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Abstract: Tropical forest disturbances linked to fire usage cause large amounts of greenhouse gas
(GHG) emissions and environmental damages. Supporting precise GHG estimations and counteract-
ing illegal fire usages in the tropics require timely and thematically detailed large-scale information on
fire-related forest disturbances. Multi-sensor optical and radar detection and ranging (radar) remote
sensing data combined with active fire alerts shows the potential for a more in-depth characterization
of fire-related forest disturbances. We utilized dense optical (Landsat-7, Landsat-8 and Sentinel-2)
and radar (Sentinel-1) time series to individually map forest disturbances in the province of Riau
(Indonesia) for 2018–2019. We combined the sensor-specific optical and radar forest disturbance
maps with daily active fire alerts and classified their temporal relationship (predating, coinciding,
postdating) into seven so-called archetypes of fire-related forest disturbances. The archetypes reflect
sensor-specific sensitives of optical (e.g., changes in tree foliage) and radar (e.g., changes in tree
structure) data to detect varying types of forest disturbances, ranging from either a loss of tree foliage
and/or structure predating, coinciding or postdating fires. These can be related to different magni-
tudes of fire-related forest disturbances and burn severities and can be associated with specific land
management practices, such as slash-and-burn agriculture and salvage logging. This can support
policy development, local and regional forest management and law enforcement to reduce illegal
fire usage in the tropics. Results suggest that a delayed or opposing forest disturbance detection in
the optical and radar signal is not only caused by environmental influences or different observation
densities but, in some cases, such as fire-related forest disturbances, can be related to their different
sensitives to detect changes in tree foliage and structure. Multi-sensor-based forest monitoring
approaches should, therefore, not simply combine optical and radar time series on a data level, as it
bears the risk of introducing artefacts.

Keywords: Sentinel-1; Sentinel-2; Landsat; VIIRS active fire; forest disturbances; fire-related; tropical
forest; multi-sensor; dense time series

1. Introduction

Indonesia is globally one of the main contributors of forest carbon emissions in the
21st century as a result of large-scale forest disturbances including deforestation and forest
degradation [1,2]. Forest disturbances in Indonesia are caused primarily by smallholder
or commercial agriculture crop expansion and timber production, of which many are
illegal or unsustainable [3,4]. Furthermore, these disturbances are strongly linked to fire
use [5]. While fire use for land management is forbidden by Indonesian law, a wide range
of fire-related practices are still used today [6]. These practices traditionally include limited
and controlled burning of forests to, for example, clear understory providing access prior
to logging operations, burn forest directly or burn remaining material at previously logged
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patches in preparation of agricultural use [7,8]. Moreover, escaped land use fires cause
large-area forest fires in dry El Nino years (e.g., 2015) [9].

While some fires burn the entire tree structure, others only burn the tree foliage result-
ing in varying magnitudes of released GHG emissions [10]. The lack of detailed information
on fire-related forest disturbances cause high uncertainties in current GHG emission esti-
mates [11,12]. The Paris Agreement and initiatives such as REDD+ have the goal to reduce
GHG emissions by implementing sustainable land use management [13,14]. Sustainable
land use and forest management needs detailed fire inventory data and information beyond
simple net and gross deforestation on monthly or yearly basis [15,16].

Remote sensing has proven to be a valuable tool for monitoring large-scale forest
disturbances and fires in tropical ecosystems [17]. Optical satellite time series are used to
detect forest disturbances by relating spectral information, commonly, spectral vegetation
indices, to photosynthetic capacity, shifts in phenology and temporal vegetation dynam-
ics [18–26]. By combining optical time series with active fire alerts from Visible Infrared
Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors, it is possible to detect and analyze fire-related forest disturbances [27–32].
However, limited availability of cloud-free observations in the tropics often restricts charac-
terizations of fire-related forest disturbances to a simple co-location of active fire alerts and
gap-free annual optical forest change products [5,33–35]. Hereby, the detailed information
on how fires are temporally related to forest disturbances is often lacking [36].

Radar satellite sensors are capable of penetrating clouds, thus potentially providing
denser time series, and are sensitive to changes in forest structure [37,38]. Combining dense
radar backscatter time series with active fire alerts enables the possibility to monitor fire
severity and to explore the temporal relationship of fires and forest disturbances [36,39–41].
Reiche et al. [36] combined VIIRS active fire alerts and radar-based forest losses derived
from Sentinel-1 time series to classify whether fires predated, coincided or postdated
detected forest disturbances.

Combining optical and radar remote sensing time series shows great potential in
increasing the observation frequency and overcoming sensor-specific misclassifications
due to environmental influences (e.g., cloud coverage, rainfall, etc.) when monitoring
forest disturbances [37,42–45]. Studies also show benefits of a combined usage for burned
area and fire severity mapping [46,47]. The sensitivities of both sensors towards forest
disturbances vary. Optical sensors are capable of detecting subtle changes in the tree foliage
but show limitations when separating those from higher magnitude changes such as tree
removal, while radar sensors are capable of detecting larger structural changes in forest
cover but are not able to identify changes in tree foliage that do not result in structural
forest changes [36,48–50]. However, their synergistic potential for a more detailed temporal
characterization of fire-related forest disturbances has yet to be studied [36].

The aim of this study was to combine multi-sensor optical and radar remote sensing
data with active fire alerts for an improved characterization of fire-related forest distur-
bances for the province of Riau (Indonesia). We mapped forest disturbances independently
based on dense optical (Landsat-7, Landsat-8 and Sentinel-2) and radar (Sentinel-1) time
series (i). Then, we derived archetypes of fire-related forest disturbances based on the
temporal relationship of mapped optical and radar forest disturbances with VIIRS active
fire alerts (ii). Lastly, the implications for multi-sensor forest monitoring were discussed
based on the findings of this study (iii).

2. Materials and Methods
2.1. Study Area

The province of Riau, Indonesia (100–104 E and 2.5 N–1 S) is located at the east coast
of central Sumatra covering around 89,000 km2. Its topography consists of a low elevation
coastline in the east and mountainous areas of up to 1200 m in the west. Riau experiences a
tropical equatorial climate with regular cloud coverage. The annual precipitation varies
between 2000 and 3000 mm. By the 1970s, 95% of the land was covered by natural forest [51].
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However, a long history of smallholder and commercial agriculture expansion resulted in
large-scale forest loss and a conversion of natural forest to plantation forest or smallholder
agriculture [3,52]. Today, only patches of natural forests remain, which mainly consist of
primary and secondary dryland and swamp forest and mangrove forest (Figure 1). These
substantial changes in landscapes left forests vulnerable to forest disturbances [6], which in
Riau, are strongly linked to fire use [5].

Figure 1. Forest types in the province of Riau (Indonesia) for 2017 [53].

2.2. Data

Following the satellite and auxiliary data used in this study, the applied pre-processing
are described (Table 1). We defined a historic (2015–2017) and monitoring period (2018–
2019). The historic period was used for training the applied forest disturbance detection
method, while the monitoring period was used to detect forest disturbances separately in
optical and radar time series (i), characterize the temporal relationship of optical and radar
forest disturbances with active fire alerts (ii) and classify archetypes of fire-related forest
disturbances (iii).

Table 1. Overview input data.

Satellite/Sensor Spatial
Resolution

Temporal
Resolution

Temporal
Coverage Reference

Satellite data/Fire product

Radar data Sentinel-1 20 m 6 days 1 January 2015–
31 December 2019 [54]

Optical data

Sentinel-2 10/20/60 m 5 days 1 January 2015–
31 March 2020 [55]

Landsat-7 30 m 16 days 1 January 2015–
31 March 2020 [56]

Landsat-8 30 m 16 days 1 January 2015–
31 March 2020 [57]

Active fire alerts S-NPP/
VIIRS 375 m twice-daily 1 January 2018–

31 December 2019 [28]
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Table 1. Cont.

Satellite/Sensor Spatial
Resolution

Temporal
Resolution

Temporal
Coverage Reference

Forest baseline map

Land cover Landsat 30 m - 2017 [53]

Tree cover 2000 Landsat 30 m - 2000 [52]

Annual tree cover loss Landsat 30 m annual 2001–2017 [52]

Reference data optical forest disturbance map

Optical data PlanetScope 5 m Multiple per year 2009–present [58]

2.2.1. Optical Satellite Data

Dense normalized burn ratio (NBR) time series of imagery from Landsat-7 ETM+,
Landsat 8 and Sentinel-2 satellites were used to map optical forest disturbances. The
NBR is based on near infrared and shortwave infrared bands and is sensitive to the status
of burned forests [29,59]. The monitoring period of NBR time series was extended for
3 months to exclude potential cloud coverage based omission errors in the optical forest
disturbance map towards the end of the monitoring period.

Landsat-7 ETM+ and Landsat-8 provide spatial resolutions of 30 m and combined
temporal resolutions of up to 8 days in the tropics [56,57]. Atmospherically corrected and
cloud masked Level-2a data with less than 70% cloud coverage acquired from 2015 to
March 2020 were obtained in Google Earth Engine (GEE) [60,61]. Sentinel-2 a/b provide
spatial resolutions of up to 10 m and temporal resolutions of up to 5 days in the tropics [55].
Level-1c data from 2015 to March 2020 with a cloud coverage of less than 70% were
downloaded and pre-processed in GEE [62]. The pre-processing included atmospheric
correction [63], improved cloud and shadow masking [64] and resampling to the 30 m
Landsat grid.

We created combined NBR times series from Landsat-7, Landsat-8 and Sentinel-2
data. Next, we removed outliers in the time series due to the remaining cloud and cloud
shadow or atmospheric noise after the atmospheric correction using a pixel-wise approach
following Hamunyela et al. [65]. Additionally, an image normalization was applied to
mitigate dry season and drought effects [38,66].

For validating mapped optical forest disturbances, monthly mosaics of the optical
PlanetScope satellite imagery with a spatial resolution of 5 m were utilized [58].

2.2.2. Radar Satellite Data

C-band backscatter time series derived from Sentinel-1 a/b data, which was acquired
in Interferometric Wide swath mode with dual-polarization (VV- and VH-polarization) and
ascending and descending orbits, were used to map radar forest disturbances. Sentinel-1
provides spatial resolutions of ~20 m and a temporal resolution of up to 6 days in the
tropics [54]. Sentinel-1 synthetic aperture radar (SAR) ground range-detected (GRD) data
from 2015 to 2020 were accessed via GEE. Prior to the ingestion in the GEE archive, several
pre-processing steps were applied, including apply orbit file, GRD border noise removal,
thermal noise removal, radiometric calibration, terrain correction and geocoding [67].
Additionally, we applied an angular-based radiometric slope correction [68], adaptive
multitemporal speckle filtering [69], conversion from linear to dB scale, resampling to
the 30 m Landsat grid and image normalization to mitigate dry season and drought
effects [38,66].

We used the Sentinel-1 backscatter time series additionally for validating the mapped
radar forest disturbances, as there was no other freely available radar imagery with the
same necessary temporal resolution available.
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2.2.3. Active Fire Alerts

Daily active fire alerts from the VIIRS sensor onboard of Suomi National Polar-Orbiting
Partnership (S-NPP) were obtained from NASA’s Fire Information for Resource Manage-
ment System archive for the monitoring period [70]. The VIIRS S-NPP-V14IMGTDL_NRT
product has a spatial resolution of 375 m and provides images twice a day. The well-
established MODIS Fire and Thermal Anomalies product algorithm is used and adopted
for the VIIRS active fire alerts generation [71]. Hereby, two thermal multispectral bands
of VIIRS are utilized to detect day and night time biomass burning [28]. The data were
downloaded and resampled to the 30 m Landsat grid.

2.2.4. Forest Baseline Map

We generated a forest baseline map for the beginning of the monitoring period follow-
ing the Indonesian forest ministry’s definition of forest with at least 30% forest coverage
and a minimum patch size of 0.25 ha. We used the Indonesian land cover map of 2017 [53]
and updated areas classified as primary, secondary and plantation forest (excluding man-
grove forest) by removing pixels indicating tree cover below 30% for 2000 and tree cover
losses between 2001–2017 in the Hansen products [52] to reduce inconsistencies in the
land cover map. Additionally, forest pixels indicating slopes greater than 15 degrees in
the SRTM DEM were rejected to exclude potential geometrical artefacts in the radar forest
disturbance map.

2.3. Methods

The classification of archetypes of fire-related forest disturbances followed two major
steps (Figure 2). This included mapping of forest disturbances in optical and radar time
series, respectively, (i) and classifying archetypes of fire-related forest disturbances based
on the temporal relationship of mapped optical and radar forest disturbances with active
fire alerts (ii).

Figure 2. Flowchart for classifying archetypes of fire-related forest disturbances.

2.3.1. Forest Disturbance Mapping

We used a pixel-based probabilistic algorithm [38] to map forest disturbances sepa-
rately from NBR and backscatter time series. Firstly, time series values were converted into
forest and non-forest probability density functions (pdfs) for the historic period. Secondly,
PDFs were used to flag potential forest disturbance events for the monitoring period, when
the conditional non-forest probability exceeded 0.75. Thirdly, flagged forest disturbances
were confirmed—utilizing an iterative Bayesian updating—when a future observation in
the time series indicated a non-forest probability above 0.95, which also caused the pixel-
based monitoring to stop. The monitoring continued when the flagged forest disturbance
was not confirmed. The confirmation of flagged forest disturbances was orbit-specific for
the radar time series [66].

The pixel-based probabilistic algorithm was separately applied to NBR and backscatter
time series and was restricted to forest pixels in the forest baseline map resulting in an
optical and radar forest disturbance map.
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2.3.2. Validation of Forest Disturbance Maps

The validation of the forest disturbance maps was restricted to pixels co-located with
active fire alerts to focus on fire-related forest disturbances and was carried out separately
for the optical and radar forest disturbance maps. We additionally included forest pixels of
the forest baseline map within a buffer zone of 375 m around fire affected pixels to target
omission errors [72]. A probability sampling [73] was carried out resulting in a total of
1059 sample points [74] over four sample strata classes. The four strata sample classes
were: stable forest (i), optical and radar forest disturbance (ii), optical forest disturbance (iii) and
radar forest disturbance (iv). Stable forest was defined as absent forest disturbances in both
optical and radar forest disturbance maps. Optical and radar forest disturbance was defined as
forest disturbances detected in both maps. Optical forest disturbance/radar forest disturbance
were defined as forest disturbances mapped in either only optical or radar time series,
respectively. The samples were allocated proportionally to the strata areas of the classes.
The selected samples were used for validating both optical and radar forest disturbance
maps. Samples of the strata class optical forest disturbance or radar forest disturbance were
treated as stable forest if not mapped in either time series. A visual interpretation of
monthly PlanetScope image mosaics was utilized to validate the optical forest disturbances,
while the initial Sentinel-1 backscatter time series was used for the radar forest disturbances.
The separate validation of optical and radar forest disturbance maps was carried out to
account for sensor-specific capabilities and sensitivities to map forest disturbances.

The forest baseline map was based on a land cover map, a tree cover product and
annual tree cover loss products all utilizing Landsat data and showing typical error sources
of optical data due to environmental influences (e.g., cloud coverage, etc.). Forest distur-
bances missed due to an error of the forest baseline map were labelled as “error forest
baseline map”, but not reported as false detections (commission error). Boundary pixels
can similarly be ambiguous and cause problems when validating higher spatial resolution
forest disturbances [75]. We labelled these cases as “boundary pixels” but did not report
them as false detections.

The validated samples were used to create a confusion matrix and to calculate user’s
(commission error) and producer’s accuracies (omission error) for areas of the optical and
radar disturbance maps co-located with active fire alerts, respectively.

2.3.3. Classification of Archetypes of Fire-Related Forest Disturbances

We used the temporal relationship of mapped optical and radar disturbances and co-
located active fire alerts to classify archetypes of fire-related forest disturbances. Active fire
alerts were used to label both optical and radar mapped disturbances predating, coinciding
or postdating detected fires. The labeling was based on a pixel-wise time span defined by
two observations in either the optical or radar time series before the mapped optical or
radar disturbance dates. The time span was orbit-specific for the radar time series. If a
date of an active fire alert fell within the time span of a forest disturbance, it was marked
as coinciding, regardless of active fire alerts occurring before or after the disturbance
date. In case of multiple active fire alerts being present before and after the time span, the
temporally closest active fire alert was used.

Next, the temporal relationships of optical and radar disturbances with active fire
alerts were used to identify so-called archetypes of fire-related forest disturbances (Table 2).
Fire-related forest disturbances can be understood as mapped forest disturbances and
active fire alerts co-located and temporally coinciding within the monitoring period. Our
archetypes contain information on the temporal relationship between detected forest
disturbances and active fire alerts, as well as different magnitudes of fire-related forest
disturbances resulting from the different sensitivities of optical and radar data towards
changes in tree cover. Mapped forest disturbances absent of active fire alerts were seen
as non-fire-related forest disturbances and, hence, were not included in the archetype
classification. Similarly, optical and radar disturbances exclusively postdating active fire
alerts were not included and rejected as non-fire-related forest disturbances. Hereby, the
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NBR or backscatter time series showed no impact of a fire on the respective pixel but
were rather caused by wrongly co-located active fire alerts and forest disturbances due to
the coarse spatial resolution of the active fire alerts (375 m) compared to the optical and
radar forest disturbance maps (30 m). We were able to define seven dominant archetypes
based on area statistics of the remaining temporal relationships. Ambiguous cases showing
only minor individual detections (below 5%) were classified as others. More detailed
information on the archetypes is provided in the results chapter.

Table 2. Temporal relationship of mapped optical and radar forest disturbance dates with respect to dates of active fire
alerts for classifying the archetypes. Areas are given as proportions of all detected fire-related forest disturbances.

Optical Forest Disturbance Radar Forest Disturbance Area [%]

Archetype 1 Predating active fire alert Predating active fire alert 11.8

Archetype 2 Coinciding active fire alert Coinciding active fire alert 29.1

Archetype 3 Coinciding active fire alert Postdating active fire alert 17.3

Archetype 4 Predating active fire alert Coinciding active fire alert 6.7

Archetype 5 Coinciding active fire alert No detection 9.2

Archetype 6 Predating active fire alert No detection 8.1

Archetype 7 No detection Coinciding active fire alert 8.4

Others

Predating active fire alert Postdating active fire alert 3.0

No detection Predating active fire alert 2.7

Coinciding active fire alert Predating active fire alert 2.4

Postdating active fire alert Predating active fire alert 0.3

Postdating active fire alert Coinciding active fire alert 1.0

Non-fire-related
forest disturbance

Postdating active fire alert No detection

/
No detection Postdating active fire alert

Postdating active fire alert Postdating active fire alert

No detection No detection

Suitable ground-based (e.g., inventory data, interviews) or satellite-based reference
data (e.g., multi-temporal vertical tree structure estimations derived by light detection and
ranging (Lidar) observations) were not available to validate the archetypes.

3. Results

The following chapter presents results of the optical and radar forest disturbance maps,
their temporal relationship with active fire alerts and introduces archetypes of fire-related
forest disturbances.

3.1. Forest Disturbance Mapping and Active Fire Alerts

The mapped forest disturbances covered an area of 30,052 ha for optical disturbances
and 21,292 ha for radar disturbances. The validation showed high user’s accuracies for
optical and radar forest disturbance maps of 92.1 and 87.6%, respectively. Estimated
producer’s accuracies were slightly lower with 79.5% for optical and 77.5% for radar forest
disturbances. Overall, 79.3% of mapped forest disturbances were not co-located with
active fire alerts and indicated no fire-related forest disturbance. This included 2.5% forest
disturbances exclusively post-dating active fire alerts. The remaining one fifth (20.7%) of
mapped forest disturbances were co-located with active fire alerts indicating fire-related
disturbances, with secondary forest showing the highest proportion (24.1%) compared to
primary (9.6%) and plantation forest (5.2%) (Figure 3). The forest cover types indicated
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varying proportions of fire-related forest disturbances detected in either optical, radar or
both time series.

Figure 3. Forest disturbances without co-occurring active fire alerts (grey) and forest disturbances
with co-occurring fire alerts: optical-only (blue), radar-only (orange), both signals (green) [%].

Monthly totals of mapped optical and radar forest disturbances co-located with active
fire alerts showed similar temporal patterns as monthly totals of active fire alerts (Figure 4).
This was especially visible for major fire outbreaks towards the end of 2019 with similar
peaks, including a small temporal lag, for co-located mapped optical and radar disturbances
and active fire alerts [76]. Overall, active fire alerts covered larger areas than mapped forest
disturbances due to re-occurring active fire alerts at the same location and their coarser
spatial resolution (375 m) compared to the optical and radar time series (30 m).

1 

 

 

 

Figure 4 

  

Figure 4. Monthly totals of co-located forest disturbances and active fire alerts represented by area of
optical and radar forest disturbances and active fire alerts for each month of the monitoring period.
Note: different value ranges for areas of mapped forest disturbances and active fire alerts.

3.2. Archetypes of Fire-Related Forest Disturbances

The fire-related forest disturbances showed 12 unique temporal relationships of detected
optical and radar forest disturbances and active fire alerts. We classified five cases, represent-
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ing 9.4% of fire-related forest disturbances, as “others” due to minor individual detections
(<5%). The remaining 90.4% of fire-related forest disturbances were used to classify seven
major distinct archetypes. The archetypes are arranged in a way to depict their robustness.
Archetypes 1–4 relying on a mapped disturbance in both optical and radar time series come
with a fairly strong robustness, whereas Archetypes 5–7 based exclusively on a mapped dis-
turbance in either optical and radar time series come with a weaker robustness, as potentially
showing commission or omission errors of the forest disturbance maps.

• Archetype 1 is defined by decreased NBR (optical forest disturbance) and backscat-
ter (radar forest disturbance) values before the fire event (active fire alert). This
archetype represents a complete loss of tree foliage and structure before a fire event
and accounted for 11.8% of all fire-related forest disturbances.

• Archetype 2 is defined by decreased NBR (optical forest disturbance) and backscat-
ter (radar forest disturbance) values during the fire event (active fire alert). This
archetype represents a complete loss of tree foliage and structure during a fire event
and accounted for 29.1% of all fire-related forest disturbances.

• Archetype 3 is defined by decreased NBR values (optical forest disturbance) during the
fire event (active fire alert) and decreased backscatter values (radar forest disturbance)
after the fire event. This archetype represents a loss of tree foliage during the fire
event with remaining debris or a complete loss of tree structure after the fire event
and accounted for 17.3% of all fire-related forest disturbances.

• Archetype 4 is defined by decreased NBR values (optical forest disturbance) before the
fire event (active fire alert) and decreased backscatter values (radar forest disturbance)
during the fire event. This archetype represents a loss of tree foliage with remaining
structure before a fire event and complete loss of tree structure during a fire event and
accounted for 6.7% of all fire-related forest disturbances.

• Archetype 5 is defined by decreased NBR values (optical forest disturbance) during the
fire event (active fire alert) and stable backscatter values (no radar forest disturbance)
throughout and after the fire event. This archetype represents a loss of tree foliage
during a fire event with remaining tree structure and accounted for 9.2% of all fire-
related forest disturbances.

• Archetype 6 is defined by decreased NBR values (optical forest disturbance) before
the fire event (active fire alert) with stable backscatter values before, throughout and
after the fire event (no radar forest disturbance). This archetype represents a loss of
tree foliage before a fire event with remaining tree structure and accounted for 8.1% of
all fire-related forest disturbances.

• Archetype 7 is defined by decreased backscatter values (radar forest disturbance)
during the fire event (active fire alert) and stable NBR values before, throughout
and after the fire event (no optical forest disturbance). This archetype represents a
complete loss of tree foliage and structure during a fire event similar to Archetype 2
and accounted for 8.4% of all fire-related forest disturbances.

Concepts for prime examples of the different archetypes are presented by optical and
radar time series, their respective detected forest disturbance dates and active fire alerts
(Figure 5). Every concept is presented alongside high-resolution optical PlanetScope images,
an individual fire-related forest disturbance illustration and colored squares relating to
selected phases of the respective fire-related forest disturbance.
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Figure 5. Cont.
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Figure 5. Concepts of prime examples for Archetype 1 (a), Archetype 2 (b), Archetype 3 (c), Archetype 4 (d), Archetype 5
(e), Archetype 6 (f) and Archetype 7 (g).



Forests 2021, 12, 456 12 of 21

Overall numbers show that Archetype 2 was most dominant, then Archetype 3, closely
followed by Archetype 1. Similar proportions can be seen in secondary forests (Figure 6).
However, in primary forests, Archetype 3 indicates by far the largest area, followed by
Archetype 2 and then Archetype 7. In plantation forests the largest area was covered
by Archetype 2, similar to the overall result, followed by Archetype 7, with Archetype
3 showing less importance. Occurrences of Archetype 4, 5 and 6 were relatively low (3–9%)
across all forest types. Throughout all depicted forest land cover types up to 10% of the
area was classified as others and not associated to either one of the main archetypes.

Figure 6. Proportional area of archetypes of fire-related forest disturbances for primary, secondary
and plantation forest.

Distinct spatial patterns of the archetypes could be seen for the different forest types
(Figure 7). In plantation forests, distinct homogenous areas of different archetypes were
visible, regardless of whether the forest disturbance happened before (Archetype 1) or
during the fire event (Archetype 2). In natural (primary and secondary) forests, patches of
different archetypes were more spatially interspersed. Here, often patterns of strong fire-
affected forest (Archetype 2) surrounded by patches of less fire-affected forest (Archetype
3 and 5) were visible. For both natural and plantation forests, forest already degraded or
weakened before a fire (Archetype 4) was situated at the edge of forests or as small patches
within forests.

Figure 7. Map of archetypes of fire-related forest disturbances for the province of Riau (Indonesia).
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4. Discussion
4.1. Forest Disturbance Mapping and Fire Activity

Our results suggest that about 20% of the mapped forest disturbances can be linked to
fire activity, which confirms a strong relationship between forest disturbances and fires in
Riau [5]. Natural forest (primary and secondary forest) experienced more fire-related forest
disturbances than plantation forest, which relates to a decreasing trend of fire usage in
plantation forest as a result of enforcement of regulations to ban fire [77]. We found that 5.2%
of detected forest disturbances in plantations are still fire-related, which is in agreement
with other studies for plantations across Indonesia [78]. Historically fire-related forest
disturbances in Indonesia have been mainly associated with a conversion from natural to
plantation forest [79]. For counteracting these developments, a nationwide moratorium for
regulating land use activities (oil palm plantation, timber plantation and logging activities)
in primary forests was established in 2015 [80]. Our results show remaining fire-related
forest disturbances in primary forest (9.6%), which could have been either caused by illegal
fire use at parcel-to-plantation level and related escaped large-scale forest fires. However,
secondary forest representing the majority of today’s natural forest in Riau showed the most
fire-related forest disturbances (24.3%), which underlies the importance to also expand the
moratorium for secondary forest to protect natural forest and sequence carbon [5,81].

We detected fire-related forest disturbances mainly in smaller forest patches and at
the border of forest patches. These areas usually consist of fragmented and less dense
forests, which are more vulnerable for forest degradation and extensive forest fires [82].
This edge effect is especially visible for regions with heavy historic deforestation (e.g.,
Indonesia) [35,83]. Furthermore, we observed no differences between natural and planta-
tion forest relating to findings of an independence between management types and edge
effects [84].

Overall, detected optical and radar fire-related forest disturbances showed high pro-
ducer accuracies (optical: 92.1%; radar: 87.6%), but slightly lower user’s accuracies (optical:
79.5%; radar: 77.5%). Optical forest disturbance maps are affected by less dense time series
due to limited availability of cloud-free observations causing omission errors and spectral
anomalies due to remaining atmospheric noise or cloud shadow causing commission er-
rors [17,85]. In contrast, radar forest disturbance maps are affected by unnoticed small-scale
disturbances in canopy gaps due to SAR’s side-looking nature causing omission errors
and fluctuating backscatter values due to changes in canopy and soil moisture causing
commission errors [68,86–88].

Seventy-two percent of fire-related forest disturbance were mapped in both optical and
radar time series. Overall, more fire-related forest disturbances were mapped exclusively
in the optical time series (17%) compared to the radar time series (11%), which relates to the
sensitivity of optical data to detect subtle changes in tree foliage, which stay-dependent on
the wavelength-undetected in radar [38,48–50,89]. Sentinel-1 radar data used in this study
are operating in C-band wavelength and do not penetrate tropical forest canopies very
deeply [89]. Longer-wavelength radar (e.g., L-band-Alos Palsar) are less sensitive to detect-
ing subtle changes in the tree canopy and would have been even better for distinguishing
between both changes [50]. However, longer-wavelength radar data were not yet free of
charge, available yet or lack high temporal resolution. Follow-up studies should explore
the potential of upcoming, openly available and high-temporal detailed long-wavelength
radar data from NISAR L-band [90] and BIOMASS P-band mission [91] for characterizing
fire-related forest disturbances.

VIIRS active fire alerts have known shortcomings that might have resulted in errors
in the co-location of mapped forest disturbance and active fire alerts [92]. Despite its
improved spatial resolution (375 m) compared to similar MODIS products (1 km) [70], the
difference in spatial resolution in relation to the 30 m multi-sensor optical and radar data
and the detection of re-occurring active fire alerts at the same location resulted in overall
larger areas of active fire alerts than mapped forest disturbances. Moreover, thermal signals
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are very short-lived, which makes it impossible to detect past fires and also results in high
omission errors of the active fire alerts [28].

4.2. Archetypes of Fire-Related Forest Disturbances

The majority of forest fires in Indonesia are human-induced and utilized by small-
holder and commercial agriculture for fire-related land management practices [8,93].
Archetypes 1, 2 and 3 relate to three commonly used fire-related land management prac-
tices. The first practice includes fire usage to burn forest directly, which bears a significant
economic value for especially smallholder agriculture, as a cost efficient way of land clear-
ing instead of relying on costly machinery [8,94]. This traditionally imbedded and still
practiced slash-and-burn agriculture relates to Archetype 2, which showed the highest
proportion for plantation, followed by secondary and primary forest [8,95–97]. Archetype
2 in plantation forest may refer to rotation cycles (cutting for new replanting), rather than
slash-and-burn agriculture [6]. The second practice includes post-forest disturbance fire
usage, which aims for preventing secondary growth and introducing a new cultivation after
the forest removal [6,35,98]. This complete loss of tree foliage and structure before a fire
relates to Archetype 1, showing the highest proportions for secondary forest, followed by
plantation and primary forest. The third fire-related land management practice is so-called
salvage logging, where trees affected by fire but capable of recovering are logged after the
fire event [99]. The complete loss of structure after a fire with initial loss of tree foliage
during a fire event is represented by Archetype 3 and was most dominant in primary forest,
followed by secondary and plantation forest (Figure 8). It is worth noting that Archetype 3
does not only describe salvage logging but can also indicate a medium severity fire with
remaining debris [36].
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Figure 8 Figure 8. Time series of Planet data, Sentinel-1 VH and VV backscatter values, NBR values and active
fire alerts for post-fire detected forest disturbances in both signals. Forest disturbance illustration
depicts different stages of salvage logging: green—intact forest, red—fire event, blue—remaining
tree structure and orange—logging of remaining tree structure.
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Recent results suggested the possibility to detect fires used before logging activities-to
clear understory—by combining detected forest disturbances and active fire alerts [36].
However, we found that active fire alerts pre-dating mapped forest disturbance were the
result of wrongly co-located fire-related forest disturbances caused by the coarse spatial
resolution of active fire alerts (375 m) compared to the input data (30 m) (Figure 9).

The archetypes enable us to classify different magnitudes and types of fire-related
forest disturbances by utilizing the different sensitivities of optical (subtle tree foliage
changes) and radar (larger structural changes) sensors towards changes in the tree cover.
High-magnitude fires resulting in a loss of tree foliage and structure (Archetype 2) were
mostly observed for plantation forest (36%), which suggests more fire-prone and vulnera-
ble monoculture plantation forest compared to mixed natural forest (primary forest: 23%;
secondary forest: 29%) [100,101]. Contrary, medium magnitude fires burning tree foliage
with partially affected tree structure or remaining debris (Archetype 3) were mostly located
in natural forest (primary and secondary forest: 35/17% vs. plantation forest: 8%). This
relates to varying partial burned forest patches in mixed natural forests due to different
tree species and ages [35,102,103]. Fast spreading crown fires only burning the tree foliage
without a large reduction in structural features (Archetype 5) [104] were mostly located
in secondary and plantation forest. Degraded forest completely damaged by a fire, repre-
sented by a loss of tree foliage before a fire and a complete loss of structure during the fire
(Archetype 4), showed minor differences between forest types [79]. Similarly, degraded for-
est remaining after a fire, indicated by a loss of tree foliage before a fire with remaining tree
structure (Archetype 6), did not show distinct differences for the forest types. Archetype
7 based only on radar forest disturbances represented a loss of tree foliage and structure
similar to Archetype 2 and relates to potential omission errors of optical sensors due to
persistent cloud coverage or mixed pixels [105].

The explored archetypes are closely linked to specific land management practices and
forest types in Riau and likely result in different archetype patterns in other regions [6,35,101].
Follow-up studies should investigate the transferability of the proposed archetypes to
other regions.

Different archetypes can be linked to either high, medium and low burn severities.
High burn severities describe a complete loss of tree foliage and structure was recorded
during the fire (Archetype 2 and 7), medium burn severities describe only individual
fire-affected parts of the trees (Archetype 3–5), and low burn severities describe fire only
affecting understory, shrubs and bushes (Archetype 1 and 6). Depending on the severity of
a fire, varying amounts of GHG are released in the atmosphere, which can be estimated by
existing GHG models [12,106]. The potential of combining archetypes with GHG emission
models has to be further investigated.

The spatial patterns of archetypes showed distinct borders between homogenous
areas of different archetypes in plantation forest relating to the same fire propagation and
intensities of monocultures [35,101]. Contrary natural forest showed heterogenous patterns
of severely fire-affected archetypes surrounded by less fire-affected archetypes with light or
no distinct borders. The patterns relate to variations of fire propagation and intensities in
mixed natural forest due to moisture differences of varying tree species and ages [102,103].

The classification of archetypes was based on the temporal relationship of forest
disturbances and active fire alerts. In order to reduce errors of omitted intersections of
forest disturbances and active fire alerts during periods of missing data, we used a pixel-
wise time span rather than the global time span [36]. However, wet seasons showed
pixel-wise time spans of on average 72 days for optical time series and introduced potential
commission errors of wrongly co-occurring forest disturbances and active fire alerts. Follow-
up investigations should introduce a certainty measurement of the archetypes based on
the length of their temporal thresholds.

In the absence of suitable ground-based or satellite-based reference data for inde-
pendently validating the temporal dynamic and complexity of the proposed archetypes,
we were only able to validate the forest disturbance maps, which gives only an indica-
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tion of how accurate the archetypes are. Despite a missing direct validation, a different
level of robustness can be associated with the archetypes. Archetypes (1–4) relying on
mapped forest disturbances in both optical and radar time series have a strong robustness.
Archetypes (5–7) relying only on a mapped forest disturbance in either the optical or radar
time series have a weak robustness, as these archetypes might depict potential commission
or omission errors of the optical or radar disturbance maps, respectively.
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Figure 9 Figure 9. Time series of Planet data, Sentinel-1 VH and VV backscatter values, NBR values and active
fire alerts for post-fire detected forest disturbances in both signals. Green indicates the status of an
intact forest, red the fire event and orange the actual forest disturbance.

4.3. Implications for Multi-Sensor Forest Monitoring

Recent studies explored the synergistic potential of optical and radar remote sensing
data for improved forest disturbance detection [38,50]. The combination of the different
data streams was mainly used to achieve higher observation density and to overcome
omission errors in either the optical or radar time series due to varying environmental
influences. However, we discovered that using sensor-specific sensitivities towards tree
cover changes (e.g., optical-tree foliage and C-band radar data-tree structure) allowed us
to also characterize forest disturbances beyond a binary detection. Hereby, multi-sensor
signals can oppose each other, e.g., a forest disturbance is detected in the optical but not the
radar time series. That in return does not necessarily depict an omission error of the radar
forest disturbance detection but shows a disturbance affecting only the tree foliage (e.g.,
crown fire). Archetypes 1–6 are examples for describing varying parts of the forest affected
by fire depending on the mapped forest disturbance date in either time series. Thus, a
delayed or missed forest disturbance detection in either time series is not only caused by
environmental influences but can give valuable information on what part of the tree is
affected by a disturbance. Future forest monitoring studies should, therefore, consider that
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a straightforward combination of optical and radar observations on a data level potentially
introduces artefacts.

5. Conclusions

This study explored archetypes of fire-related forest disturbances derived from dense
multi-sensor optical and radar satellite time series and active fire alerts. The archetypes
represent the temporal relationship of detected optical and radar-based forest disturbances
with active fire alerts and relate to fire-related forest and land use management practices
and constitute a novel approach for burn severity mapping. Archetype-based burn severi-
ties might function as a proxy to improve existing GHG emission models. Archetypes can
give more temporally and spatially detailed insights into fire-related forest disturbances,
which can support policy development, local and regional forest management and law
enforcement to reduce illegal fire usage in the tropics. This study emphasized the unprece-
dented value of openly available dense Landsat/Sentinel-2 optical and Sentinel-1 radar
time series for characterizing fire-related forest disturbances. The integration of dense
optical and radar satellite data with vertical forest structure information form GEDI, and
upcoming long-wavelength radar missions (NISAR: L-band and Biomass mission: P-band)
promises to further study how fire activities and forest disturbances are related.
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