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Abstract: Shear strength is an important mechanical property of soil, as its mechanical function plays
critical roles in reducing land degradation and preventing soil erosion. However, shear strength
may be affected by vegetation type through changes in the soil and root patterns. To understand the
influences of different types of vegetation on shear strength, the soil shear indices of three typical
vegetation types (broad-leaved forest, coniferous broad-leaved mixed forest, and grassland) were
studied and evaluated at the Fengyang Mountain Nature Reserve, China. We employed a direct shear
apparatus to measure the soil shear resistance index. We quantified the soil porosity, moisture content,
and composition of particle size to determine the properties of the soil, and a root scanner was used to
quantify the root index. The results revealed that there were significant differences in shear resistance
indices at the stand level. Between the three vegetation types, the internal friction angle of the
broad-leaved forest was the largest and the cohesion was the smallest. The soil moisture content
and porosity of the coniferous broad-leaved mixed forest were higher than those of the broad-leaved
forest, and the root volume density (RVD/cm3) of the broad-leaved forest was higher than that of
the coniferous and broad-leaved mixed forest and grassland. Structural equation modeling results
show that the soil particle size and root characteristics indirectly impacted the soil water content by
affecting porosity, which finally affected shear strength. In general, there were significant differences
in soil properties and plant root indices between the different stands, which had an impact on soil
shear strength.

Keywords: shear strength; vegetation type; plant roots; soil

1. Introduction

The impacts of global climate change can lead to extreme precipitation cycles that
adversely affect the natural environment. Climate and its modification control or affect
some of these phenomena; mainly precipitation and temperature [1]. It is expected that
changes in precipitation and its indirect effects (such as changes in soil moisture content)
will affect slope stability on geographical scales [2], leading to increased erosion and other
degradative impacts on slope stability [3]. Geological hazards associated with mountain
slopes (e.g., landslides and soil degradation) are frequently reported [4,5]. Landslides
involve the movement of soil down a slope under the action of external forces and gravity.
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Therefore, the study of the effects of different soil types on soil strength has attracted
intense attention. The shear strength of soil relates to its resistance to shear stress. Soil
strength is one of the most dynamic mechanical attributes of soil, where cultivation, plant
growth, and soil and water conservation is vital [6].

A number of studies have revealed that soil manifests its shear strength from two
aspects, including cohesion between particles (stress-independent components) and fric-
tional resistance between particles (stress-related components). Soil shear strength is a
practicable dynamic index for the evaluation of soil erodibility [7,8]. Improving the me-
chanical properties of soil through the enhancement of shear resistance is an important
facet of rehabilitation programs that have the aim of reducing soil degradation and erosion.

The most common factors that influence the shear strength of topsoil involve the
physical characteristics of soil moisture [9], the composition of soil particles [10], and
characteristics of plant roots [11]. The reinforcement effects of plant roots on soil have
been broadly established [12,13]. Plants can significantly improve the slope stability and
prevent soil sliding by reducing the hydrologic mechanisms of pore water pressure [14]
and by the mechanical reinforcement of soil through roots. However, in subtropical regions,
root reinforcement is considered to contribute more to the stability of shallow soils than
hydrological factors [15]. Plant roots provide additional cohesion to the soil, such that soils
penetrated by root systems can withstand soil erosion processes far better than soils devoid
of roots [16]. Researchers have previously demonstrated that vegetation can improve
the soil shear strength and slope stability [17]; thus, vegetation coverage can effectively
promote the restoration of slope ecosystems [18]. Reagrding root behavior in soil matrices,
there are reliable theoretical models and conclusions [19,20], which are similar to soil
nails that are commonly used in geotechnical and environmental engineering. Plant roots
transform the shear stress of soil into the tensile force of the root themselves via friction
along the root surface interface, so as to mechanically enhance the shear strength of the
soil [21].

The root systems of various vegetation have different anti-shear effects on soil, as the
root characteristics of different plants are variable. Grasslands have shallow and dense fine
root mats, which are considered to be useful in resisting erosion, whereas the roots of woody
species can penetrate deeply and fix firmly in the stratum, which can also stabilize the soil
layer and optimize the composition of soil particles [22]. Studies have shown that root
cohesion is not only affected by root tensile strength but also by the amount of root biomass
available. The root biomass strongly depends on the species of vegetation [23]. Therefore,
the influence of different vegetation root characteristics on soil shear resistance exists.

Research reveals that fine soil particles exhibit robust adhesion and adsorption capac-
ities, and have good expansibility, viscosity, and water holding abilities. Therefore, the
higher the content of fine particles in the soil, the more unfavorable the sliding and occlu-
sive friction between particles, and the smaller the internal friction angle [24]. Furthermore,
it has been reported that shear strength is also influenced by soil bulk density and moisture.
In general, with increased water content, the cohesion and internal friction angle of soil
typically decreases nonlinearly, which is due to the formation of a water film between
soil particles with higher water content; thus, the internal friction angle and cohesion are
reduced [25]. The shear strength of soil is also increased by lower pore water pressure
(matrix potential) [26].

Previous investigations on the impacts of vegetation types focused primarily on
physical and chemical properties of soil [27,28], as well as changes in the characteristics of
soil microbial communities [29,30]. Research on soil shear has mainly focused on degraded
karst and sandy areas that are prone to soil erosion [31–33]. Due to loose soil and sparse
vegetation, and therefore poor soil stability, soil particles become separated, thus, landslides
can occur with strong winds and impacting rain [34].

However, few studies have reported on the effects of vegetation type on soil surface
shear strength, particularly in China’s subtropical regions. Due to long-term human dis-
turbances and intensive land-use activities, most of the original vegetation (i.e., evergreen
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broad-leaved forests) has been seriously degraded or destroyed [35]. Over the last few
decades, the Chinese government has conducted forestry ecological projects to promote the
vegetation restoration of subtropical primary forests [36]. Consequently, there are many
secondary vegetation communities composed of different tree species in subtropical China.
It is predicted that the frequency and intensity of extreme climate events (e.g., typhoons,
heavy rainfall, etc.) in East and Southeast Asia will increase in the future, leading to an
increased risk of landslide in subtropical areas in the coming years [37]. Landslide risks
are a function of the probability of occurrence and their consequences. Previous studies
have indicated that preventive measures are far better than passive measures to reduce
risk; however, such measures are rarely adopted in developing countries [38]. Therefore, it
is necessary to study the soil shear resistance of typical vegetation in subtropical China,
which can provide a theoretical basis for disaster risk reduction from the perspective of
shear strength. The experimental site for this study was the Fengyang Mountain Nature
Reserve, China. In 1975, the entire area was declared a nature reserve [39].

Specifically, we tested the following hypotheses: (i) there are differences in the soil
moisture characteristics and pH of soil, including the composition of soil particles and root
characteristics between different vegetation types; (ii) there are differences in soil shear
strength between different vegetation types; and (iii) differences in soil shear strength may
be reasonably explained by variances in soil and plant root characteristics.

2. Materials and Methods
2.1. Study Area

This study was conducted at the Fengyang Mountain Nature Reserve (longitude:
119◦06′–119◦15′ E, latitude: 27◦46′–27◦58′ N), Longquan City, Zhejiang Province, China.
The reserve is situated between 600 m and 1929 m above sea level. It belongs to a subtropical
humid climate with an annual average temperature of 12.3 ◦C and an annual rainfall of
2400 mm. Historically, the reserve was an evergreen broad-leaved forest, dominated by
Schima superba Gardn. et Champ., Cyclobalanopsis glauca (Thunberg) Oersted, and Betula
luminifera H. Winkl. In 1975, Fengyang Mountain was designated as a nature reserve, and
subsequently, the entire study area was protected from human disturbance. The general
vegetation composition is shown in Table 1.

Table 1. General situation of the trees in sample plots.

Forest Type Main Plant Slope/◦ Year Stand Age Canopy
Density

Mean
Height/m

Mean
DBH/cm

SGF Bambusoideae, Imperata cylindrica - - - 0.85 -

CBF Pinus taiwanensis, Eurya japonica
Thunb, Rhododendron simsii Planch 13–20 49 0.81 10.97 10.92

EBF Schima superba, Cyclobalanopsis
multinervis, Betula luminifera 10–15 Old-growth 0.79 11.09 12.79

SGF stands for shrub-grass forest; CBF stands for coniferous and broad–leaved mixed forest; EBF stands for evergreen broadleaved forest;
DBH stands for diameter at breast height.

The soil type in Fengyang Mountain Nature Reserve is mainly yellow loam, yellow
brown, which is widely distributed in the nature reserve, and the soil layer develops early.
The general soil configuration is AO-A-B-C. AO stands for litter layer. A layer consists of
three layers: litter layer, semi-decomposed organic matter layer, and humus accumulation
layer. The litter layer is thicker and the soil is mainly loamy clay or clay loam. The central
soil layer of the B layer is 20–40 cm thick, and there is clear delineation between the B layer
and A layer. The soil texture is loamy clay, containing partly clay loam and accompanied by
gravel. The C layer is a semi-weathered parent rock, the color of which is yellowish-orange,
and the soil texture is stony or gravelly sandy loam. The three stands are located in the
same geological conditions.
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2.2. Sampling

For this study, in August 2017, areas at similar altitudes with three different vegetation
types (evergreen broad-leaved forest, mixed forest, and shrub-grass forest) were randomly
selected. In each of the three forest types, we selected three stands, resulting in a total of
9 sampling stands. In each sampled stand, a 20 × 20 m2 plot was randomly established to
represent the stand and was at least 500 m away from the forest edge. During sampling,
two points were taken along a diagonal line in each sample plot and soil profiles were
excavated. The soil at a distance of 5 m from the trunk on the diagonal of the quadrate
was selected. Since the soil layer below 30 cm contained a lot of gravel, the samples were
extracted from the 0–10 cm, 10–20 cm, and 20–30 cm soil layers of slope soil, where each
layer was (20 mm high × Ø 61.8 mm). Four replicate samples were extracted from each
layer, with a total of 216 soil samples taken from each layer. The samples were sealed with
plastic film to determine the shear strength of undisturbed soil and were placed in hermetic
boxes and immediately taken to the laboratory. In order to prevent the sampling of the
ring knife samples from being disturbed during transportation, we used plastic foam to
fix the ring knife to prevent the soil from spreading. Each soil sample was removed from
a self-sealed bag and returned to the laboratory for air drying and screening, after which
the soil pH and soil particle composition were determined. Next, the undisturbed soil
of each layer was immediately transported to the laboratory to quantify the soil physical
properties (bulk density, water content, and porosity).

2.3. Soil Moisture Characteristics and pH Analysis

The soil water content (MC, %) was measured by taking the proportion of the loss of
mass, after oven-drying at 105 ◦C, to the constant mass of dry soil. The soil bulk density
(BD, g cm−3) was measured using a stainless-steel cylindrical ring of 100 cm3 volume to
collect the samples. According to Coulomb’s formula:

BD = (W −Wr)/V (1)

where W (g) is the weight of the ring cutter + the weight of dry soil after drying, Wr (g) is
the weight of the empty ring cutter, and V (cm3) is the volume of the ring cutter.

The upper and lower covers of the ring knife were taken off indoors, one end was
replaced with a bottom cover with mesh and filter paper, and the ring knife was put into
the porcelain plate with a water depth of 2–3 mm. After immersing for 12 h, the water
outside the ring knife was wiped off and it was weighed (W1). After weighing, it was
immersed in water again. The water surface was up to the upper edge of the ring knife.
The soaking time was until the filter paper on the ring knife was fully wet. At that time, the
water outside the ring knife was wiped off and it was weighed (W2), and then transferred
to the oven at 105 ◦C [40] for constant weight (W3).

The total soil porosity (SAT, %), non-capillary porosity (NCAP, %) and capillary
porosity (CAP, %) were calculated with the formula below [40]:

CAP =
W1−W3

V
× 100 (2)

SAT =
W2−W3

V
× 100 (3)

NCAP = SAT − CAP (4)

where V (cm3) is the volume of the ring cutter.
Soil grain-size distributions were determined using a laser particle size analyzer

(Malvern Mastersizer 2000, Shanghai, China) according to Wei et al. [25]. The soil tex-
ture class was identified via an International Society of Soil Science (ISSS) soil texture
classification system (clay: <0.002 mm; silt: 0.002–0.02 mm; and sand: 0.02–2 mm) [41].

The pH value was determined by the potential method (water/soil ratio 2.5:1, pH meter).
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2.4. Determination and Calculation of Shear Strength

The soil shear strength was measured using a ZJ-2 Isostrain Direct Shear Apparatus
(Nanjing Soil instrument factory, Nanjing, China), where the unconsolidated and undrained
fast shear test was performed in strict accordance with the “geotechnical experiment spec-
ification SL237-1999”. During the determination, it was necessary to keep the natural
dry density and moisture content of soil samples within the ring cutter. During shearing,
vertical pressures of 100, 200, 300, and 400 kPa were applied, respectively, and the hand-
wheel was rotated at a speed of 10 s/R (six revolutions per minute) until the specimen
was sheared.

The shear strength parameters, the cohesion (c) and internal friction angle (ϕ), were
calculated automatically by the software installed on the PC. The calculations were in strict
accordance with the Chinese Standards for Soil Test Methods (GB/T50123-1999), with the
following equations being used to calculate the results [42]:

τ = C× R (5)

where τ is the shear stress in kPa and C is the calibration coefficient of the dynamometer in
kPa/0.01 mm. The calibration coefficient of the dynamometer was 1.825 kPa/0.01 mm; R
is the degree of the dynamometer to 0.01 mm.

The shear stresses under different pressures were obtained, according to Coulomb’s
formula:

τ = c + σtanϕ (6)

where σ is the initial normal stress (kPa). The cohesion (c; kPa) and the internal friction
angle (ϕ; ◦) of each group of samples were calculated.

2.5. Determination of Root Characteristics

At the conclusion of the shear strength test, the soil in the ring cutter was removed and
washed using a 0.05 mm mesh screen to remove all of the roots in the ring knife. Parameters
including the root length, root surface area, and root volume were also determined. Finally,
the root system was placed into a paper envelope and dried at 90 ◦C for 72 h to obtain the
root biomass.

The roots were separated from soil samples using a 5 mm mesh sieve, after which the
roots were placed in basins with water to be gently washed to remove soil particles and
other debris. The roots were scanned and analyzed using the WinRHIZO root analysis sys-
tem for morphological parameter measurements. The root length density (RLD, cm.cm−3),
defined as the total root length per soil volume (mm (100 cm3)−1), root surface area density
(RSAD; cm2.cm−3), root volume density (RVD; cm3.cm−3), and root weight density (RWD,
mg. cm−3) were estimated [40].

2.6. Statistical Analyses

The Duncan test was used when one-way ANOVA (SPSS Inc., Chicago, IL, USA)
revealed that the effects of land use type on shear strength were significant. We examined
model residuals and confirmed that the assumptions of normality and homogeneity were
met. Two-way ANOVA was employed to test the main effects and interactions of land
use type, soil layers on root soil, physical and chemical soil properties, and root index by
SPSS 19.0. All histograms were fit using Origin8.5 software. Redundancy discriminant
analysis (RDA) was performed to reveal the relationships between the shear strength
parameters of root soil, the physical and chemical properties, and root index, using a
Canoco 5.0 (Microcomputer Power, Ithaca, NY, USA). Each arrow (usually representing a
numeric variable) points in the direction of the steepest increase in environmental variable
values. The angle between arrows (alpha) indicates the correlation between individual
environmental variables. The approximated correlation is positive when the angle is sharp
and negative when the angle is larger than 90 degrees. The length of the arrow is a measure
of fit for the indicators.
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Structural equation modelling (SEM) was used to investigate the effects of soil charac-
teristics and plant root characteristics on the soil shear strength. The model was used to
test whether different vegetation types directly or indirectly affected the soil shear strength
by influencing soil and root characteristics. SEM analyses were performed using AMOS
24.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Soil Moisture Characteristics and pH Value

There were significant differences in the capillary porosity (CAP) (p < 0.01), total
porosity (SAT), and pH between different land use types and soil layers (Figure 1b,c,f).
Within the deeper soil layers, the non-capillary porosity (NCAP), CAP, and SAT exhibited
a downward trend (Figure 1a–c), contrary to the trend in pH (Figure 1f). Compared with
the broad-leaved forest, mixed forest and grassland soil samples had larger CAP and SAT
values, while the pH and NCAP values were the opposite; however, the differences were
not significant. Compared with the native broad-leaved forest and grassland, the moisture
content (MC) of mixed forest was slightly larger and the difference was not significant
(Figure 1d).
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Figure 1. Soil water-physical properties of three vegetation types and three soil layers (mean ± SE, n = 4). SE is the variance 
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land use types of the same soil layer (p < 0.05). EBF stands for evergreen broad-leaved forest; CBF stands for mixed forest; 

Figure 1. Soil water-physical properties of three vegetation types and three soil layers (mean ± SE, n = 4). SE is the variance
of the index. The error line indicates standard error; upper case letters indicate a significant difference among different soil
layers of the same land use types (p < 0.05); the lower case letter indicates a significant difference between different land
use types of the same soil layer (p < 0.05). EBF stands for evergreen broad-leaved forest; CBF stands for mixed forest; SGF
stands for shrub-grass forest; NCAP stands for non-capillary porosity; CAP stands for capillary porosity; SAT stands for
total porosity; BD stands for bulk density; MC stands for moisture content; VT stands for vegetation type; SL stands for soil
layer. Two-way ANOVA was applied to indicate significant differences between variances. (a) shows the NCAP in different
soil layers in different stands; (b) shows the CAP in different soil layers in different stands; (c) shows the SAT in different
soil layers in different stands; (d) shows the MC in different soil layers in different stands; (e) shows the BD in different soil
layers in different stands; (f) shows the pH in different soil layers in different stands.

3.2. Soil Particle Composition

The clay, silt, and sand contents of different stands were significantly different
(p < 0.05). The contents of clay and silt in the broad-leaved forest were lower than those
in the coniferous broad-leaved forest and grassland (Figure 2a,b); however, the content of
sand was the highest (Figure 2c). In the deeper soil layers, the content of clay and silt in the
three stands exhibited the same change trends. The change trend of sand content in the
stands was the opposite, however; the difference was not significant.
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Figure 2. Soil particle composition of three vegetation types and three soil layers (mean ± SE, n = 4), SE is the variance of
the index. The error line indicates standard error; upper case letters indicate a significant difference between different soil
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indicate significant differences between variances. (a) shows the Clay in different soil layers in different stands; (b) shows
the Silt in different soil layers in different stands; (c) shows the Sand in different soil layers in different stands.

3.3. Root Distribution Characteristics

With deeper soil layers, changes in the root surface area density (RSAD), root volume
density (RVD), and root weight density (RWD) in different stands exhibited a downward
trend with significant differences (p < 0.01) (Figure 3b–d). In addition to the native broad-
leaved forest, the RLD of the coniferous and broad-leaved mixed forest and grassland
initially decreased and then increased to attain a significant level in the coniferous and
broad-leaved mixed forest (p < 0.05) (Figure 3a).
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different soil layers of the same land use types (p < 0.05); the lower case letter indicates a significant difference between
different land use types of the same soil layer (p < 0.05). EBF stands for evergreen broad-leaved forest; CBF stands for mixed
forest; SGF stands for shrub-grass forest; RLD stands for root length density; RSAD stands for root surface area density;
RVD stands for root volume density; RWD stands for root weight density; VT stands for vegetation type; SL stands for soil
layer. Two-way ANOVA was applied to indicate significant differences between variances. (a) shows the RLD in different
soil layers in different stands; (b) shows the RSAD in different soil layers in different stands; (c) shows the RVD in different
soil layers in different stands; (d) shows the RWD in different soil layers in different stands.

Compared with broad-leaved forest and grassland, the coniferous and broad-leaved
mixed forest had the lowest root length density (RLD), RSAD, and RVD in the 10–20 cm
and 20–30 cm soil layers, while the RWD was just the opposite, with no significant differ-
ence. The RLD, RSAD, and RWD in the 0–10 cm soil layer of the mixed coniferous and
broadleaved forest were the highest; however, the difference was not significant.

3.4. Shear Strength Parameters of Root Soil

The internal friction angle and cohesion of the different classes of soil were significantly
different (p < 0.05) (Figure 4a,b). In different soil layers, the internal friction angle of mixed
coniferous and broad-leaved forest was significantly lower than that of the grassland and
native broad-leaved forest, while the internal friction angle of broad-leaved forest was
the largest (Figure 4a). Moreover, the cohesiveness of the broad-leaved forest soil was
significantly lower than that of the mixed broad-leaved forest and grassland (Figure 4b).
Except for the 10–20 cm soil layer, the soil cohesiveness of the mixed broad-leaved forest
and grassland were the largest, while that of the other soil layers was grassland.
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different land use types of the same soil layer (p < 0.05). EBF stands for evergreen broad-leaved forest; CBF stands for mixed
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(a) shows the ϕ in different soil layers in different stands; (b) shows the c in different soil layers in different stands.

3.5. Linking Physical Properties of Soil Moisture and pH, Soil Particle Composition, Root
Distribution Characteristics, and Shear Strength Parameters of Root Soil

In the RDA of the shear strength parameters of the root soil, with soil and root
properties as the explanatory variables, Axis 1 accounted for 40.61% of the variation in the
dataset, with 2.72% of the variation accounted for by Axis 2 (Figure 5). High ϕ with high
sand, pH, RVD, RVD, and RLD, was found at the right-hand end of the ordination plots
and associated with lower clay, silt, CAP, and SAT. The c, BD, clay, and silt increased along
the y-axis, whereas the RWD, RLD, and sand decreased.
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Figure 5. Redundancy analysis (RDA) of shear strength parameters of root soil and soil physical
and chemical properties and root index. The angle and length of arrows indicate the direction and
strength of the relationship between shear strength parameters of root and soil physical and chemical
properties and root index. RLD stands for root length density; RSAD stands for roots surface area
density; RVD stands for root volume density; RWD stands for root weight density; NCAP stands for
non-capillary porosity; CAP stands for capillary porosity; SAT stands for total porosity; BD stands
for bulk density; MC stands for moisture content; ϕ stands for internal frictional angle; c stands for
cohesive force.

3.6. SEM Results

Figure 6 shows the structural equation modeling (SEM) as estimated by AMOS. Each
of the observed variables is displayed in a rectangle. The χ2 test revealed that the model
generated χ2 = 6.160, df = 6, and p = 0.406 (>0.05). The goodness-of-fit index (GFI) was 0.963
(>0.900), and the root mean square error of approximation (RMSEA) was 0.023 (<0.080).
Table 2 displays the standardized direct and indirect influence parameters of the RVD, MC,
sand, and SAT on the ϕ and c.

Table 2. Standardized direct and indirect effects of internal frictional angle.

Sand MC RVD SAT

Direct
Effects

Indirect
Effects

Direct
Effects

Indirect
Effects

Direct
Effects

Indirect
Effects

Direct
Effects

Indirect
Effects

ϕ 0.27 0.05 −0.23 0.00 0.25 −0.05 −0.11 −0.04

c 0.00 −0.23 −0.36 0.19 0.00 −0.19 0.00 0.05
MC stands for moisture content; RVD stands for root volume density; SAT stands for total porosity; ϕ stands for
internal frictional angle.
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Figure 6. Structural equation models of the soil properties and root biomass on internal frictional
angle (ϕ). (χ2 = 6.160; df = 6; p = 0.406, > 0.05; GFI = 0.963, > 0.900; RMSEA = 0.023, < 0.080). Numbers
on arrows are standardized path coefficients. The width of arrows indicates the strength of the
causal influence. Solid arrows mean a direct effect on internal frictional angle; dashes represent an
indirect path to the internal frictional angle. MC stands for moisture content; RVD stands for root
volume density; SAT stands for total porosity; ϕ stands for internal frictional angle, c stands for
cohesive force. *** was significantly correlated at the.01 level (bilateral). * Significant correlation at
0.05 level (bilateral).

The direct effects of MC (−0.36, p < 0.000) on c were significant. However, the direct
effects of MC (−0.23), RVD (0.25), SAT (−0.11), and sand (0.27) on ϕ were lower. Both sand
and RVD also indirectly altered ϕ (−0.33, p < 0.05; 0.31, p < 0.05, respectively) through
changes in the SAT, and the SAT indirectly altered c (0.19) through changes in the MC.
Therefore, the total effects of RVD, sand, SAT, and MC on ϕ were 0.21, 0.32, −0.15, and
−0.23, respectively, whereas the total effects on c were −0.19, −0.23, 0.05, and −0.17,
respectively. There was a significant correlation between ϕ and c (−0.80, p < 0.000).

4. Discussion

In accordance with previous research results, soil properties changed significantly
in the subtropics due to the presence of different vegetation cover types, which directly
reflected soil structural changes [43]. The results show that the soil pH and bulk density
had minor differences along with soil depths for each vegetation type. This result may have
been due to a common parent material and type [44]. Compared with the broad-leaved
forest soil, the pH values of the grassland, coniferous forest, and coniferous broad-leaved
forest soil decreased. This might have been due to the release of organic acids from tree
roots, the conversion of exchangeable cations during plant uptake and/or soil microbial
processes, the transformation of organic matter, and the release of organic acids [45,46].
The water content of coniferous broad-leaved mixed forest was higher than that of broad-
leaved forest and grassland, and was positively correlated with soil porosity and root
characteristics. This result was consistent with that observed in Li et al. [47]. These changes
may be attributed to the stimulating effect of the increase in water content on plant growth.
At the same time, good root permeability helps to store soil water [48,49].

In contrast to the broad-leaved forest with only a single tree species, the root biomass,
root specific surface area, and root length density of the coniferous and broad-leaved mixed
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forest with diverse species were higher, which may have been due to more abundant fine
roots in the mixed forest [50]. With deeper soil layer, changes in the root surface area, root
volume, and root biomass showed similar trends (from high to low), and were similar
between different vegetation types. It was verified by research that the fine root density in
the upper 0–10 cm soil layer was higher than that at 10–20 cm across all forest types [40,51].
Simultaneously, root characteristics and soil porosity were significantly positively corre-
lated. Therefore, the root system of vegetation was related to the improvement of soil
structure. The results show that the capillary porosity and total porosity of coniferous
and broad-leaved mixed forest were higher than those of the grassland and broad-leaved
forest. This corresponded to previous results showing that root systems in coniferous and
broad-leaved mixed forests were more developed This difference may also be attributed to
the difference in the amount of litter, which is easily decomposed for different vegetation
types [52,53].

The results of the two factors test showed that the soil particle size and soil shear index
were also affected by the vegetation type, and there were significant differences (p < 0.05).
SEM analysis indicated that the soil particle size, soil water physical properties, and plant
roots could directly affect the soil internal soil friction angle, and the direct effect of soil
particle size was the largest. In addition to the soil water content, soil cohesion was directly
affected by plant root system characteristics and particle size, indirectly through the soil
water content, and the final comprehensive effect.

The results show that the soil particle size had the greatest effect on soil shear resis-
tance, followed by the soil water physical properties and plant root index. The internal
friction angle of broad-leaved forest was significantly larger than that of the grassland
and coniferous broad-leaved forest; however, the cohesion was the opposite. Previous
studies have shown that fine roots, such as those of most herb roots, and the root hairs and
fibrous roots of the lateral roots and taproots of woody plants, can enhance the cohesion
of the soil but not the friction angle of the soil. In contrast, the coarse roots of woody
plants can enhance both the soil’s cohesion and its internal friction angle. This is because
the lignification degree and the stiffness of the coarse roots of woody plants are greater
than those of fine roots [54]. Compared with coniferous broad-leaved forest and grassland,
the clay content of broad-leaved forest was the lowest, whereas the sand content was the
highest, which was consistent with reported results [55].

The RDA results show that the internal friction angle was positively correlated with
the characteristics of soil sand and vegetation roots, and negatively correlated with the
fine grain content and porosity, while the cohesion was the opposite. However, its internal
friction angle was the highest, which have been because the higher the content of fine
particles, the more unfavorable the sliding and occluding friction between particles, and the
smaller the internal friction angle. The results reveal that there was a positive correlation
between clay content and cohesion, but it was not significant. This result is reasonable, as
the fineness of the colloid, the high surface area, and the large number of chemical bonds
enhanced the population of bonds between the particulates and promoted aggregation,
which resulted in an increase in cohesion [56]. Consequently, coarse particles (i.e., gravel)
reduced soil cohesion, and fine particles (i.e., fine clay) greatly reduced the friction strength
of the soil in this area [57]. Simultaneously, the soil particle size was significantly related to
soil water characteristics.

The soil cohesion and internal friction angle exhibited a nonlinear attenuation trend
with the soil water content. Previous studies revealed that the distribution of soil particle
dimensions determined soil hydraulic properties [58], the actual effective soil stress, and soil
shear strength. A higher clay content can retain additional soil moisture [59], which in turn
increases the distance between soil particles. At the same time, the internal structures of the
soil samples with different porosities were different, where the contact and arrangement of
particulates were also different. The greater the total porosity and capillary porosity, the
smaller the friction force between soil particles [60]. This was consistent with the conclusion
of this study. Therefore, soil fine particles have a strong adhesion and adsorption capacity,



Forests 2021, 12, 490 12 of 15

and have a good expansibility, viscosity, and water holding capacity, which can increase
the available soil moisture of plants to a certain extent, thus promoting their growth.

The correlation between the root index and shear index was not significant; however it
had an indirect effect on the shear strength, which may have been because the interactions
between roots and soil involve a very complex process, not only related to the root index,
but also including the influences of root exudates. Several reports have verified that plant
root systems are the main driving factor in the physical properties of soil water [61], and
indirectly so through root-induced changes in soil properties (e.g., soil bulk density and
porosity) [62]. Previous studies have shown that roots can physically change particle
contacts in soil by either loosening or infiltration [63]. The cohesive strength of the soil
in the grassland and coniferous broad-leaved mixed forest was higher than that of broad-
leaved forest, which may have been due to the higher fine roots (Ø < 2 mm) turnover rate,
compared with coarse roots (Ø > 2 mm) in the 0–30 cm soil layer [64,65]. Furthermore, the
roots generate fungal hyphae and globulins that indirectly bind to soil particles, which
contribute to soil stability by producing exudates (e.g., gum and arabinogalactan) that bind
to these bonds [66]. Therefore, a greater focus on functional root traits should be considered
in future research of the influences of root shear strength, to explain the changes in the
physical properties of soil and deepen our understanding of the complex relationships of
root soil shear resistance [67].

Subtropical forests have long been significantly impacted by anthropogenic land
use habits and deforestation due to climatic and economic drivers, deforestation (e.g.,
access to timber or agricultural land), or changes in forest coverage (e.g., conversion
from local vegetation to mixed forest) in response to climatic and economic drivers [68].
Meanwhile, a 2014 IPCC report indicated that extreme precipitation events in most mid-
latitude and tropical humid regions are expected to become more intense and frequent [69].
Consequently, the frequency of landslides is anticipated to increase. In these cases, it is
particularly important to study the shear erosion resistance of plantation soil. At present,
people are paying more and more attention to the ecological benefits of plantations [70]. The
results of this study show that the shear strength of different vegetation types is different,
and this difference can be explained by soil properties and plant root characteristics. The
difference in forest root causes the change of soil structure, enhances soil water holding
capacity, and finally leads to the difference in forest shear strength. However, the effect of
different forest roots on soil shear strength is not deep enough. There is no research on root
exudation and the tensile strength of the root system itself, which will be further studied in
combination with rainfall in the future.

5. Conclusions

The results reveal that the soil moisture characteristics and pH of soil and vegetation
root indices of different vegetation types were variable. The direct and indirect impacts
of soil properties and plant roots modified the soil shear strength. Compared with the
broad-leaved forest, the internal friction angle of the coniferous broad-leaved mixed forest
and grassland soil was smaller, and the cohesion was greater, which improved the soil
shear strength to a certain extent. These results are of great significance for the effective
restoration of soils that have been subject to human disturbances, to reduce land water
flow and erosion.
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