
parameters as inputs for classification algorithms (e.g., k-Most Similar Neighbor (K-MSN)
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and the Random Forest (RF) [75]). Some research has estimated branch biomass using
empirical models of ALS-extracted crown volume and dried weights of deconstructed tree
branches based on the results of individual tree detection and segmentation, with a root
mean square error (RMSE) of 35% [85].

Further studies improved algorithms and methods for individual tree detection and
crown segmentation for higher accuracy of AGB estimation from ALS for individual trees.
However, height estimation still varies in complex canopy structures and topography
conditions due to low vertical point density [73]. More importantly, most of the current
techniques for single tree detection are inefficient for dense forest ecosystems due to high
commission and omission rates [80]. Therefore, researchers take advantage of both ALS
(i.e., extracting tree heights, number of trees and tree crown width) and TLS (i.e., DBH,
stand volume and tree height) for AGB estimation [65,79,86]. Synergies of ALS and TLS
data have been shown to improve AGB and stand volume estimation [72,84,86,87]. In the
future, more studies should explore the difference and complementarities between ALS
and TLS because both derive tree size and structure parameters at the individual tree scale.

2.2.3. Unmanned Aerial Vehicle Laser Scanning (UAV-LS)

UAV-LS components are quite similar to ALS; however, Unmanned Aerial Vehicles
(UAV) fly at much lower altitudes of 50-300 m (ALS acquired point cloud data at a higher
altitude of 500-3000 m) [53]. UAV-LS is more flexible than ALS, more convenient, provides
higher point density and lower cost [88], but covers less area. Compared to ALS, UAV-LS
acquire point clouds with much higher point density horizontally and vertically [89], which
enhances the capacity of point clouds for distinguishing tree crowns [65].

However, the challenge for UAV-LS applications for forest biomass estimation is
single tree detection and segmentation, forcing individual tree research to sometimes be
reported at plot, tree stand or regional scales [6]. The methods for individual tree detection
and crown segmentation for ALS point clouds have the ability to be used for UAV-LS
point clouds. There are two main categories of methods for individual tree detection and
crown segmentation. The first is CHM-based, which applies CHM to search windows
(width of searching window is less than canopy diameter) to find canopy maxima and
identify tree locations first and then separate individual trees based on segmentation al-
gorithms [6,8,11,34,90]. The second is a voxel-based method using cluster analysis (e.g.,
k-mean clusters) on point clouds of LiDAR data in voxel space to first segment all indi-
vidual trees and then search local maxima in 3D clusters as single tree locations [77,89,91].
Wu et al. [88] applied CHM-based models for individual tree detection and delineation
first, and achieved an accuracy of 0.77-0.83 for canopy cover estimation based on the
tree segmentation. Dalla Corte et al. [92] performed individual tree detection with a local
maximum filter algorithm in R package “lidR” from rasterized CHM generated from UAV-
LS point clouds. Based on the individual tree detection and segmentation results, Dalla
Corte et al. [92] applied machine learning methods, including Support Vector Regression,
Random Forest, Artificial Neural Networks and Extreme Gradient Boosting, for DBH
estimation (i.e., with a RMSE of 15%), height (i.e., with a RMSE of 9%) and stand volume
(i.e., with a RMSE of 29%) at a single tree scale. Dalla Corte et al. [93] estimated DBH and
tree height based on individual tree detection and segmentation outputs using voxel-based
methods, resulting in an RMSE of 11.3% for DBH and 7.9% for tree height. Chen et al. [94]
used voxels of various tree species as training data for the PointNet deep learning to
identify the tree crowns at the voxel scale and then accurately depict the boundaries of
individual tree crowns based on gradient information of canopy height.

Although UAV-LS-based individual tree detection and segmentation have satisfied
accuracy [91], both methods perform inefficiently with much lower accuracy for individual
tree detection and delineation for forest ecosystems with irregular canopy shape and multi-
ple stems (e.g., broadleaf forests instead of coniferous forests) [91,95-97]. It significantly
improves the performance of individual tree detection and segmentation based on UAV-LS
to apply a maker-controlled watershed segmentation algorithm [95]. Yin and Wang [95]
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obtained a delineation accuracy of 46% for mangrove forests with high clumping den-
sity and limited height difference between adjacent mangroves. Picos et al. [96] explored
new individual tree segmentation methods based on stem distributions that achieved a
detection rate of 103.7 and 113.6%.

Another challenge for single tree detection using UAV-LS comes from the crown
top, as the canopy shifts from the actual tree location, particularly among broadleaf tree
species. It remains difficult to match UAV-LS-extracted tree locations with field-collected
validation tree locations [6]. Edson and Wing’s [5] research in the North American boreal
forest shows that extracted single tree locations from LiDAR shift 2.05-2.31 m compared to
field-collected single tree locations through GPS devices.

In conclusion, it will be necessary for future research to develop new methods to
resolve the shortcoming of single tree detection and segmentation for forest ecosystems
with complex canopy or understory structures (e.g., broadleaf forests or natural forests with
various ages). Moreover, alternative methods are needed to detect tree location and field
data collection to solve location shifting issues. Current methodologies of AGB estimation
from UAV-LS point clouds still rely on allometric algorithms [98]; therefore, automatic and
direct extraction methods of individual tree AGB will be necessary.

2.2.4. Mobile Laser Scanning (MLS)

MLS collects point cloud data near the ground, mainly under the forest canopy, which
is similar to TLS. Compared to TLS, the success of using MLS allows for acquiring 3D
point cloud data in a large area efficiently [70]. The two types of MLS are Vehicle-borne
Laser Scanning (VLS) and Backpack Laser Scanning (BLS). Currently, the studies of both
VLS and BLS are in the stage of individual tree detection and segmentation because it
is fundamental for the estimation of tree size parameters and AGB for individual trees.
Yan et al. [99] proposed a new method (i.e., a concave hull by slices method) for individual
tree segmentation, which obtained better accuracy than five existing methods including
manual measurement, 3D convex hull, 3D alpha shape, convex hull by slices and a voxel-
based method. BLS arouses more and more interest, currently because it is superior to
both TLS and VLS due to its flexibility to collect close-by measurements in all directions
in a timely manner [100]. Lu et al. [98] used seed points generated from BLS data for
individual tree detection from UAV-LS, which significantly improved the accuracy for
individual tree detection and segmentation. Xie et al.’s [100] results indicate that a vertical
thickness of 30 cm for point cloud slices was best for DBH estimation (i.e., R square was
0.89 when compared with manual measurements) at the single tree level from BLS point
clouds and DBH extracted from BLS was smaller than that from manual measurements.
Zhang et al. [101] compared the potential of TLS and BLS for the estimation of apple tree
branches and the results show that TLS is better in the estimation of branch length and BLS
is better for the number counting of branches. However, the application of BLS is still in an
early stage, and its measurement accuracy and error sources have not been systematically
explored [100].

2.3. The Impact of Forest Conditions and Species on AGB Estimation at the Individual Tree Scale
Based on LiDAR Data

2.3.1. Effects of Forest Site Conditions

Forest site conditions have a large influence on biomass monitoring accuracy at the
individual tree scale because environmental noise affects the accuracy of LiDAR-extracted
biophysical parameters. The estimation accuracy is often limited by complex tree structures
(leaves and branches), flowers and forest understory herbs [102]. Therefore, it is important
to determine how environmental factors influence biomass estimation by UAV LiDAR data
and establish new methods to control for the effects of forest site condition. Stand age, stand
density, upper canopy structure (flat or irregular) and forest understory vegetation might
all influence forest biomass estimation by UAV LiDAR at the individual tree scale [90,91].
This, in turn, could result in inaccurate tree counts and reduce the extraction accuracy
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of biophysical parameters for individual trees. Yu et al.’s [103] research based on ALS
data resulted in 69% accuracy for single tree detection under various forest conditions (i.e.,
different site types, stand density and stand age). Kaartinen et al. [74] summarized the
accuracy of single tree detection from LiDAR data in the boreal forest and found that stand
age has a large impact on the detection accuracy of single trees from LiDAR data. Edson and
Wing'’s [5] research also shows that stand age affects the accuracy of single tree detection
from LiDAR data. Vauhkonen et al. [104] studied single tree detection from LiDAR data for
forest ecosystems with complex structures and their results show that stand density and
tree structure influence the accuracy of single tree detection. Gregoire et al.’s [102] research
indicates that the complex structure of forest understory vegetation significantly reduces
the estimation accuracy of forest biomass at the individual tree scale using LiDAR data.
Goldberg et al.’s [34] research indicates that single tree detection for heights exceeding 10 m
(detection accuracy: 75%) is more accurate than for stem heights less than 10 m (detection
accuracy: 66%) based on ALS data. Therefore, studying the impact of stand age, stand
density and structure of understory vegetation on single tree detection and forest biomass
at the individual tree scale based on UAV LiDAR is a promising research direction.

2.3.2. Effects of Forest Types and Tree Species

Numerous tree detection, 3D reconstruction and crown segmentation techniques for
single trees have been developed using ALS, TLS and UAV-LS. However, accurate single
tree detection and crown segmentation remain a challenge due to tree crown intersec-
tion and irregular crown shape [68]. Complex crown intersection and irregular crown
shapes are determined among forest types (e.g., natural forest ecosystems or plantations,
deciduous forests, coefficient forests, mixed forests or tropical evergreen forests) and tree
species (e.g., Scots pine, Norway spruce or European beech (Fagus sylvatica)) with different
canopy structures. Previous studies indicated that QSM based on TLS data systematically
overestimated stand volumes in tropical evergreen forests [56]. Tao et al.’s [68] research
shows that single tree segmentation from TLS has higher accuracy in coniferous forests (i.e.,
kappa coefficient of 0.93) than broad-leaved forests (i.e., kappa coefficient of 0.83). Similar
conclusions have been drawn, that single tree segmentation of coniferous species has
better accuracy than that of deciduous or evergreen broad-leaved species-based UAV-LS
and ALS point cloud data, especially for the broad-leaved forest canopy in the growing
season due to irregular and overlapping shapes [98]. Liu et al.’s [105] research reveals
that single tree segmentation based on ALS is most accurate in coniferous forests (93%),
moderately accurate in coniferous and broadleaf mixed forest (86%) and is least accurate
in broadleaf forest (60%). Heurich et al. [83] performed single tree delineation in Bavar-
ian Forest National Park (i.e., mixed forests of Norway Spruce and European Beech, in
Germany) and the results show that conifers provided greater accuracy than deciduous
species. Ene et al. [82] detected single tree locations in highly heterogeneous natural boreal
forests with a detection accuracy ranging from 46 to 50%. Their results also indicate that
tree height estimation was more accurate for deciduous tree species than coniferous species
(i.e., Scots pine and Norway spruce), while the estimated crown diameter was more accu-
rate for Scots pine and deciduous species than Norway spruce [82]. Kankare et al.’s [71]
research shows that AGB estimation is more accurate for Scots pine (i.e., with an RMSE
of 26.3%) than Norway spruce (i.e., with an RMSE of 36.8%) based on ALS point cloud
data. Brede et al.’s [58] results indicate that UAV-LS-based AGB estimation at the single
tree level is more reliable for mature beech and oak species than dense Norway Spruce
stands. Chen et al. [94] compared the performance of UAV-LS on single tree detection for
four forest types and achieved a detection rate of 0.9 for nursery base, 0.85 for monastery
garden, 0.82 for defoliated forest and 0.8 for mixed forest, which also indicates that the
complexity of forest structure reduces the detection accuracy for individual trees.
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2.3.3. Integrating Optical Images to Reduce the Effects of Tree Species and
Forest Conditions

In the early uses of LiDAR to estimate forest biomass, Popescu et al. [52] applied data
fusion to ALS and hyperspectral data to improve accuracy. Recently, many more studies
integrated hyperspectral data for tree species detection and crown boundary identification
to improve the accuracy of AGB estimation at the plot scale. Research into tree height
extracted from ALS and horizontal heterogeneity derived from hyperspectral images has
applied statistical models to field-measured forest biomass [106-108]. Dalponte et al.’s [109]
research indicated that tree species detections from airborne hyperspectral data significantly
improved ALS-based forest AGB estimation at the plot scale. Ediriweera et al.’s [110]
research also shows multispectral data are effective at identifying crown boundaries that
enhance the potential for ALS to estimate forest AGB at the plot scale. Although many
studies attempt to combine optical images with high spatial resolution and ALS data to
improve the accuracy of forest biomass estimates, few studies have been successful at the
individual tree scale [111] or using UAV-LS data [91]. Therefore, further research integrating
the strength of UAV optical and LiDAR remote sensing to monitor forest biomass at the
individual tree scale would be of value.

2.4. Challenges to Current Methods

Although the four primary types of LIDAR data have proven promising for some
aspects of AGB estimation in individual tree detection, they still have shortcomings (ad-
vantages and disadvantages for TLS, ALS, UAV-LS and BLS are organized in Table 1). In
conclusion, there remain five challenges to apply LiDAR remote sensing to forest biomass
estimation at individual tree scales (Figure 1): (1) allometric equations (i.e., ecological
methods of forest biomass estimation based on samples at the individual tree scale) are
regionally specific and inapplicable for other regions due to tree species, environmental
factors, management policies, stand density and age, (2) DBH (a key factor of tree volume
and biomass with tree height, crown diameter and crown height), a common input param-
eter for biomass allometric equations, is difficult to measure with ALS and UAV-LS data,
(3) despite UAV-LS resolution being optimal for biomass estimation at single tree scales,
measurement accuracy for single tree detection and segmentation is affected by tree species
with complex canopy structures and overlapping with neighbor canopies, (4) forest site
conditions add noise to LIDAR-extracted tree size information and (5) there are relatively
few examples of integrating the advantages of UAV-LS and BLS data, or UAV-LS and TLS
data to monitor AGB at the individual tree scale.

Table 1. Advantages and disadvantages of TLS, ALS, UAV-LS and BLS for AGB estimation for individual trees.

TLS

Strength

3D reconstruction for single trees

current estimation of DBH, tree height and stand volume at individual tree scale
distinguish biomass for different components of single trees including branches, stem
and leaves

Weakness

time consuming for both data acquisition and processing due to occlusion effects
lack of capacity for large-scale mapping for forest biomass
inability to capturing upper canopy structure for dense and complex forests

ALS

Strength

forest 3D structure over large area in a spatially contiguous manner
tree height estimation in both plot and single tree levels
CHM-based methodology for individual tree detection and crown segmentation

Weakness

the integration of ALS-derived tree size parameters with allometric models

inability to estimate DBH with the restriction of point density

coarse accuracy of current methodology for single tree detection and crown segmentation
for various forest conditions and tree species with complex canopy structure
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Figure 1. Challenges of current methodology for applying remote sensing to forest biomass estimation at the individual

tree scale.

3. Future Directions for Forest Biomass Estimation at the Individual Tree Scale Using
Remote Sensing

3.1. Improving the Accuracy of Single Tree Detection and Segmentation with Automatic
Processing Capacity Based on UAV-LS Data

Thanks to the development of LIDAR data mounted on UAYV, it is possible to monitor
forest biomass at the individual tree scale. However, current methods initially developed
based on ALS and TLS data (i.e., CHM-based methods and voxel-based methods) are
insufficient for single tree detection and segmentation from UAV-LS, especially for broad-
leaved forests with complex canopy structure and crown overlapping.

We tested the CHM-based method and voxel-based method in a poplar (Populus
deltoids and Populus euramericana) plantation during peak growing season to better illustrate
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the challenges and future direction for UAV applications in broadleaf forest (Figure 2).
The CHM-based method results in an overestimation of the number of individual trees
compared to the actual number (Figure 2a: each red dot is the result of a single tree),
which also relies on manually setting the search window width for local maxima filtering.
Because one single broadleaf tree with a much flatter canopy than coniferous species might
contain more than one local maxima for each branch, it could be identified as several trees
(Figure 2a). The voxel-based method results in higher accuracy of single tree detection
(Figure 2b: each red dot identifies one tree) and single tree segmentation (Figure 2c: each
color cluster is one segment for an individual tree). The voxel-based method results in
fewer individual trees, but still an overestimate of the actual number (Figure 2a,b).

S5 480N

Figure 2. Single tree detection and segmentation in a poplar plantation using UAV-LS data. (a) Single tree detection

results using CHM-based method; each red dot is predicted to be a single tree. (b) Single tree detection results using the

voxel-based method; each red dot is a predicted location of each single tree. (c) Single tree segmentation results using single

tree detection results from (b) the second method where each color cluster is one segment for an individual tree.

To overcome this challenge, studies have used marker-based watershed algorithms to
improve the individual tree detection accuracy of CHM-based approaches from ALS point
clouds [82]. This has high capacity to be applied in UAV-LS data. Seed points or markers
have great potential to significantly improve the accuracy of CHM-based methods for single
tree detection; however, they often lack automatic processing and batch processing capacity
due to their need for human intervention. Recent studies significantly improved the overall
accuracy of single tree detection from UAV-LS data based on the automatically extracted
seed points from BLS [98]. Therefore, future research in this field could align single
tree detection and segmentation with high accuracy and automatic processing capacity.
Another future direction may be to improve UAV-LS-based single tree detection and
segmentation by integrating crown boundary and tree species information [91] extracted
from hyperspectral or multispectral images with high spatial resolution.

3.2. Improving the Accuracy of LiDAR-Derived Tree Size Parameters

Unlike forest biomass estimation at the forest stand level, individual tree biomass
is directly related to tree size parameters (DBH, tree height, crown diameter and crown
height). In the literature, tree height, crown diameter and crown height have been extracted
from LiDAR data with satisfactory accuracy, especially in coniferous forests. However,
accuracy is often influenced by site conditions, forest and tree structure and understory
shrubs and herbs. Moreover, the accuracy of single tree detection and segmentation has
a direct impact on the accuracy of tree size information extraction at the individual tree
scale. Therefore, separating the point clouds (from LiDAR) for various forest components
(i.e., tree and understory) after single tree detection and segmentation will be a productive
direction to improve the accuracy for extracting key forest and tree parameters. Optical
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remote sensing has the ability to differentiate forest components. UAV optical data provide
optimal spatial resolution to extract forest information at the individual tree scale [112].
However, UAV optical data only provide information for the forest canopy and it is a
challenge to use it to extract forest understory information. Therefore, a potential future
direction would be to estimate 3D structure based on UAV optical data to help identify
different forest components to improve the accuracy of tree height, crown diameter and
crown height information. In the literature, Agisoft PhotoScan software [113] has proven
to be useful to build 3D structures based on optical images taken from a variety of angles
from various altitudes (Figure 3).

% Flight height 1
- I : Flight height 2
5 ; : - : i : Flight height 3

Figure 3. Insight for acquiring UAV optical images of different angles to construct 3D structure.

3.3. AGB Estimation at the Individual Tree Scale by Integrating UAV-LS and BLS

Previous studies have mainly focused on exploring the advantages and disadvan-
tages of TLS, ALS, UAV-LS and BLS for AGB estimation for individual trees (Table 1).
Research conducted a cross comparison among different LIDAR types. Giannetti et al. [114]
compared the capacity of a hand-held mobile laser scanner (HMLS), TLS, ALS and the
combination of TLS and ALS for single tree detection and the estimation of DBH, tree
height, crown base height and crown projection area. Their results indicate that TLS
had greater accuracy for tree height estimation than HMLS and significantly increased
the performance of tree height and crown projection area estimation from TLS data by
integrating ALS data [114]. Bazezew et al. [65] take the advantage of ALS-derived single
tree location and TLS-derived DBH for AGB estimation in tropic forests. However, the
advantages and disadvantages of UAV-LS and BLS on AGB estimation or different biomass
components (i.e., stems, branches and leaves) have not been studied enough for single
trees. Brede et al. [58] found UAV-LS, compared to the capacity of TLS, reliably estimated
tree volume for trees with DBH larger than 30 cm in a Dutch temperate forest (i.e., mixed
with coniferous and deciduous species). Combining UAV-LS and BLS might be a successful
future direction for AGB estimation for single trees. BLS and UAV-LS are both emerging
remote techniques with unprecedented detailed 3D information for reconstructing forest
structure [98,100,115]. However, few studies have tried this. This direction may allow the
combination of UAV-LS-derived upper canopy parameters and BLS-derived lower canopy
information, and data fusion between UAV-LS and BLS point clouds. Polewski et al. [115]
explored the capacity of the coregistration of UAV-LS and BLS. Based on the advantages of
UAV-LS and BLS it appears possible to remotely measure all tree size parameters at the
single tree level with higher accuracy, suggesting a future direction of study based on the
combination of UAV-LS and BLS for forest AGB estimation at the scale of individual trees.
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3.4. The Effects of Forest Structure and Site Condition on AGB Estimation at the Individual
Tree Scale

Forest site condition (e.g., understory vegetation) and forest structure (i.e., stand
age, stand density and canopy structure) introduce noise that reduces the accuracy of
forest biomass estimation at the individual tree scale using LiDAR data. Therefore, future
research should focus on understanding how those factors influence single tree detection
and segmentation as well as extracting tree size information with UAV-LS due to its ability
to produce detailed forest structure information more effectively than using ALS data.
Based on this information, optimal methods can be determined for single tree detection
and segmentation, measurement of tree height, DBH, crown height and crown diameter
and biomass estimation of individual trees in diverse ecosystems.

4. Conclusions

In conclusion, LiDAR data has great potential to monitor forest biomass because
of its ability to extract tree size parameters (height, crown diameter and crown height).
Currently, LIDAR techniques for research of individual trees have been improved by using
UAV-LS and BLS compared to ALS and TLS. Although UAV-LS data has optimal spatial
resolution for forest AGB estimation at the individual tree scale, it is not widely applied to
single trees because of low accuracy in single tree detection and segmentation, especially
in broadleaf forests or in forests with complex structure; noise affects UAV-LS-derived tree
size information and makes DBH undetectable. Therefore, it is necessary to develop new
methods for single tree detection and segmentation with high accuracy and automatic
processing capacity under variable forest conditions. It has been suggested to integrate
the information from crown boundaries and tree species information extracted from high
resolution optical imagery (e.g., UAV optical images) to improve accuracy for single tree
detection and segmentation from UAV-LS. Moreover, a more complete understanding
of forest structure and site condition effects on LiDAR applications for forest biomass
estimation using single trees is a path forward to improve predictions of stand dynamics
using individual tree biomass. Due to the success of the combination of ALS-derived
upper canopy structure and TLS-derived lower canopy information, the integration of new
developed BLS and UAV-LS techniques is identified as a future direction for forest AGB
estimation where individual tree detection is warranted. Research in this direction could
continuously explore the advantages and disadvantages of UAV-LS and BLS for research
regarding single tree detection, or focus on the fusion of UAV-LS and BLS point cloud data
to automatically extract stem volume and crown volume.
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