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Abstract: During a survey of diseased plants on Wando Island, Korea from May to June 2020, a
severe leaf spot disease was observed in the upper leaves of Japanese bay tree (Machilus thunbergii).
Early symptoms were light blackish spots on the leaf surface and enlargement of older spots. Dry leaf
spots surrounded with deep black margins were common throughout the plants. Symptomatic leaf
samples were collected, and the causal pathogen was isolated on potato dextrose agar (PDA). Three
fungal isolates (CMML20-1, CMML20-3, and CMML20-4) were cultured on PDA for morphological
characterization at 25 ◦C in the darkness. Fungal colonies were circular, fast-growing, olivaceous
to dark grey, and with abundant aerial mycelium. Sporulation was induced in 14 h-10 h light-dark
conditions, and the conidia were single-celled, thin-walled with a smooth surface, ellipsoid with
round apices, and measuring 17.5–20.5 (avg. 17.5) µm × 7.5–10.0 (7.9) µm. The morphological
characteristics resembled those typical for Neofusicoccum parvum. Molecular identification was
confirmed by partially sequencing the internal transcribed spacer (ITS) region and the translation
elongation factor 1-α (EF1-α) genes. Pathogenicity tests were conducted on detached leaves and
whole plants of M. thunbergii. High disease prevalence was observed, and Koch postulates were
fulfilled. This is the first worldwide report of N. parvum causing leaf spots on Machilus thunbergii.

Keywords: Machilus thunbergii; Neofusicoccum parvum; new host; phylogeny; Korea

1. Introduction

Machilus thunbergii Sieb. & Zucc., commonly known as the Japanese bay tree, is a
member of the Laurel family (Lauraceae), a diverse and widespread group found through-
out tropical and subtropical forest areas of the world, especially in southern Korea, Japan,
the Bonin Islands, the Ryukyus, Taiwan, and the warm temperate zones of China and
the Philippines [1–3]. It is a broad-leaved evergreen tree with the potential to grow 30 m
tall. Parts of M. thunbergii plants have been used as a traditional medicine to treat edema,
abdominal pain, and abdominal distension in Korea, China, and Japan [4,5]. Due to the
destruction of natural resources and the ecological environment, M. thunbergii has been
listed as a key wild plant protected nationwide in China [1]. Although plant pathogens
commonly cause diseases in this plant, few fungal pathogens have been reported for this
plant in Japan, China, Korea, and Taiwan. The fungi isolated from Korea were Endophyllum
machili (Henn.) F. Stevens, Phomopsis sp., PhytophthoMra cinnamomi Rands, and Glomerella
cingulata (Stoneman) Spauld. & H. Schrenk [6].

Neofusicoccum species, commonly cause diseases in woody plants worldwide [7]. N.
parvum (Pennycook & Samuels) [8] infects a wide range of host plants and can induce
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disease in plants [9]. Sakalidis et al. [7] collected, identified, and examined a total of 169
N. parvum from Australia, Chile, Colombia, Hawaii, Indonesia, New Zealand, and South
Africa from different host plants including Eucalyptus obliqua L’Hér., Syzgium cordatum
Hochst. ex Krauss, Actinidia sp. Lindl., Araucaria sp. Juss., Cinnamomum camphora (L.)
J. Presl., Malus sylvestris (L.) Mill., Mangifera indica L., Populus nigra (L.), Ribis sp., and
Tibouchina lepidota Baill. The pathogen has been isolated from many other plants such as
pome and stone fruit trees [10], blueberries [11], grapevines [12], Island pines [13], and
peaches [14]. Their study confirmed that the fungus is widely distributed. In the present
study, it was observed that the pathogen severely infects the leaves of M. thunbergii plants
in the forest areas of Wando Island in Korea.

Neofusicoccum parvum has been reported as the causal agent of branch cankers, dieback,
leaf spots, shoot blight, fruit rot, and trunk diseases [6,15]. Although N. parvum has been
associated with a number of plants and causing serious diseases, there has been no detailed
investigation of the importance of this pathogen in M. thunbergii. The present study
aimed to detect the disease, characterize the causal pathogen, and test and compare the
pathogenicity using different inoculation methods.

2. Materials and Methods
2.1. Fungal Isolation

During May to June 2020, a severe leaf spot disease was observed on the Japanese
bay tree (M. thunbergii) on Wando island of the Republic of Korea (latitude 34◦22′16.9′ ′ N,
length 126◦38′31.6′ ′ E). The island is in the southwestern part of the country and is famous
for its many species of forest trees. The disease was observed on the natural vegetation
of the plants and severe disease was prevalent throughout the island. Leaf spots leading
to necrosis appeared on the foliage and lesions developed on the margin or in the center
of the leaves with a chlorotic halo. The spots were common in the early stage of disease
formation; spots enlarged with age throughout the leaves and defoliation followed by
interrupted plant growth was common (Figure 1A,D). Infected leaves were collected in
plastic polyethylene bags, brought to the laboratory, and stored in a refrigerator prior to the
isolation of the pathogen. For isolation, the surfaces of the diseased leaves were sterilized
with 1% NaOCl solution for 1 min, rinsed with sterilized distilled water three times, and
then air-dried on filter paper in a laminar airflow chamber. Each leaf was then cut into small
pieces with a sterile scalpel and placed 5 to 6 segments onto potato dextrose agar (PDA)
supplemented with 50 µg/mL of streptomycin and ampicillin (MB cell, Seoul, Korea). After
incubation at 25 ◦C for 3–10 days, individual hyphal tips of the developing fungal colonies
were placed onto PDA and further incubated for 5–10 days for culture purity. Fungi with
similar colony morphology were obtained. Three representative isolates were selected,
assigned identification numbers (CMML20-1, CMML20-3, and CMML20-4), and preserved
in the Molecular Microbiology Lab., Chonnam National University, Gwangju, Republic of
Korea. The fungal isolates were preserved in 20% glycerol stock solution at −80 ◦C and
PDA slant tubes at 4 ◦C.

2.2. Morphology

For colony morphology, the fungus (CMML20-1) was cultured on PDA at 25 ◦C in
the dark for 7 days (Figure 1B). For microscopic observation, 5–7-day-old mycelia, were
scratched off and incubated under NUV (near-ultraviolet) light in 14 h–10 h light-dark
conditions for 3–5 days [16]. The size (n = 30) and shape of the conidia were determined
under a microscope (Olympus, Tokyo, Japan).
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Figure 1. The symptoms of leaves of Japanese bay tree and the morphology of Neofusicoccum par-
vum. Symptoms occurring naturally on leaves of Machilus thunbergii on Wando Island, Korea dur-
ing May to June 2020 (A,D). Obverse and reverse colony morphology on PDA at 25 °C for 7 days 
(B,C). Pycnidia and conidia induced to form under 14 h–10 h light dark conditions (E,F). Scale bars 
E = 100 μm and F = 25 μm. 
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gions, namely the internal transcribed spacer (ITS) and elongation factor 1- alpha (EF1-α) 
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GCT TAT TGA TAT GC) [18] and EF1-728F (CAT CGA GAA GTT CGA GAA GG)/EF1-
986R (TAC TTG AAG GAA CCC TTA CC) [19]. PCR amplification was carried out using 
a GeneAmp PCR system 2700 (Applied Biosystems, Massachusetts, USA) in a 25μL reac-
tion volume containing 0.25 μL of Takara Ex Taq® DNA polymerase (5U/μL), 2.5 μL of 
10X Ex Taq buffer, 2 μL of dNTP mixture (2.5 mM each), 1 μL of each primer (10 
pmoles/μL), 1 μL template DNA solution (100 ng/μL), and up to 25 μL of sterilized dis-
tilled water. PCR amplification was carried out under the following conditions: initial de-
naturation at 95 °C for 1 min, followed by 35 cycles of denaturation at 95 °C for 15 s, an-
nealing at 50 °C for ITS, 55 °C for EF1-α for 20 s, extension at 72 °C for 1min, and a final 
extension at 72 °C for 2 min. The PCR products were cleaned up using an ExoSAP-IT Kit 

Figure 1. The symptoms of leaves of Japanese bay tree and the morphology of Neofusicoccum parvum.
Symptoms occurring naturally on leaves of Machilus thunbergii on Wando Island, Korea during May to
June 2020 (A,D). Obverse and reverse colony morphology on PDA at 25 ◦C for 7 days (B,C). Pycnidia
and conidia induced to form under 14 h–10 h light dark conditions (E,F). Scale bars E = 100 µm and
F = 25 µm.

2.3. DNA Extraction, PCR Amplification and Sequencing

To confirm the identity of the fungus, total genomic DNA was extracted directly from
the mycelia grown on PDA using the CTAB DNA extraction method [17]. Two gene regions,
namely the internal transcribed spacer (ITS) and elongation factor 1- alpha (EF1-α) were
amplified using the primer pairs ITS1 (TCC GTA GGT GAA CCT GCG G)/ITS4 (TCC GCT
TAT TGA TAT GC) [18] and EF1-728F (CAT CGA GAA GTT CGA GAA GG)/EF1-986R
(TAC TTG AAG GAA CCC TTA CC) [19]. PCR amplification was carried out using a
GeneAmp PCR system 2700 (Applied Biosystems, Massachusetts, USA) in a 25µL reaction
volume containing 0.25 µL of Takara Ex Taq® DNA polymerase (5U/µL), 2.5 µL of 10X
Ex Taq buffer, 2 µL of dNTP mixture (2.5 mM each), 1 µL of each primer (10 pmoles/µL),
1 µL template DNA solution (100 ng/µL), and up to 25 µL of sterilized distilled water.
PCR amplification was carried out under the following conditions: initial denaturation
at 95 ◦C for 1 min, followed by 35 cycles of denaturation at 95 ◦C for 15 s, annealing at
50 ◦C for ITS, 55 ◦C for EF1-α for 20 s, extension at 72 ◦C for 1min, and a final extension
at 72 ◦C for 2 min. The PCR products were cleaned up using an ExoSAP-IT Kit (Applied
Biosystems, Massachusetts, USA) according to the manufacturer’s instructions. Purified
double stranded PCR products were directly sequenced with BigDye terminator cycle
sequencing kits by a commercial sequencing service provider (Macrogen, Daejeon, Korea)
in both directions. Gel electrophoresis and data collections were performed on an ABI
prism 310 genetic analyzer (Applied Biosystems, CA, USA).
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2.4. Molecular Phylogeny

Sequences of the isolates were subjected to Basic Local Alignment Search Tool (BLASTN)
searches using the National Center for Biotechnology Information (NCBI) database
(http://www.ncbi.nlm.nih.gov, accessed on 23 February 2021) to obtain sequence sim-
ilarity. Closely related sequences were obtained from GenBank for phylogenetic analysis
(Table 1) and were adjusted manually using the MEGA X program [20]. A maximum
parsimony (MP) phylogenetic tree was constructed for the combined datasets of the ITS
and EF1-α gene sequences.

2.5. Pathogenicity

Pathogenicity tests were artificially performed on detached leaves and whole plants.
For the detached leaf assay, the leaves were surface sterilized with 1% NaOCl for 3 min,
and then washed with distilled water three times. The dried leaves were inoculated with
agar plugs and spore suspension methods. The fungus was grown on PDA for 5 days at
25 ◦C and 5 mm agar plugs were taken and placed onto the adaxial and abaxial sides of
leaves with wounds; non-mycelium plugs served as a control [21,22]. Spores were collected,
counted using a hemocytometer, and adjusted to 1 × 105 spores/mL. Then, 20 µL of spore
suspensions were wound-inoculated to the adaxial and abaxial sides of the leaves, and
non-spore distilled water served as a control. The inoculated leaves were placed onto
filter paper in a 90 mm petri dish containing sealed water agar (2%) supplemented with
rifampicin (50 g/mL) [21]. The leaves were incubated at 25 ◦C for 21 days. Onset of
the disease was observed after 3 days and disease severity was calculated by measuring
the lengths of the lesions. In each replication, three to four leaves were used by cutting
into two parts and the pathogen was inoculated into these separate parts. A total of six
to eight lesions were measured to assess disease severity and the average lesion lengths
were used to prepare graphs. For the whole plant assay, the fungus was grown on PDB
at 25 ◦C for 5 days and mycelia were collected. One gram of mycelia was grinded in
30 mL sterilized distilled water. The grinded mycelia were sprayed onto the 4-year-old
whole plants and incubated at 25 ± 2 ◦C in a culture room; control plants were sprayed
with sterilized distilled water [23]. The plants were kept in high humidity conditions in
a covered plastic container for 3–4 days at 25 ◦C. The cover was then removed, and the
plants were transferred to a culture room maintained at a temperature of 25 ± 2 ◦C.

http://www.ncbi.nlm.nih.gov
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Table 1. Neofusicoccum species with their GenBank accession numbers used for phylogenetic analysis.

Species Isolate ID Host Origin
Accession No.

ITS EF1-Alpha

Neofusicoccum parvum CMML20-01 * Machilus thunbergii Sieb. & Zucc. South Korea MW142215 MW142216
Neofusicoccum parvum CMML20-03 M. thunbergii South Korea MW535296 MW535298
Neofusicoccum parvum CMML20-04 M. thunbergii South Korea MW535297 MW535299

Neofusicoccum umdonicola Pavlic, Slippers & M.J. Wingf. CBS 123644 Syzygium cordatum Hochst. ex Krauss South Africa KX464226 KX464759
Neofusicoccum occulatum Sakalidis & T. Burgess CBS 128008T Eucalyptus grandis W. Hill. hybrid Australia MH864743 EU339509

Neofusicoccum sinoeucalypti G.Q. Li & S.F. Chen CERC 2005T Eucalyptus urophylla S.T. Blake × E.
grandis W. Hill. China KX278061 KX278166

Neofusicoccum kwambonambiense Pavlic, Slippers & M.J. Wingf. CSF 6037 E. urophylla S.T. Blake × E. grandis China MT028610 MT028776
Neofusicoccum cordaticola Pavlic, Slippers CMW 14124 Syzygium cordatum Hochst. ex Krauss South Africa EU821925 EU821895

Neofusicoccum hongkongense G.Q. Li & S.F. Chen CERC 2973T Araucaria cunninghamii Mudie China KX278052 KX278157
Neofusicoccum parvum CBS 123652 S. cordatum Hochst. ex Krauss South Africa KX464184 KX464710
Neofusicoccum parvum CMW 9080 Populus nigra (L.) New Zealand AY236942 AY236887
Neofusicoccum parvum CERC 3503 E. urophylla × E. grandis China KX278059 KX278164

Neofusicoccum andinum Mohali, Slippers & M.J. Wingf. CBS 117,921 Eucalyptus sp. Venezuela KX464152 KX464647
Neofusicoccum macroclavatum (Burgess, Barber & Hardy) CBS 114149 Grevillea sp. R. Br. Ex. Knight Australia KX464174 KX464694

Neofusicoccum stellenboschiana Tao Yang & Crous CBS 282.70 Arum italicum Mill. Spain KX464225 KX464758
Neofusicoccum mangroviorum J.A.Osorio, Jol.Roux & Z.W.de Beer CMW 41365T Avicennia marina (Forssk.) Vierh South Africa NR_147360 KP860702

Neofusicoccum cryptoaustrale Pavlic, Maleme, Slippers & M.J. Wingf. CMW 23785T Eucalyptus sp. L’Hér South Africa NR_137718 FJ752713
Neofusicoccum viticlavatum (Niekerk & Crous) Crous CBS 123532 Oldenburgia sp. Less. South Africa KX464228 KX464761

Neofusicoccum pistaciarum Tao Yang & Crous CBS 113083T Pistacia vera (L.) USA NR_147367 KX464712
Neofusicoccum ursorum Pavlic, Maleme, Slippers & M.J. Wingf. CBS 122812 Eucalyptus sp. L’Hér South Africa KX464227 KX464760

Neofusicoccum terminaliae CBS 125264 Terminalia sericea Burch. Ex. DC. South Africa GQ471805 GQ471783
Neofusicoccum buxi Crous. CBS 113714 Buxus sempervirens (L.) Sweden KX464164 KX464677

Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not. CBS 110302 Vitis vinifera (L.) Portugal EU673174 AY573218

* CMML—Chonnam National University Molecular Microbiology Lab.; CBS—Centraalbureau voor Schimmelcultures, The Netherlands; CERC—China Eucalypt Research Center; CMW Fungal Culture
Collections in the University of Pretoria, South Africa. ‘T’ indicates type strain.
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3. Results
3.1. Fungus Isolation and Morphological Characterization

These isolates were fast-growing and formed many aerial mycelia which were initially
white but turned to gray to black over time. The reverse of the colonies was white, which
also became greyish to black with aging (Figure 1C). The conidial size ranged from 17.5–25.0
(avg. 20.8) µm × 7.5–10.0 (7.9) µm. Pycnidia were produced in PDA, and the size varied
from 370.6–908.9× 234.5–506.4 µm (Figure 1E,F). Morphologically, the fungus was identical
to the descriptions previously outlined for N. parvum [15,24,25].

3.2. Molecular Phylogeny

Sequences were submitted to GenBank for assigning accession numbers (Table 1).
BLASTN analysis of the sequences indicated that the sequences from the present study
matched well with the reliable reference sequences of Neofusicoccum parvum and showed
100% sequence similarity in ITS (strains UY1267, UY1366, and UY754), and 100% in EF1-α
gene (strains EFA 470, CMW26844, and CBS 110301). On the basis of the sequences of
these genes, a combined phylogenetic tree was constructed which revealed that the present
study isolates (CMML20-1, CMML20-3, and CMML20-4) produced a single clade with the
reliable reference strains of N. parvum (CMW 9080, CERC 3503 and CBS 123652) supported
by a high bootstrap value (Figure 2). Combined phylogenetic analysis confirmed the isolate
identification as N. parvum.

3.3. Pathogenicity Tests

It was found that disease initiation was rapid and produced significant disease in each
replicate after 5 days (Figure 3A–H). Results revealed that the disease was severe in all
the cases and inoculation of plugs from the fungal colony caused severe symptoms than
the inoculation of spore suspensions. However, there were differences in disease severity
between the adaxial and abaxial sides of the leaves. On the adaxial sides, the average lesion
length was 29.8, 33.9, and 27.9 mm in water agar, filter paper (plug), and filter paper spore
suspensions, respectively; on the other hand, the average lesion length was 10.3, 26.5, and
12.9 mm, respectively, on the abaxial sides. The average lesion lengths on the adaxial side
of the leaves in all inoculation methods were higher than the average lengths on the abaxial
side, but statistical analysis showed that only the average length between the adaxial
and abaxial sides using the water agar plug (WAP) method were statistically significant
(p < 0.05) (Figure 4). For the whole plant assay, after 5 days of incubation, the disease was
observed to be more severe in the upper leaves of the tree, and the disease occurred more
slowly in the lower leaves. The leaf spots disease developed and expanded from 2 to 5 days
(Figure 3I–L). The symptoms caused by the artificially inoculated pathogens were similar
to those observed naturally and the control plants remained healthy. The requirements
of Koch’s postulates were fulfilled. The fungus was constantly isolated from the lesions
of detached leaves as well as the leaves of artificially inoculated whole plants and was
identified as N. parvum on the basis both cultural and conidial morphology [25].
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Figure 2. A maximum parsimonious tree of the combined datasets of the internal transcribed spacer (ITS) and elongation
factor 1-α (EF1-α) sequences of the present study isolates and their relatives from GenBank. The consistency index is
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676 positions in the final dataset. Evolutionary analyses were conducted in MEGA X. The present study isolates are marked
in bold; ‘T’ indicates type strain.
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Machilus thunbergii. Detached leaf pathogenicity of N. parvum; Control adaxial (A), abaxial sides (E).
Fungus inoculated on adaxial and abaxial sides of the leaves by filter paper spore suspensions (FPS)
(B,F), filter paper plug (FPP) (C,G), or water agar plug (WAP) (D,H) methods, and cultured at 25 ◦C
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parvum sprayed on leaves—whole plant (K) and infected leaves in large view (L). Circle indicates
symptomatic leaves (K).
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Figure 4. Pathogenicity of detached leaves using fungal plug and spore suspensions methods. Fungal
inoculations were performed on adaxial and abaxial sides of the leaves. WAP, FPP, and FPS represent
the water agar plug, filter paper plug, and filter paper spore suspensions, respectively. * indicates a
statistically significant difference between the average lesion lengths on adaxial and abaxial sides of
the leaves by Student’s t-test (p < 0.05).
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4. Discussion

The Japanese bay tree is one of the most important forest trees in Japan, Korea, and
China. This plant is prevalent in coastal forest areas in Korea [1,2]. The bark and roots of
this plant are using as a traditional medicine in continental regions, while the wood is used
as mosquito repellent incense [26]. Lignin and alkaloids have been isolated from this plant
which contains health-beneficial properties [5,26].

Plant diseases are common to all plants, including Japanese bay trees. To date, little
research has been employed to investigate the occurrence and characterization of diseases
in this plant. Few plant pathogens except N. parvum have been reported for this plant in
China, Japan, Korea, and Taiwan; but this pathogen is common in many other plants [6].
The pathological characterization of this plant is little known in Korea. However, to save
this plant in the oriental region, it is necessary to know the pathogens associated with it.

During our study of forest pathology, we observed a serious disease occurring in the
leaves of Machilus thunbergii plants. The pathogen was identified through morphological
and molecular approaches by following methods applied earlier [27–31]. Leaf spot dis-
ease caused by the fungal pathogen Neofusicoccum parvum has been found in other forest
plants, including eucalyptus in Spain, blueberry in Korea, cannabis in Italy, and pine in
Australia [13,27–29]. Studies suggest that this pathogen may be a latent pathogen and
ubiquitous, being distributed across six continents in 29 countries and 90 plant species.
However, the disease has never been observed in M. thunbergii in any country in the world.
The pathogen has been reported from blueberry plants and walnut trees in Korea. The
presence of this fungal species in Korea represents a new threat to M. thunbergii in forest
areas of tropical and subtropical regions where climatic conditions favor the development
of the disease. In addition, woody trees under environmental stress or having incurred me-
chanical injuries in natural calamities like strong winds, typhoons, and cyclones are more
vulnerable to this pathogen [13]. Further investigation is required to determine factors
promoting diseases associated with Neofusicoccum parvum. This could inform strategies to
prevent and manage diseases caused by this fungus not only in Machilus thunbergii but also
in other plants and crops.
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