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Abstract: Soil bacterial microbial communities are important in the ecosystem function and succession
of forests. Using high-throughput 16S rRNA gene sequencing and relative importance for linear
regression, we explored how the structures of soil bacterial community were influenced by the
environmental factors and restoration succession of secondary forests in the Miyaluo Mountains
of western Sichuan, China. Using a space-for-time approach, field measurements and sampling
were conducted in four stands at different stages of natural restoration. Results of distance-based
multivariate analysis showed that soil pH, organic carbon, available phosphorus, and C/N ratio
were the predominant environmental factors that collectively explained a 46.9% variation in the
bacterial community structures. The community compositions were jointly controlled by the direct
and indirect effects of the rehabilitation stages. The changes in soil environmental factors coincided
with restoration succession could lead to the shifts in the relative abundance of different soil bacterial
taxa. We screened 13 successional discriminant taxa that could quantitatively indicate the secondary
succession subalpine stage. Collectively, our findings show that soil bacteria in different taxa are
governed by different local soil variables and rehabilitation ages, which can lead to shifts in the
relative abundance of different taxa in successional stages, ultimately changing the entire soil bacterial
community with the succession of secondary forest.

Keywords: bacterial community structure; rehabilitation age-discriminatory taxa; subalpine sec-
ondary succession

1. Introduction

Secondary forests formed by restoration succession after large-scale destruction (clear-
cutting) have become one of the most important components of the terrestrial ecosystem,
which provide many ecological services, including terrestrial vegetation and rehabilitation
refugia for species diversity [1]. A classic secondary succession is from a shrub-grassland
to broad-leaved forest, finally resembling a coniferous forest [2]. During this process,
soil conditions and environmental resources begin to improve and gradually recover to
the state of primary forest. The change in surface vegetation leads to different types of
litter, which change the soil organic matter composition from simple to complex [3]. Soil
microorganisms are important for regulating biogeochemical cycles, maintaining ecosystem
functions, and predicting the functions of an alpine ecosystem. The alpine ecosystem is
one of the most important components of the terrestrial system [4–6]. Previous studies
have mainly focused on the effects of land use types and geographical differences on
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soil microorganisms [4,7,8]. There are few studies that have investigated the temporal
patterns of soil microorganisms on the time scale of secondary succession, and there is
still controversy on the main effect factor in the bacterial community assembly, i.e., soil
pH is considered to be one of the key factors in determining soil microbial community
composition in the Changbai Mountain area. On the contrary, soil microbial community
structure is strongly influenced by water, SOC in the Qinling Mountains area, and the
variation in the bacterial community assembly is driven more by soil carbon concentration
than soil pH in the Miyaluo area in Sichuan. [9–11]. As such, more detailed data are needed
to provide descriptive information about the distribution of soil microbial community
and the influence of related factors. Additional studies of microbial recovery patterns and
the influence of related factors along a timescale of secondary succession are necessary to
further understand other underlying mechanisms.

The restoration patterns of bacterial community structures may coincide with changes
in soil nutrients and aboveground plant communities [8,12–14]. This is accordant with
the restoration ecology hypothesis that the recovery after a disturbance will proceed
toward a primary, unperturbed state. Consistently, there is evidence that soil nutrients and
vegetation communities become more similar with these in the natural forest ecosystem
along restoration stages [15–17]. To a certain extent, when the environmental conditions
were restored, the recovery of restricted species could be promoted due to the emergence of
new ecological niches [18–20]. Similarly, previous studies have shown that the classification
of restoration stages includes a shrub-grassland stage and a broad-leaved forest stage, but
lacks a mixed forest stage, which generally has high vegetative species diversity, more litter
species composition, and relatively complex soil organic matter [9,21]. These factors may
lead to the increase in microbial variability during this stage, which may eventually affect
the overall time lag for reaching the original state. Thus, whether this restoration model
also holds true for microbial communities in subalpine areas requires further verification.

To clarify how soil bacterial communities respond to secondary succession in subalpine
secondary forests, it is necessary to investigate the internal relationship among soil bacterial
taxa and soil factors. The classification and composition of soil bacteria are closely related to
soil factors, which include a variety of abiotic parameters (e.g., soil pH, carbon and nitrogen
content) [22]. The change of these factors may form new niches, which will affect the soil
bacterial community structures [7]. Although some studies have reported the change of
soil microbial community structure in a secondary forest over time, these studies only
investigated the variation in bacterial composition by clustering nucleotide sequences based
on sequence similarity and the soil factors that affect the bacterial composition [9,23,24].
However, the environmental driving mechanisms of bacterial community composition
are still unclear and our knowledge to explain microbial distribution and function is very
limited. The changes of environmental factors caused by a niche may directly or indirectly
affect the bacterial community structure [4,25]. The variations in soil bacterial community
structure in response to secondary succession may be caused by the direct influence of soil
factors on particular taxa. Quantitative analysis of the relationship between soil factors
and soil microorganisms will therefore be helpful to understand the relationship between
microorganisms and geochemical processes, and particularly the process of secondary
forest restoration in subalpine secondary forest ecosystems.

Different restoration stages of secondary forests caused by large-scale destruction
(clear-cutting) provide an ideal opportunity to evaluate the predictive influence of soil
bacterial communities on environmental changes. DNA coding information can be used
to quantitatively describe an environment owing to the rapid responses of microorgan-
isms to changing conditions and their wide distribution [26,27]. This is based on the
ecological hypothesis that ecological forces predictably restrict or promote the growth of
characteristic taxa in accordance with environmental conditions [28]. Previous studies have
assessed environmental conditions by integrating information collected from local bacterial
communities, revealing the status of the secondary forest [29,30]. Different restoration
stages of secondary forest caused by large-scale destruction (clear-cutting) provide ideal



Forests 2021, 12, 505 3 of 19

opportunities to evaluate the predictive power of the influence of soil bacterial communi-
ties on environmental changes. We therefore used this information in the present study
to determine the degree of restoration of a secondary forest to address an important gap
present in succession stage in secondary forests, especially in the subalpine areas of western
Sichuan. The secondary forest in this area has become one of the main forest ecosystems in
southwestern China [31].

The subalpine forest area of western Sichuan is located on the eastern Tibetan Plateau,
where long-term and large-scale exploitation occurred from the middle to the end of the
twentieth century [31]. Due to the different cutting times, a series of secondary forests with
different restoration stages were formed via natural regeneration, which comprised the
shrub-grassland (SG) (0–20 a), broad-leaved forest (BF) (20–50 a), mixed coniferous and
broad-leaved forest (MF) (50–80 a), and dark coniferous forest (PF) [9,32–34]. Restoration
succession will affect the soil bacterial community structure; however, there is little discus-
sion on how soil bacterial community structures respond to the succession of a secondary
forest and soil environment, especially for specific soil bacterial taxa. The subalpine forest
area of western Sichuan is an ideal place to investigate how the structures of the soil bacte-
rial community respond to the restoration succession of a subalpine secondary forest. We
thus selected four representative stages of successive forest ages. Using multiple statistical
methods, we addressed the following research questions: (1) Given the significant changes
in soil properties, do the structures of the soil bacterial community also substantially
change and restore; (2) Which factors determine soil bacterial niche separation in disturbed
subalpine forests, and; (3) Can some biological indicators quantitatively predict the degree
of succession for a secondary forest? There is evidence that the abundance of some bacterial
groups is sensitive to the succession level of a secondary forest [35]. In these cases, we used
the random forest model to identify the bacterial taxa featured in these successional stages
and obtain independent variables to diagnose the restoration succession stage. We used
multiple linear regressions to quantify the relative importance of the restoration stage and
soil factors in governing the soil bacterial community structure. The partial least squares
path model (PLS-PM) was also used to evaluate the interaction between the restoration
stage and environmental factors on the soil bacterial structure.

2. Materials and Methods
2.1. Sample Sites and Soil Sampling

The study was conducted in the Miyaluo Forest Reserve in Lixian county
(102◦41′–102◦4′ E, 31◦42′–31◦51′ N), Sichuan Province, China. This region belongs to
the transition zone between the Tibetan Plateau and Sichuan Basin, with an elevation
ranging from 2200–5500 m [36] and a montane, monsoon climate with an annual mean
temperature of 6–10 ◦C. The annual precipitation ranges from 600 to 1100 mm [37]. The
soils were categorized as brown soil series according to Chinese soil taxonomy [9].

We located four typical succession stages from different logging periods on the same
slope in a gully, which helped to minimize impacts of macroclimate and soil texture on the
microbial composition. Soil samples were collected in July (growth period) 2018 from the
four adjacent vegetation types, including shrub-grassland (SG), broad-leaved forest (BF),
coniferous and broad-leaved forest (MF), and primary forest (PF) (as control) (Table S1).
The restoration age data from each stage were provided by the local forestry bureau (Forest
Protection Bureau of West Sichuan in Aba Prefecture). Among them, PF is the virgin
forest without destruction. The age of the primary forest is based on the earliest records
available, and its real age may be older. This study was conducted on four succession
stages, namely SG, BF, MF, and PF. Each treatment had 8 plots, each of which was a square
area of 20 m × 20 m, and the distance between the adjacent plots was about 100–200 m,
resulting in eight repetitions for each succession stage. A straight line was randomly drawn
through the center point in each square area of 20 m × 20 m to make 6–8 points (the
distance between each point was about 2–3 m). The Topsoil cores (0–10 cm) were obtained
from the 6 to 8 points in each plot, which were mixed as a biological sample. The samples
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for chemical analysis and DNA extraction were evenly mixed into a pot and divided into
two parts for determination. In total, 32 soil samples (four stages with eight biological
samples for each stage) were used in this study. The samples were kept on ice until their
arrival in the laboratory (6–8 h), then stored at −20 ◦C for the determination of the soil
physical and chemical properties and DNA extraction (7 days).

2.2. Soil Physiochemical Properties

Soil pH and electrical conductivity (EC) were determined via soil suspension using a
pH meter (soil: water ratio of 1:2.5 w/v). Soil organic carbon (SOC) was determined by
dichromate oxidation [38]. Total nitrogen (TN) was detected by a CNS Element Analyzer
(vario MAX C/N, Elemental, Germany). Soil ammonium (NH4

+-N) and nitrate (NO3
−-N)

concentrations were extracted from 1 M potassium chloride and measured using the in-
dophenol blue colorimetric method. Ultraviolet spectrophotometry was used to determine
the soil total phosphorus (TP) and the available phosphorus (AP) was extracted from the
sodium bicarbonate and measured following the procedure by Olsen et al. [39]. The soil
total potassium (TK) and available potassium (AK) were determined by atomic absorption
spectrophotometry [14].

2.3. DNA Extraction and Sequencing of Soil Bacteria

Soil DNA was extracted by using the FastDNA® Spin kit for soil (Bio 101, Carlsbad, CA,
USA) following the manufacturer’s instructions. The extracted soil DNA was quantified
using a spectrophotometer. The V4–V5 hypervariable regions of the bacterial 16S rRNA
gene were amplified using the primer pair 515f (GTGCCAGCMGCCGCGG) and 907r
(CCGTCAATTCMTTTRAGTTT) with six barcodes. A PCR fragment kit (TaKaRa Biotech)
was used to purify and pool the PCR products in each sample. Purified samples were sent
to Meige (Guangzhou, China) for MiSeq sequence runs (Illumina, San Diego, CA, USA).

2.4. Data Preprocessing

The Illumina sequencing data were analyzed with the Quantitative Insights Into Mi-
crobial Ecology (QIIME v1.9.1) platform [40]. The sequences had no primer mismatch and
maintained a sequencing length > 250 bp and quality score > 25. The bacterial phylotypes
were identified using search [41] and binned into operational taxonomic units (OTUs) based
on a 97% sequence identity. The most abundant sequence in the OTU was considered as a
representative sequence, which was aligned using UPARSE [42]. The Ribosomal Database
Project (RDP) (Silva 138 database) Classifier was used to determine the taxonomic identity
of each phylotype [43]. The sequence data are available in the BIG Data Center, CAS under
code CRA003745 (http://bigd.big.ac.cn/gsa).

2.5. Statistical Analysis

The Bray–Curtis distance were used to calculate the β diversity, demonstrated by
Principal Coordinates Analysis (PCoA) using the vegan package in R (R v3.5.3) [44]. The
analysis of similarity (ANOSIM) based on Bray–Curtis distance were performed to evaluate
the overall differences in the soil bacterial communities [45]. Phylogenetic dissimilarities
in the bacterial communities among the different typical succession stages were analyzed
by PERMANOVA (vegan package, R v3.5.3) (The homogeneity of centroid variance is
checked) [46]. The Mantel test with Pearson’s correlation analysis was used to assess the
relationships between the environmental variables and bacterial community structure (ve-
gan package, R v3.5.3). Two methods were used to determine the effects of soil factors and
restoration years on microbial community composition: Redundancy analysis (RDA) using
the R Vegan package and distance-based multivariate analysis for a linear model (DISTLM)
based on Bray–Curtis distances using the DISTLM_forward3 program [47,48]. The relative
importance of the predictors and explained variation were assessed by a linear model using
the relaimpo package in R v3.5.3 [49]. PLS-PM is particularly useful for demonstrating
cause and effect relationships among the observed and latent variables, and was used to
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explore the relationships between soil physicochemical properties, bacterial communities,
and rehabilitation stages. The estimates of path coefficients and the coefficients of determi-
nation (R2) were validated by R (R 3.5.3) with the plspm package (1000 bootstraps) [50].
The fit of model was evaluated by the Goodnessof-Fit (GoF) statistic. To screen the reha-
bilitation age-discriminatory taxa (OTUs level), the relative abundances of OTUs were
matched with their corresponding rehabilitation age using the ‘randomForest’ package [51].
The degree of secondary succession was stratified using the profiles of the rehabilitation
age-discriminatory taxa and rehabilitation age coefficients as independent variables.

3. Results
3.1. Soil Properties of Disturbed Subalpine Forests

Soil physiochemical properties were systematically measured in all samples collected
from the four typical secondary succession stages (Table 1). Among the measured soil
variables, soil pH gradually decreased from 6.16 in shrubs to 4.76 in primary forest and
significantly differed between the SG, BF, MF, and PF stages (one-way ANOVA, p < 0.001).
The soil SOC, TN, and C/N ratio during the MF stage were significantly different from
the other stages (one-way ANOVA, p < 0.001), and the AP was significantly higher during
the PF stage (one-way ANOVA, p < 0.001). The soil AK in the SG stage was significantly
lower than that in other stages (one-way ANOVA, p < 0.001). The soil TN, SOC, and AP
successively increased, but decreased during the MF stage. The soil EC, TP, and TK also
followed this trend, but decreased in the PF stage. These results indicate that the restoration
succession of secondary forests significantly affects soil properties.

Table 1. Soil properties under different vegetation types.

SG BF MF PF

pH 6.16 ± 0.568 a 5.27 ± 0.31 b 5.18 ± 0.23 b,c 4.76 ± 0.41 c
EC (µs/cm) 128 ± 27.08 a 123.75 ± 56.37 a 136.97 ± 22.84 a 109.53 ± 32.17 a

WCS (%) 44.36 ± 11.64 a 44.59 ± 8.83 a 44.34 ± 4.33 a 45.2 ± 5.83 a
SOC (%) 11.42 ± 5.79 a,b 12.05 ± 4.71 a,b 8.12 ± 2.75 b 14.68 ± 5.56 a
TN (%) 0.84 ± 0.32 a,b 0.93 ± 0.32 a,b 0.65 ± 0.18 b 1.02 ± 0.35 a

TP (g/kg) 0.99 ± 0.27 a 1.10 ± 0.32 a 1.14 ± 0.37 a 1.02 ± 0.17 a
TK (g/kg) 10.93 ± 4.14 b 12.23 ± 3.41 a,b 14.90 ± 2.62 a 10.08 ± 2.73 b

NH4
+-N (mg/kg) 7.61 ± 1.82 a 6.09 ± 2.20 a 6.66 ± 2.62 a 7.87 ± 1.84 a

NO3
−-N (mg/kg) 1.89 ± 1.17 b 4.36 ± 1.79 a 3.80 ± 2.56 a,b 2.94 ± 1.69 a,b

AP (mg/kg) 15.29 ± 7.56 b 17.22 ± 4.92 b 13.52 ± 3.14 b 31.57 ± 8.92 a
AK (g/kg) 0.20 ± 0.08 b 0.29 ± 0.07 a 0.26 ± 0.08 a 0.27 ± 0.04 a

C/N 13.26 ± 2.50 a,b 12.67 ± 0.97 a,b 12.25 ± 0.94 b 14.19 ± 1.13 a

NOTE: Values are the means ± SE (n = 8). Different lowercase letters indicate significant difference among four treatment in the different
rehabilitation stages (p < 0.05). pH, soil pH; EC, Electrical conductivity; WCS, Soil water content; SOC, Soil organic carbon; TN, total
nitrogen; TP, total phosphorus; TK, total potassium; NH4

+-N, Ammonium; NO3
−-N, nitrate; AP, available phosphorus; AK, available

potassium; CN, Soil C/N ratio. SG: Shrub-grassland; BF: Broad leaved; MF: Coniferous broadleaved; PF: Primary forest.

3.2. Bacterial Community Structure and Bray-Curtis Similarity

In all of the samples, Proteobacteria was the most abundant phylum, accounting for
38.0–42.1% of the total sequences. Acidobacteria was the second most dominant phylum
with a relative abundance of 26.4–36.7%. Bacteroidetes, Actinobacteria, and Verrucomi-
crobia accounted for 7.7–10.29%, 5.3–8.22%, and 4.85–7.12%, respectively. Nitrospirae,
Gemmatimonadetes, Chloroflexi, and Candidate_division_WPS-1 were also identified at
relatively low abundances (mean relative abundance <3%) (Figure 1a, Table S2). Acidobac-
teria and Actinobacteria in the SG stage were significantly different from those in the other
stages. In the BF stage, the dominant phyla (Acidobacteria and Actinobacteria) in the
secondary forest returned to a similar level to that of the intact PF. Chloroflexi in the MF
stage significantly differed from the others and Bacteroidetes and Verrucomicrobia were sig-
nificantly different between the MF and PF stages. In the MF stage, these similar level phyla
(Chloroflexi, Bacteroidetes, and Verrucomicrobia) deviated from that of the original forest.
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The abundance of Nitrospirae significantly decreased in the rehabilitation stage. Alphapro-
teobacteria, Betaproteobacteria, and Acidobacteria_Gp3 were the most abundant classes in
all of the rehabilitation stages (Figure 1b, Table S3) and Rhizobiales, Sphingobacteriales,
and Rhodobacterales were the most abundant orders (Figure 1c, Table S4). The relative
abundances of Acidobacteria_Gp3, Acidobacteria_Gp1, and Rhodobacterales during the
PF stage were significantly higher than those in the other stages. The relative abundances
of Betaproteobacteria, Nitrospirales, and Gaiellales were the highest during the SG stages.
There was no significant difference in Alphaproteobacteria and Rhizobiales abundance
in the different stages. These results show that the bacterial community structures will
gradually recover with the succession of restoration, but the recovery direction of the
bacteria differs, especially in the true broad-leaved mixed forest stage.
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Figure 1. Distribution of bacterial communities in the different rehabilitation stages at different
Phylum (a), Class (b), and Order (c) levels. SG: Shrub-grassland; BF: Broad-leaved; MF: Coniferous
broad-leaved; PF: Primary forest.

The PCoA biplot (Figure 2) shows that the bacterial communities clustered according
to the different rehabilitation stages, with the exception being between the BF and MF
(Figure 2). This suggests that the site differences in bacterial community structure within the
same rehabilitation stage were less, relative to differences between different rehabilitation
stages. This pattern was further corroborated by an analysis of similarity (ANOSIM),
revealing that the soil bacterial significantly (p < 0.05) differed between any two of compared
stages, with the exception of between BF and MF (p = 0.066) (Table 2). The PERMANOVA
results also revealed significant differences among the bacterial communities at different
rehabilitation stages (R2 = 0.422, p < 0.001). The successional stages had a significant effect
on the overall bacterial community structures, which accounted for a 48.1% variation in
the bacterial communities (Figure 2).
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Table 2. Pairwise community dissimilarity test of the soil bacterial communities using analysis of
similarity (ANOSIM) based on Bray–Curtis distance.

SG BF MF PF

SG 0.603 0.565 0.859
BF 0.001 0.181 0.891
MF 0.001 0.066 0.958
PF 0.001 0.001 0.003

Note: Top diagonal cells are r values, and lower diagonal cells are p values. Bold values represent significant
differences (p < 0.05) between bacterial communities in pairs of sampling groups. SG: Shrub-grassland; BF: Broad
leaved; MF: Coniferous broad-leaved; PF: Primary forest.

To further elucidate the degree of recovery of bacterial communities along the four
successional stages, we compared the distances of the soils’ bacterial community between
the PF, SG, BF, and MF stages. The averaged Bray–Curtis distance within PF was 0.36.
The averaged Bray–Curtis distances between the PF and SG, BF, and MF were 0.79, 0.57
and 0.59, respectively (Figure 3). This suggested a trend of increasing similarity of the
soil bacterial communities from the SG to the BF compared with the intact PF (p < 0.001).
However, the differences of average Bray–Curtis distance in soil bacterial community
between PF and MF was indistinguishable to that between PF and BF.
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level between rehabilitation age and primary forest communities. SG: Shrub-grassland; BF: Broad
leaved; MF: Coniferous broad-leaved; PF: Primary forest.

3.3. Relationships between Bacterial Community Structures and Environmetal Variables

The Mantel test revealed that the soil pH (r = 0.608, p = 0.001), AP (r = 0.292, p = 0.002),
C/N ratio (r = 0.37, p = 0.002), and WCS (r = 0.208, p = 0.023) were significantly correlated
with the variations in bacterial community structures. In addition, the rehabilitation stage
was found to be a significant factor affecting soil bacterial community structures (r = 0.544,
p = 0.001) (Table S5, Supporting Information). The DistLM analysis consistently revealed
that some measured soil factors were correlated with bacterial community structures
when considered together (Table 3): pH (27.76%), AP (7.94%), WCS (6.8%), C/N (4.42%),
and rehabilitation stage (2.43%) were closely correlated soil factors, which cumulatively
explained a 46.9% variation in the bacterial community structures occurring in the forest
soil environment. The relationships between the environmental variables and soil bacterial
communities were examined by RDA based on the OTUs (Figure 4). Among the selected
environmental variables, pH, AP, and AGE contributed significantly to the changes of
bacterial communities among the four succession stages. These results suggest that all of
these factors significantly affected the soil bacterial community structure.
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Table 3. Distance-based multivariate analysis for a linear model (DISTLM) results of bacterial
community data against four predictor variables selected for inclusion in the model for all sites
(9999 permutations).

Variable SS (Trace) Pseudo-F p Prop Cumulative

pH 5823.2225 10.7593 0.001 0.2776 0.2776
AP 1665.0396 3.3327 0.003 0.0794 0.357

WCS 1425.8123 3.073 0.003 0.068 0.4249
C/N 926.7141 2.0803 0.024 0.0442 0.4691

Rehabilitation stage 510.6014 1.1532 0.2480 0.0243 0.4935
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Figure 4. Redundancy analysis (RDA) showing the effects of environmental variables on the bacterial
communities among the four succession stages. SG: Shrub-grassland; BF: Broad-leaved; MF: Conifer-
ous broad-leaved; PF: Primary forest. pH, soil pH; EC, electrical conductivity; NH4

+-N, Ammonium;
NO3

−-N, nitrate; TP, total phosphorus; AP, available phosphorus; WCS, soil water content; AGE,
rehabilitation age; C/N, soil C/N ratio.

We further used multiple linear regression (MLR) models to determine the relative
importance of these environmental variables in governing the relative abundances of dom-
inant bacterial phyla. Our results showed that only a few abiotic variables had a significant
effect on the abundance of soil bacteria. The number of variables with significant linear cor-
relation with taxon abundance was ~1–2 and not more than 3. These significant variables
accounted for 6.86% to 43.16% of the variation in taxonomic bacterial abundance (R2 ranged
from 0.0686 to 0.4316) (Figure 5). Some other variables showed no significant correlation
with the taxon abundance, but could be well explained. For example, the soil pH could
be used to explain 26.51%, 17.05%, and 14.93% for Nitrospirae, Bacteroidetes and Acti-
nobacteria, respectively. The interpretation values of soil AP to Nitrospirae and Chloroflexi
were 18.74% and 22.03%, respectively. The interpretation values of soil moisture content
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(WCS) for Actinobacteria, Proteobacteria, and Gemmatimonadetes were 17.44%, 12.15%,
and 16.53%, respectively. The rehabilitation age could be used to explain 17.01%, 13.39%,
and 28.17% for Acidobacteria, Actinobacteria and Nitrospirae, respectively (Table S6).
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Figure 5. Relative importance of the significant independent variables explaining the variance in
abundance of the different taxonomic groups ((a), major bacterial phyla for Acidobacteria, Proteobac-
teria, Actinobacteria, Bacteroidetes and Nitrospirae; (b), major bacterial phyla for Verrucomicrobia,
Gemmatimonadetes, Chloroflexi and Candidate_division_WPS-1). Partial regression coefficients are
written on the bars and shown only for statistically significant variables of pH, soil pH; EC, electrical
conductivity; SOC, soil organic carbon; TN, total nitrogen; NH4

+-N, ammonium; NO3
−-N, nitrate;

TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium; WCS,
soil water content; AGE, rehabilitation age; CN, soil C/N ratio. N = 32 for all groups expect two
in shrub-grassland number 8 and coniferous broad-leaved. Number 8, for which n = 30. ·, p < 0.1;
*, p < 0.01; **, p < 0.001.
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We constructed a PLS-PM model to better integrate the interrelationships among bac-
terial community structures (BCs), the variation in soil properties, and rehabilitation stage
(Figure 6). The GoF value for the best model represented here was 0.28. The rehabilitation
stages exerted the largest contribution (−0.9, imposed by the conjoint direct (−0.534) and
indirect (−0.369) effects) on the variation in BC. Furthermore, the rehabilitation stages
represented significantly affected soil properties (soil pH (−0.714), soil total phosphorus
(AP) (0.665), soil water content (WCS) (0.04), and soil C/N ratio (C/N) (0.281)). Soil pH
was significantly and positively correlated with BC (0.2), AP (−0.28), WCS (−0.053), and
C/N (−0.143) directly regulated the soil bacterial community structures.
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3.4. The Abundance of Sensitive Taxa Correlated with Secondary Succession

Given that the soil bacterial community structure was significantly different during
secondary succession (Figure 2) and the rehabilitation age was an important factor affecting
the soil bacterial community structure (Table S1), there may be certain bacterial lineages
to predict the degree of secondary succession. The relative abundances of OTUs were
regressed using the rehabilitation age of each sample using the Random Forests machine
learning algorithm. The regression explained 74.8% of the variance related to rehabilitation
age. Thirty top rehabilitation age taxa were selected according to their feature importance.
These taxa were mainly affiliated with Acidobacteria, Proteobacteria, Actinobacteria, two
Nitrospira, one Chitinophagaceae, and four unknown bacteria. The relative abundance of
the total taxa was significantly correlated with the age of rehabilitation (p < 0.05) (Figure 7a),
except for Verucomicrobia and Chloroflexi. The predicted rehabilitation age fitted well
with the field measured rehabilitation age (r = 0.801, p < 0.001) (Figure 7b).
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4. Discussion

Previous studies have shown that there are predictable patterns in microbial com-
munities that occur during secondary succession or ecosystem restoration [52,53]. Soil
bacterial communities can be restored after forest disturbances (clear-cutting) and return to
a level similar to the original state after about 35 years [8]. The results of Cao et al. also
showed that soil microbial communities can be predicted [9]. These results are consistent
with our findings, in that succession of a secondary forest caused dramatic changes in the
soil bacterial community composition and structure (Figure 2). The trend of composition
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and structure restoration of soil bacterial community is developing towards the direction
of original forest state throughout the 50 years of rehabilitation (Figure 3). These results
support the theory of restoration ecology that ecosystem degeneration is not irreversible
and that post-disturbance recovery will proceed toward a primary stage [53,54]. It should
be noted that the recovery trend was delayed in the MF and BF stages in our results. Our
records span approximately 70 years from this stage of succession (Figure 3), which was
not considered in previous studies [20]. A plausible explanation is the increase of soil
bacterial diversity in the coniferous and broad-leaved mixed forest stage or the selection of
an environmental niche may have led to the change in microbial recovery direction because
the sensitivity and reversibility of the bacterial community responses to environmental
changes could lead to differences in the soil bacterial communities [7,55,56]. The time
frame we propose for restoring soil bacterial communities in a subalpine secondary forest
would therefore be at least 60–70 years or longer.

The diversity of soil microbial structure in subalpine secondary forests in western
Sichuan was mainly related to the differences in basic soil properties [9]. Notably, soil pH
was the subset of variables that best explained the dissimilarities in the bacterial community,
followed by soil AP, WCS, and C/N ratio. Previous evidence showed that soil pH is a
determinative factor in affecting the soil bacterial community structures [7]. During the
secondary forest restoration process, the soil AP was the main element limiting the growth
of species and driving the soil bacterial community structures as a whole [57]. Under the
influence of litter, the C/N ratio of the soil can affect the distribution of bacteria [58]. In
addition, the soil moisture content (WCS) can cause anoxic soil environments and indirectly
affect the growth of anaerobic or aerobic bacteria by affecting microbial respiration [59,60].
In our study, soil factors significantly affected the differences in soil bacterial communities
during the succession of secondary forests (Table S5), which cumulatively contributed
46.91% variation in BC (Table 3). The large unexplained portion can be attributed to
unmeasured biotic factors, such as tree species composition and the feeding traits of soil
nematodes, both of which are known to cause variability in soil bacteria [9]. It is also
worth mentioning that the rehabilitation age of a forest directly affects the community
composition of soil bacteria in the restoration succession of a secondary forest.

Changes in the relative abundances of some dominant bacteria phyla might be re-
sponsible for the variations in soil bacterial community (Table S2). Previous studies found
that different taxa might recover at different rates and in differing directions [8], which is
consistent with our results (Table S2). In particular, Chloroflexi, Bacteroidetes, and Verru-
comicrobia were significantly different in the MF and PF stages. Therefore, we propose
that the soil factors and the increase of rehabilitation age can both lead to shifts in the
relative abundance of different soil microbial taxa. It must also be noted that in the context
of this explanation, there will be a certain degree of correlation between the detailed soil
bacterial taxa and some potential factors (e.g., soil factors, forest age). Therefore, we can
further explain the differences of bacterial community structures in different taxa by these
potential factors.

We used the relative importance of linear models to determine the potential drivers of
different types of soil bacteria. This regression model could explain the differences between
the predictive factors and bacterial community structures well, further clarifying how the
secondary restoration succession directly or indirectly affected the soil bacterial community
through soil characteristics and rehabilitation age [25]. Although this regression model
had been studied in forests, its application remains relatively rare for subalpine restoration
succession [61]. Our results show that soil pH is linearly correlated with the soil bacteria
Acidobacteria, which had the highest relative importance (p < 0.05; 0.2772). It is well known
that Acidobacteria bacteria are very sensitive to soil pH [7]. In addition, although there
was no significant linear relationship with Actinobacteria, Bacteroidetes, or Nitrospirae,
the relative importance was relatively high (Actinobacteria (0.1493), Bacteroidetes (0.1705),
Nitrospirae (0.2651). Our results showed that the above four groups were controlled by soil
pH. Previous studies showed that these bacteria accounted for a large proportion of soil
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bacteria, which further indicated that soil pH was the key factor affecting the composition
and structure of soil bacteria [62,63].

In our study, soil AP explained the changes in abundance for Bacteroidetes (0.2917),
Gemmatimonadetes (0.227), and Candidate_division_WPS-1 (0.4855), and the Candidate_
division_WPS-1 was positively correlated with soil AP (p < 0.01) (Table S6). The only study
that showed bacteria similar to the candidate division focused on obligate anaerobes in
cold areas with abundant water resources, such as high mountains or arctic regions [64].
Candidate_division_WPS-1 values may have a cold tolerance, whereas soil phosphorus
plays an important role in stimulating microbial metabolism. The increase of soil AP would
therefore explain the activity of the Candidate_division_WPS-1 bacteria. Gemmatimon-
adetes and Bacteroidetes had a weak positive correlation with soil AP (p < 0.1) (Table S6);
a plausible explanation could be that they were involved in soil nutrient metabolism
and promoted the growth of these bacteria under the stimulation of phosphorus [65]. In
addition, we found that Gemmatimonadetes were controlled by soil C/N, N, and SOC.
Gemmatimonadetes negatively correlated with soil C/N (0.2144, p < 0.01) and N (0.14,
p < 0.1) and positively correlated with soil SOC (0.14, p < 0.1) (Table S6). Previous studies
showed that a suitable C/N condition was beneficial for the decomposition of bacterial
dominant droppings without phosphorus limitation [58]. The growth of fungi can be
stimulated by nitrogen additions [66] and when the plant substrate is combined with
a nitrogen addition, the growth of fungi should increase [67]. Therefore, a reasonable
explanation is that Gemmatimonadetes are beneficial to the growth of soil bacteria when
phosphorus is not limited and the nitrogen content is low. We found that Chloroflexi
(0.2203) and Nitrospirae (0.1874) were also affected by soil AP (Table S6), although the
correlation was not significant. Chloroflexi were previously considered oligotrophs [68,69]
and likely specialize in the degradation of complex and refractory carbon compounds.
When available nutrients are deficient, such as the p limitations, microorganisms must
first degrade complex compounds [70]. Thus, the increase of soil nutrient demand would
promote the growth of Chloroflexi [71] and the bacteria could be dominant in the late stage
of restoration succession.

Although there was no significant difference in WCS among the four successional
stages, WCS explained 0.2008 of the variation in Verrucomicrobia abundance. Verru-
comicrobia was negatively correlated with soil water content (p < 0.01) (Table S6). In
previous studies, the abundant representatives of Verrucomicrobia were detected only in
oxic peat [72]. It is well known that an increase in WCS will reduce the oxygen content in
the soil; therefore, higher soil water content and moisture content may be detrimental to the
growth of Verrucomicrobia. On the contrary, Actinobacteria and Proteobacteria have the
ability to tolerate long periods of oxygen starvation and also to thrive in anoxic conditions
by fermenting their characteristic storage compound (poly-b-hydroxybutyrate) [73], which
is consistent with our results. Actinobacteria (0.1744) and Proteobacteria (0.1215) were also
affected by soil WCS, although their correlation was not significant (Table S6). In addition,
Acidobacteria, Actinobacteria, and Nitrospirae were directly controlled by the forest age
in the succession stage, although the correlation was not significant. Previous reports
have shown that Actinobacteria and Nitrospirae are limited by inorganic nitrogen [74].
With the development of restoration succession, the secondary forest tended to change
from the conservative nitrogen rule to the high-efficiency development nitrogen rule [2].
Consequently, Acidobacteria, Actinobacteria, and Nitrospirae, with low utilization rates of
organic nitrogen, can be limited.

In subalpine regions, soil microbial communities are more sensitive to external distur-
bances than to plants or animals [75]. As mentioned, the restoration age is an important
factor affecting the structure of the soil bacterial community (Table S1) and can explain
the differences in some categories, such as Acidobacteria (17.01%) and Actinobacteria
(13.39%) (Table S6). To reduce the list of indicators, we selected the first 30 restoration age
groups according to the importance of their characteristics. These taxa mainly belong to
Acidobacteria, Proteobacteria, and Actinobacteria. Except for individual taxa, the relative
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abundance of 28 age-specific taxa was significantly correlated with age (Figure 7a). This
indicates that most of the restoration age taxa show adaptive changes with ongoing sec-
ondary succession. We found that in the age groups, Proteobacteria and Actinobacteria
species consistently negatively correlated with age recovery. Proteobacteria and Actinobac-
teria species can tolerate long-term hypoxia and provide organic matter for growth by
fermenting and storing compounds [73]. In the early stage of secondary forest succession,
the soil porosity is small and the soil oxygen content is relatively low [76], which gives
these species competitive advantage. On the other hand, Proteobacteria and Actinobacteria
belong to co-cultured microorganisms, which have a high resource utilization rate. In
the early stage of succession, species with high resource utilization rates have a growth
advantage [1]. The response of Acidobacteria members to the increase of recovery years
was different and a reasonable explanation for this phenomenon is that Acidobacteria are
very sensitive to soil pH; when soil pH increases, Acidobacteria bacteria will have different
responses [77–79]. These characteristics make Acidobacteria better adapted to the changes
in soil pH, which tends to change continuously during secondary forest succession [80,81].
Similar characteristics of Nitrospirae bacteria have been reported [82] and may be the
reason for the negative correlation between Nitrospirae members and restoration age.
These discriminative taxa can therefore be used as biological indicators for the degree of
secondary succession. In addition, there is a high consistency between the predicted and
detected values of the recovery period (Figure 7b). Generally speaking, although there are
two non-linear changes between the restoration years, the relative abundance of most of the
restoration years’ taxa is gradual. This gradient model provides an objective index for the
diagnosis of secondary succession status by tracking the abundance of a few restoration age
taxa. However, whether or not the first test group is suitable for sub mountain secondary
forest areas remains unclear, thus further work is required for model verification.

Soil bacterial communities were related to both soil factors and restoration succession.
Our PLS-PM model further verifies this hypothesis (Figure 6). It is worth noting that
the contribution of rehabilitation stage to soil bacteria is only 2.43% by DistLM analysis
(Table 2). ANOVA was used to analyze the simple effect of rehabilitation stage on soil
bacteria and the rehabilitation stage accounted for 17.88% of the variation of soil bacteria
(Table S7). In the PLS-PM model, the direct effect of rehabilitation stage on the change of
soil bacterial community was −0.534 (Figure 6). In addition to the differences in meth-
ods, we suggest that the result of the differences in data level is due to a two-directional
interrelationship. The influence of the rehabilitation stage may be both direct and indirect
(environmental factors) on the bacterial community effects. Many results show that there is
a strong relationship between environmental factors and soil bacterial community [4–6],
and the rehabilitation stage will change environmental factors in the process of succes-
sion [8,9]. This relationship may lead to the difference of the interpretation rates of the
rehabilitation stage to the changes of soil bacterial community.

5. Conclusions

Our findings provide comprehensive insights into how soil variable and restoration
succession affect the distribution of soil bacterial communities. Overall, soil bacteria are
primarily influenced by soil pH, AP, C/N, and rehabilitation age. These factors help to
explain the differences of soil bacteria in different succession stages. At each taxon, soil
bacteria are governed by different local variables and some show a linear response to
soil factors and rehabilitation age. Moreover, the degree of secondary restoration can be
accurately evaluated using the profiles of some sensitive taxa of secondary restoration
succession. This is a new attempt to quantitatively determine the degree of secondary
restoration, although additional experiments are needed to verify the model. Our study
provides evidence for the restoration of ecological degradation caused by forest distur-
bances (clear-cutting) and a basis for the restoration and management of secondary forests.
Due to the shortcomings of spatial scale and the limitation of stand division representing
different successional stages, these results can not represent the complete model of soil
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bacterial community change and the complete description of the influence of soil factors
on soil bacterial community through niche selection under natural restoration of subalpine
secondary forest. Therefore, the integration of regional and local views, as well as more
research on restoration stages is required to confirm these findings.
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