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Abstract: The key point of forest height and underlying topography inversion using synthetic aper-

ture radar tomography (TomoSAR) depends on the accurate positioning of the phase centers of dif-

ferent scattering mechanisms. The traditional nonparametric spectrum analysis methods (such as 

beamforming and Capon) have limited vertical resolution and cannot accurately distinguish closely 

spaced scatterers. In addition, it is very difficult to accurately estimate the ground or canopy heights 

with single polarimetric SAR images because there is no guarantee that the vertical profile will gen-

erate two clear and separate peaks for all resolution cells. A polarimetric TomoSAR method based 

on SKP (sum of Kronecker products) decomposition and iterative maximum likelihood estimation 

is proposed in this paper. On the one hand, the iterative maximum likelihood TomoSAR method 

has a higher vertical resolution than that of the traditional methods. On the other hand, the separa-

tion of the canopy scattering mechanism and the ground scattering mechanism is conducive to the 

positioning of the phase centers. This method was applied to the inversion of forest height and 

underlying topography in a tropical forest over the TropiSAR2009 test site in Paracou, French Gui-

ana with six passes of polarimetric SAR images. The inversion accuracy of underlying topography 

of the proposed method was up to 1.489 m and the inversion accuracy of forest height was up to 

1.765 m. Compared with the traditional polarimetric beamforming and polarimetric capon meth-

ods, the proposed method greatly improved the inversion accuracy of forest height and underlying 

topography. 

Keywords: forest height; underlying topography; maximum likelihood estimation;  

SKP decomposition; polarimetric SAR tomography 

 

1. Introduction 

Forests are important parts of the global ecosystem and play a vital role in the global 

carbon and oxygen cycle. Long-wavelength synthetic aperture radar has strong penetrat-

ing power and can be used to analyze the vertical structure of the forests. Polarization 

interference synthetic aperture radar (PolInSAR) technology is one of the most important 

tools for forest vertical structure inversion [1–3]. Related studies have proposed a three-

stage algorithm [4] and nonlinear iterative algorithm [5] based on the random volume 

over ground (RVoG) model [4]. Further, they have been successfully applied to the inver-

sion of forest height. However, the performances of PolInSAR methods rely on reasonable 

model assumptions for the forest, and the calculation of related parameters is compli-

cated. 

Synthetic aperture radar tomography (TomoSAR) technology obtains high vertical 

resolution by synthesizing the aperture in the elevation direction so that it can identify 

and distinguish scatterers of different heights within the same resolution cell [6]. It has 
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been widely used to reconstruct forest three-dimensional structures and estimate above-

ground biomass (AGB) [6–13]. 

Spectral analysis methods are commonly used in forest structure SAR tomography, 

including parametric spectral analysis methods (MUSIC) [14] and nonparametric spectral 

analysis methods (beamforming, Capon) [15]. The main advantages of these methods are 

their simple algorithm and low computational burden. However, the spectrum analysis 

methods mentioned above have their own limitations. The MUSIC method needs to know 

the number of scatterers in a resolution cell, and thus it is not suitable for the estimation 

of coherent scatterers in forest. The beamforming method has a low vertical resolution 

and is susceptible to sidelobes. The Capon method has a higher vertical resolution but its 

radiation resolution is lower [16]. In addition, those spectral analysis methods are seri-

ously affected by the number of SAR images. Compressive sensing (CS) [17–21] can break 

through the limitation of the number of images and realize high-resolution tomography. 

However, this method is complicated to operate and has a heavy computational burden 

[16]. In addition, the performance of the CS method is susceptible to user parameters and 

thus becomes unstable [12]. Some methods based on statistical regularization and maxi-

mum likelihood estimation were proposed for enhanced TomoSAR imaging [22,23]. How-

ever, their potential of forest height and underlying topography inversion has not yet been 

verified, especially in dense tropical forests. 

Polarimetric synthetic aperture radar (PolSAR) is sensitive to the shape, direction, 

and dielectric properties of the scatterers, and it has been widely used in SAR tomography 

of forests [24–27]. In [24] and [25], the authors proposed classic polarization spectrum es-

timation methods and a high-resolution polarization SAR tomography method, which 

have been successfully used in under-foliage object imaging. For tomography problems 

with a small number of measurements, some polarimetric estimators were proposed un-

der the frame of CS and sparsity-based reconstruction [26,27]. These works mainly fo-

cused on the reconstruction of the forest profile and the analysis of the scattering mecha-

nism. 

The important premise of forest height and underlying topography inversion using 

SAR tomography is the distinction and accurate positioning of the phase centers of the 

canopy scattering and ground scattering. However, due to the complexity of the forest 

structure, the denseness of forest, and the low resolution of the TomoSAR algorithms, 

there is no guarantee that the vertical profile generates two clear and separate peaks for 

all resolution cells. Traditional methods have limited resolution; the phase center is not 

focused enough. Thus, it is difficult to locate the phase centers of different scattering 

mechanisms. These unfavorable factors can cause errors in the extraction of forest vertical 

structure parameters. 

Some existing studies have shown that obtaining the covariance matrices of different 

scattering mechanisms is more conducive to the location of the corresponding scattering 

centers [28–31]. In order to obtain a more reliable estimation of forest height and underly-

ing topography, a method using polarimetric SAR tomography based on SKP (sum of 

Kronecker products) decomposition and iterative maximum likelihood estimation (SKP-

IMLE) is proposed in this paper. Through SKP decomposition, the forest scattering signal 

is divided into canopy scattering contribution and ground scattering contribution. Then, 

the IMLE method is used to estimate the tomograms of different scattering mechanisms. 

Finally, the corresponding phase center heights are extracted from the tomograms, and 

the accurate forest height and underlying topography are estimated. 

The rest of this paper is organized as follows. Section 2 is devoted to explaining the 

3D focus model of TomoSAR and the proposed SKP-IMLE Pol-TomoSAR method. In Sec-

tion 3, there is an overview of the study area and data set. In Section 4, the effectiveness 

of the proposed method was evaluated from the real P-band full polarimetric focused SAR 

images. At the same time, the inversion results of different polarimetric TomoSAR meth-

ods were compared. In Section 5, the performance of the proposed method was discussed 

and analyzed. Finally, conclusions were drawn in Section 6. 
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2. Methodology 

2.1. TomoSAR Imaging Model 

Assuming that the SAR sensor makes N repeated observations on multiple approxi-

mately parallel orbits and some pre-processing (such as coregistration, deramping, and 

phase error calibration [32]) are done, the nth focused complex value for a specific range-

azimuth pixel (r,a) can be established as follows: 

  ( )
, , ( , , ) zjk n s

n

s

g r x b r x s e ds


   (1)

where s is the elevation value of the scatterer, and  ( , , )r x s  represents the reflectivity 

function in the elevation direction. 
( )

z
k n

 is the vertical wave number: 

( ) 4 ( ) / sin
z

k n b n r    (2)

where 
( )b n

 is the vertical baseline,   is the wavelength and   is the incident angle. 

For a multibaseline TomoSAR data set, after D sampling in the elevation direction 

and considering the noise, (1) can be expressed as the following matrix form: 

G A e   (3)

where e z djk sA , ds
 is the height of the scatterer at the dth sampling point, and e is a N-

dimensional noise vector. 

2.2. IMLE TomoSAR Method 

Consider that the noise in (3) is the Gaussian white noise with a same variance. The 

covariance matrix of multibaseline SAR data can be expressed as 

     2( )H H

k n
R E GG AKA I R R    (4)

where 
( )H

 is the conjugate transpose operation. 


1
diag( )D

d
K k

 is the backscatter power 

matrix, and 
2

 is the noise power and 
diag( )

 converts a vector to a diagonal matrix. 

The multibaseline observation data g can be regarded as a complex Gaussian distri-

bution, and its probability density function is defined as 

 - -1 -1( ) det exp(-( ))N Hp g R g R g . (5)

Now the maximum likelihood estimation is performed according to the minimum 

risk Bayesian strategy [23,33]. Ignoring the constant terms, the SAR tomography maxi-

mum likelihood estimation problem is equivalent to minimizing the following objective 

function: 

 -1ln ( | ) - ln  det( ) - Hp g k R g R g . (6)

Thus, the maximum likelihood estimation of the backscatter power vector k can be 

regarded as the following minimization problem: 

 arg min( ln  ( | ))
ML

k

k p g k . (7)

According to the solution strategy proposed in [23,33,34], the minimization problem 

in (7) can be solved when the first derivative of the objective function with respect to k is 

equal to zero, which leads to 

 
diag diag diag

( ) diag(( ) ) ( )H H H H

n
MRM A M MA k MR M  (8)

where 
 1diag( ) HM k A R  and diag

( )
 extracts the diagonal elements of a matrix. 

Then, the solution of the IMLE TomoSAR estimator can be organized as follows: 
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-1

diag

diag

diag

( ) ( - )

diag(( ( ) ) )

ˆ( ( ) )

W ( ( ) )

H H

H

H
n

k C V W

C A M MA

V MR M

MR M









 (9)

where R̂  is the sample covariance matrix of the multibaseline SAR data. The way to cal-

culate the covariance matrix with the samples in L multilooks is through the following 

equation: 

1

1ˆ ( ) ( )
L H

l
R G l G l

L 
  . (10)

The IMLE method optimizes k through an iterative processing. The initial backscatter 

power can be estimated from the beamforming method [15]. In addition, the noise vari-

ance will be treated as a (diagonal-loading) degree of freedom. 

2.3. SKP Decomposition 

SKP decomposition is an algebraic synthesis method, which can decompose the for-

est backscattering signal into two parts: the ground scattering contribution (whose phase 

centers are located on the ground) and the canopy scattering contribution (whose phase 

centers are located on the canopy) [29,30]. Pol-TomoSAR technology based on SKP de-

composition is conducive to the inversion of forest height and underlying topography. 

For multibaseline and multipolarization (MBMP) SAR data, the covariance matrix 

can be expressed as follows: 

    ( )H

g g v v
W E yy C R C R  (11)

where W denotes the covariance matrix of MPMB data and 
 (   )T T T T

HH HV VV
y g g g

 is the 

MPMB observation data. 
( )E

 is the operation for mathematical expectation and   is 

the Kronecker product. g
C

 and g
R

 are the polarization covariance matrix and interfer-

ence covariance matrix of ground scattering; v
C

 and v
R

 are the polarization covariance 

matrix and interference covariance matrix of canopy scattering [29]. 

In data processing, the MBMP covariance matrix is estimated with the samples in L 

multilooks: 



  
1

1ˆ ( ) ( ) ( )
L

H H

l

W E yy y l y l
L

. (12)

Then, considering the singular value decomposition (SVD) of Ŵ  after rearrange-

ment [29], the MPMB covariance matrix can be decomposed as 

1

ˆ conj( )
P

p p p
p

W U V


   (13)

where P represents the number of scattering mechanisms. p


 is the corresponding sin-

gular value. p
U

 and p
V

 are obtained by reshaping the singular value vectors p
u

 and 

p
v

 into matrices 3  3  and   N N  elements, respectively. In this particular work, P = 2 

because only the signal contributions from the ground and canopy are considered. 

Next, sort p


 in descending order and define 
 ( )

p p
R conj V

 ; the interference covar-

iance matrices of ground scattering and canopy scattering can be solved through a com-

bination of linear equations with P = 2: 
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   
   

1 2

1 2

, 1

, 1

g

c

R a b aR a R

R a b bR b R

  

  
 (14)

where a and b are two real numbers. 

Finally, a and b can be optimized using the model-free separation under the con-

straint that both g
R  and 

c
R  are semipositive definite 



 
 

  
  


,

,c

( ( , ) ( , ))
( , ) arg max 1

( , ) ( , )

g c

a b
g g

g c FF

trace R a b R a b
a b  

R a b R a b
 (15)

2.4. SKP-IMLE Pol-TomoSAR Estimator 

After the above SKP decomposition, we reshape the observation signals according to 

(3). Each of them contains only one kind of specific scattering mechanism, i.e., 

g g g

c c c

G A e

G A e





 

 
 (16)

where g
G  represents the observation data set containing only the surface scattering 

mechanism, and 
c

G  represents the observation data set containing only the canopy scat-

tering mechanism. g
  and c

  are the corresponding reflectivity function; g
e  and 

c
e  

are the corresponding noise. It follows after (16) that the covariance matrices of different 

scattering mechanisms can be obtained: 

2

1

2

1

1ˆ ( ) ( )

1ˆ ( ) ( )

L
H H

g g g g g
l

L
H H

c c c c c
l

R G l G l AK A I
L

R G l G l AK A I
L









  

  




 (17)

where g
K

  and c
K

 are the backscattering power matrices of ground scattering and can-

opy scattering. 
2

g


 and 
 2

c  are the noise variances of ground scattering and canopy scat-

tering, respectively. In this particular work, the decomposition error is ignored. 
ˆ

g
R

 and 
ˆ

c
R

 are approximated by the two covariance matrices in (14), respectively. 

Substituting the covariance matrix of different scattering mechanisms in (14) into the 

IMLE algorithm and the TomoSAR inversion result based on the SKP-IMLE method can 

be obtained. 

If the tomograms of different scattering mechanisms are obtained using the SKP-

IMLE method, the corresponding phase centers can be extracted from them, and then the 

inversion results of forest height and underlying topography can be obtained. 

More specifically, the way to estimate a digital terrain model (DTM) is as follows: 

argmax( )
DTM gh

h k . (18)

For the estimation of the canopy height model (CHM), an additional operation is re-

quired because the top position of the tree is higher than the position of the canopy scat-

tering center: 

arg max( )
c ch

h k . (19)
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Consider the method in [11]. The canopy phase center height 
c

h  is calibrated by per-

forming a fitting analysis of the top height top
h  and the phase center height 

c
h  in some 

samples. 

top c
h m h n    (20)

where m and n are the coefficients of the equation. Finally, subtract g
h  from top

h  to get 

the estimated value of the forest height (CHM). 

In order to explain the proposed TomoSAR method more clearly, the specific process 

of SKP-IMLE spectral estimator is shown in Table 1. 

Table 1. Details of the sum of Kronecker products (SKP) decomposition and iterative maximum 

likelihood estimation (SKP-IMLE) estimator. TomoSAR: synthetic aperture radar tomography. 

SKP-IMLE TomoSAR Estimator 

1. Calculate the MPMB covariance matrix: 


  
1

1
( ) ( ) ( )

L
H H

l

W E yy y l y l
L

. 

2. SKP decomposition: g g c c
W C R C R    . 

3. Initialization: (0) 4

diag max2
( )         10  10

H

p

p

AR A
k p g or v i

N
    ， ， ， . 

4. Repeat: 

(1) 
( ) ( ) H 1(k )i i

p p p
M diag A R  ; 

(2) 
( ) ( ) ( )

diagdiag(( ( ) ) )i H i H i
p p pC A M M A ; 

(3) 
( ) ( ) ( )

diag( ( ) )i i i H
p p p pV M R M ; 

(4) 
( ) ( ) ( )

diagW ( ( ) )i i i H
p p n pM R M ; 

(5) 
( 1) ( ) -1 ( ) ( )( ) ( )i i i i

p p p pk C V W  . 

Until 
( 1) ( ) ( )

2 2 max
|| - || /|| ||  or i i i

p p p
k k k i i   . 

5. Extract underlying topography: argmax( )
DTM gh

h k .  

6. Extract forest height: arg max( ),  ,  
c c top c CHM top DTMh

h k h m h n h h h      .  

3. Study Area and Dataset 

In order to verify the correctness and feasibility of the SKP-IMLE Pol-TomoSAR 

method, the P-band full polarimetric focused SAR images of the TropiSAR2009 project 

were used for the real data experiments. The study area was located in Paracou, French 

Guiana, and its geographic location is shown in Figure 1. This test area was a tropical 

forest containing many tree species. The forest height in the test area was roughly between 

20 m and 45 m, and the altitude was between 5 m and 50 m. 

The test area has six passes of fully polarimetric SAR images that were acquired by 

the ONERA SEFHI airborne system. The baseline length between adjacent orbits was 

about 15 m, and the incident angle variety was between 20 degrees and 60 degrees. The 

system parameters and baseline parameters of the SAR data in the test area are shown in 

Table 2. In addition, the French Agricultural Research Center for International Develop-

ment (CIRAD) enabled the light detection and ranging (LiDAR) data to cover a small part 

of the test area, which was used to verify the correctness and accuracy of the inversion 

results. 
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Table 2. System parameters and baseline configuration of TropiSAR2009 data set. 

System Parameters 
Baseline Configuration 

Number Baseline Length 

Wavelength 0.7542 m 0402 0 m 

Center slant range 4905 m 0403 −14.4879 m 

Center incident angle 35.0614° 0404 −30.1163 m 

Range pixel spacing 1.000 m 0405 −43.8343 m 

Azimuth pixel spacing 1.245 m 0406 −60.0632 m 

Polarization Fully polarized 0407 −74.9683 m 

 

Figure 1. The geographic location of the study area. The yellow rectangle represents the footprint 

of the dataset. 

In order to evaluate the accuracy of the forest height and underlying topography re-

trieved by the proposed method, two test lines and two regions of interest (ROI) with 

different mean forest height were selected for inversion. The mean tree height of ROI1 

was 28.9 m and the mean tree height of ROI2 was 25.6 m. The positions of the two ROI in 

the SAR images and the corresponding averaged LiDAR DTM and CHM are shown in 

Figures 2 and 3. 

 

Figure 2. The LiDAR DTM and CHM in the Pauli RGB SAR images: (a) LiDAR DTM; (b) LiDAR 

CHM. The white dotted areas are two regions of interest (ROI). 
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Figure 3. The two test lines in the Pauli RGB SAR images of ROI1 and ROI2: (a) test line1 in ROI1; 

(b) test line2 in ROI2. 

4. Results 

4.1. Tomograms of the Selected Azimuth Profiles 

In order to verify the high resolution of the IMLE method in single-polarimetric 

TomoSAR and its ability to focus the canopy phase centers and the ground phase centers, 

two azimuth profiles (the red dashed lines in Figure 3) were selected for estimating the 

tomograms of HH channel and HV channel, respectively. 

In the inversion process, the window size used to estimate the covariance matrix of 

multibaseline SAR data was 39 × 39 pixels, which roughly corresponds to the 50 m × 50 m 

in the ground range and azimuth plane. In order to keep the balance between inversion 

accuracy and calculation efficiency, the maximum number of iterations was set to 10. 

Figure 4 shows the normalized tomograms of the two test lines at different locations 

estimated using the IMLE method. All the tomograms were clear and the phase centers of 

different scattering mechanisms were clearly distinguished. It can be seen from the tomo-

grams that the scattering power of the HH polarimetric channel was mainly concentrated 

on the ground (as shown in Figure 4a,c), while the scattering power of the HV polarimetric 

channel was mainly concentrated on the canopy (as shown in Figure 4b,d). In addition, 

the tomograms of all polarimetric channels were in agreement with the LiDAR data. 

 

Figure 4. The normalized tomograms of two test lines estimated by the IMLE method for two dif-

ferent polarimetric channels: (a) HH channel tomogram of test line1; (b) HV channel tomogram of 

test line1; (c) HH channel tomogram of test line2; (d) HV channel tomogram of test line2. The red 

dotted and solid lines represent DTM + CHM and DTM, respectively. 
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The inversion results of two test lines at different positions also confirmed that the 

IMLE method had good reconstruction performance at both near slant-range and far slant-

range locations. The continuous and highly focused phase centers of different scattering 

mechanisms were obtained from both polarimetric channels (see Figure 4). However, due 

to the influence of forest density, electromagnetic wave power, forest height, and other 

factors, there was no guarantee that vertical profile could generate two clear and separate 

peaks for all resolution cells. 

In order to obtain more accurate inversion results of forest height and underlying 

topography, as well as to make the inversion strategy more stable, the SKP-IMLE Pol-

TomoSAR estimator proposed in this paper could be used to estimate the tomograms of 

different scattering mechanisms for the two test lines. 

Figure 5 shows that the SKP-IMLE Pol-TomoSAR method obtained more focused 

tomograms than the IMLE method for a single polarimetric channel. The tomograms of 

canopy scattering and ground scattering at two test lines were continuous, which was 

consistent with the LiDAR data. The phase centers of different scattering mechanisms 

were accurately located from the corresponding tomograms. Most importantly, the SKP-

IMLE method ensured that we extracted the corresponding phase centers from the tomo-

grams in all resolution cells. 

 

Figure 5. The normalized tomograms of two test lines estimated by the SKP-IMLE method for two 

different scattering mechanisms: (a) ground scattering of test line1; (b) canopy scattering of test-

line1; (c) ground scattering of test line2; (d) canopy scattering of testline2. The red dotted and solid 

lines represent DTM+CHM and DTM, respectively. 

4.2. Forest Height and Underlying Topography Inversion 

Based on the high-quality tomograms obtained using the SKP-IMLE method, the 

phase centers of different scattering mechanisms were extracted. Then, the underlying 

topography could be inverted based on the height values of the ground phase centers, and 

the forest height could be inverted based on the height values of the canopy phase centers. 

It should be noted that the locations of treetop were above the locations of the canopy 

phase centers (as shown in Figure 5b,d). The extracted canopy phase center positions still 

need to be corrected. For this purpose, 18 samples were selected in the test area, and the 

average height of the LiDAR-based digital surface model (DSM) in each sample was used 

to calibrate the phase center height according to (20). After that, the DSM was inverted via 

the SKP-IMLE method was obtained according to the calibration criterion (as shown in 

Figure 6). The terrain height was subtracted from the DSM to obtain the estimated value 

of the forest height. 
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Figure 6. Correlation analysis between the LiDAR DSM and the canopy phase center height esti-

mated by the SKP-IMLE method. 

Figures 7 and 8 show the forest height and underlying topography retrieved via the 

SKP-IMLE Pol-TomoSAR method. The experimental results show that the SKP-IMLE 

method successfully reconstructed the underlying topography and forest height of the 

study area. Both the values of forest height and underlying terrain retrieved in the two 

ROIs were in good agreement with the LiDAR measurements. 

 

Figure 7. The DTM estimated by the SKP-IMLE method: (a) LiDAR DTM; (b) TomoSAR DTM. The 

white dotted areas are the estimated DTM and LiDAR DTM of the two regions of interest (ROI). 

 

Figure 8. The CHM estimated by the SKP-IMLE method: (a) LiDAR CHM; (b) TomoSAR CHM. 

The white dotted areas are the estimated CHM and LiDAR CHM of the two ROI.  
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4.3. Comparison Experiments 

In order to compare the reconstruction performance of the proposed method and the tradi-

tional Pol-TomoSAR methods (such as Pol-beamforming and Pol-Capon), the retrieved tomograms 

of test line1 were selected for analysis, and the forest height and underlying topography were ex-

tracted from the tomograms. The specific processes of the polarimetric Capon and beamforming 

methods were previously introduced in [24,25]. It should be noted that the window size used to 

estimate the covariance matrices in the beamforming method and Capon method was the same as 

that of the SKP-IMLE method. 

Taking the tomograms of test line1 as an example (as shown in Figure 9a,c), SKP-

IMLE obtained continuous and accurate phase centers. At the same time, the forest height 

and underlying topography retrieved from the tomograms were in agreement with the 

LiDAR measurements. 

Although the Pol-beamforming method and the Pol-Capon method have the ability 

to distinguish scatterers with different scattering mechanisms, they still cannot achieve 

accurate positioning of the phase centers. In some resolution cells, only the phase centers 

of one scattering mechanism can be detected, and the inverted phase centers are not con-

tinuous (see the blue elliptical areas in Figure 10a,c). Therefore, the underlying topogra-

phy and forest height information extracted by these two methods were not continuous 

(see the blue elliptical areas in Figure 10b,d). 

 

Figure 9. The normalized tomograms of test line1 estimated by SKP-IMLE method and the forest 

height and underlying topography extracted from the tomograms: (a) tomogram of ground scat-

tering; (b) estimated forest height of test line1; (c) tomogram of ground scattering; (d) estimated 

underlying topography of test line1. 

 

Figure 10. The normalized tomograms of test line1 estimated by traditional PolTomoSAR methods 

and the forest height and underlying topography extracted from the tomograms: (a) tomogram 
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estimated using Pol-beamforming method; (b) forest height and underlying topography of test 

line1 estimated using Pol-beamforming method; (c) tomogram estimated using Pol-Capon 

method; (d) forest height and underlying topography of test line1 estimated using Pol-Capon 

method. 

Figures 11 and 12 show the relationships between the inversion results and the Li-

DAR measurements. In addition, the root-mean-square error (RMSE) between the results 

and the LiDAR measurements is shown in Table 3. 

Figure 11 shows the results of three TomoSAR methods in ROI1. At the same time, 

the correlation coefficients between the inversion results and the LiDAR measurements 

were also calculated. The experimental results show that the inversion results of SKP-

IMLE were the most relevant to LiDAR measurements (as shown in Figure 11e,f), and had 

the highest inversion accuracy (as shown in Table 3). 

The mean tree height in ROI2 is lower than that of RO11, and the canopy phase cen-

ters may be closer to the ground phase centers. Therefore, the inversion of forest height 

and underlying topography in ROI2 requires higher vertical resolution. The experimental 

results show that the SKP-IMLE method maintained a good performance in this area (as 

shown in Figure 12e,f). However, the reconstruction performances of the traditional meth-

ods were significantly reduced. In particular, the inversion result of forest height became 

very unreliable. 

 

Figure 11. The relationships between the LiDAR and TomoSAR heights in ROI1: (a) LiDAR-based 

DTM and underlying topography by the Pol-beamforming method; (b) LiDAR-based DTM and 

underlying topography by the Pol-Capon method; (c) LiDAR-based DTM and underlying topog-

raphy by the SKP-IMLE method; (d) LiDAR-based CHM and forest height by the Pol-beamform-

ing method; (e) LiDAR-based CHM and forest height by the Pol-Capon method; (f) LiDAR-based 

CHM and forest height by the SKP-IMLE method. 
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Figure 12. The relationships between the LiDAR and TomoSAR heights in ROI2: (a) LiDAR-based DTM and underlying 

topography by the Pol-beamforming method; (b) LiDAR-based DTM and underlying topography by the Pol-Capon 

method; (c) LiDAR-based DTM and underlying topography by the SKP-IMLE method; (d) LiDAR-based CHM and forest 

height by the Pol-beamforming method; (e) LiDAR-based CHM and forest height by the Pol-Capon method; (f) LiDAR-

based CHM and forest height by the SKP-IMLE method. 

Table 3. Quantitative comparison of the employed methods with respect to LiDAR measurements. 

  
Pol-Beamforming Pol-Capon SKP-IMLE 

  

ROI1 
CHM (m) 3.390 3.076 1.997 

DTM (m) 2.014 1.769 1.489 

ROI2 
CHM (m) 5.871 4.750 1.765 

DTM (m) 3.076 2.429 1.786 

5. Discussion 

In the experiment using TropiSAR2009 SAR data set, two different ROI and two dif-

ferent profiles were chosen to verify and analyze the proposed SKP-IMLE TomoSAR 

method. The experimental results showed that the new method obtained continuous 

tomograms of different scattering mechanisms in forest areas (as shown in Figure 5). 

Based on high-quality tomograms, accurate forest height and underlying topography 

could be retrieved (as shown in Table 3). The performance of the proposed method was 

also compared with other methods. We found that the main factor affecting the inversion 

accuracy is the resolution of the TomoSAR method. Due to the superior performance of 

SKP-IMLE, it obtained higher inversion accuracy in both ROI. In ROI1, the RMSE of the 

estimations from the SKP-IMLE method was 1.489 m for the underlying topography and 

1.997 m for the forest height, which were both much less than the results of traditional 

spectral analysis methods. In ROI2, the inversion performances of the traditional methods 

were seriously degraded, but the SKP-IMLE method still obtained high-quality inversion 

results (as shown in Figure 12). In ROI2, the RMSE of the estimations from the SKP-IMLE 

method was 1.786 m for the underlying topography and 1.765 m for the forest height. Due 
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to the limitation of vertical resolution, the traditional TomoSAR methods had low accu-

racy in the inversion of forest height and underlying topography. The underlying topog-

raphy was obviously overestimated, while the forest height was obviously underesti-

mated (as shown in Figures 11 and 12). It was usually difficult to identify two separate 

phase centers in all pixels, resulting in large errors in the positioning of the phase centers. 

Although the proposed method has many advantages, there are still some limitations 

in actual forest monitoring. The stability of the algorithm under different baseline config-

urations needs to be discussed because there are several matrix-vector operations, includ-

ing matrix inversions. In addition, the algorithm needs to be optimized to improve its 

computational efficiency and improve its applicability in large-scale forest height inver-

sion. 

6. Conclusions 

In this paper, we proposed a Pol-TomoSAR method based on SKP decomposition 

and maximum likelihood estimation. The new method was used in the inversion of forest 

height and underlying topography over a tropical forest, and reliable results were ob-

tained. The performance of the proposed method was compared with two traditional 

TomoSAR methods. Through real data and comparative experiments, the following con-

clusions can be drawn: 

(1) The SKP-IMLE method has a high vertical resolution, so it can clearly distinguish the 

scatterers with different scattering mechanisms and achieve high focus of canopy 

scattering and ground scattering, which is very beneficial for forest height and un-

derlying topography extraction. However, the traditional TomoSAR methods (such 

as beamforming and Capon) have limited resolution, and there is no guarantee that 

the vertical profile generates two clear and separate peaks for all resolution cells. 

These shortcomings make the extraction of forest height and underlying topography 

using traditional spectral analysis methods prone to errors. 

(2) The proposed SKP-IMLE method can obtain good forest height and underlying to-

pography inversion results in tropical forests. With respect to LiDAR measurements, 

the SKP-IMLE method achieved high inversion accuracy in the two regions of inter-

est. 

In conclusion, the SKP-IMLE method has a high vertical resolution and can obtain 

reliable forest height and underlying topography inversion results even in dense tropical 

forest areas. Finally, further work will focus on using SKP-IMLE in SAR tomography with 

a small number of measurements. In addition, the proposed method will be used to esti-

mate the height of boreal forests to test its applicability in different types of forests. 
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