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Abstract: This study performed a pilot evaluation of the wood quality—defined by a single parameter:
dynamic modulus of elasticity (MOEdyn, N mm−2)—of small-leaved lime (Tilia cordata Mill.) trees
in urban areas. A search of the literature revealed few studies which examined the specifics of
tree wood development in urban areas. Little is known about the potential of wood from urban
trees wood of their suitability for the timber industry. In this study, an acoustic velocity measuring
system was used for wood quality assessment of small-leaved lime trees. The MOEdyn parameter
was evaluated for small-leaved lime trees growing in two urban locations (along the streets, and
in an urban park), with an additional sample of forest sites taken as the control. MOEdyn was
also assessed for small-leaved lime trees visually assigned to different health classes. The obtained
mean values of MOEdyn of 90–120-year old small-leaved lime trees in urban areas ranged between
2492.2 and 2715.8 N mm−2. For younger trees, the values of MOEdyn were lower in the urban areas
than in the forest site. Otherwise, the results of the study showed that the small-leaved lime wood
samples were of relatively good quality, even if the tree was classified as moderately damaged (which
could cause a potential risk to the community). Two alternatives for urban tree management can be
envisaged: (1) old trees could be left to grow to maintain the sustainability of an urban area until
their natural death, or (2) the wood from selected moderately damaged trees could be used to create
wood products, ensuring long-term carbon retention.

Keywords: Tilia cordata; urban trees; acoustic velocity method; dynamic modulus of elasticity

1. Introduction

The small-leaved lime (Tilia cordata Mill.) is a common unevenly distributed tree
species found in the temperate forest zones of Europe [1–4]. This tree species is more
common in mixed than in pure forest stands. In Western Europe, the small-leaved lime is
found in forests dominated by Quercus robur L., Fraxinus excelsior L., Acer pseudoplatanus L.,
Betula pendula Roth, Padus avium Mill., and Sorbus sp. [5]. In Eastern Europe, small-leaved
lime prevails in stands and grows together with Quercus sp. and Carpinus betulus L. [4].
The small-leaved lime is an important species for urban and recreational forestry and open
landscapes [5–8]. These trees are often planted individually or in groups along roadsides
and in urban parks. Up until now, too little attention has been paid to the growth of
small-leaved lime under different environmental conditions, possibly because of its low
economic value in the wood market. However, due to its wide ecological tolerance, this
species could become more important in forestry under changing climate conditions [9].

In Lithuania, the small-leaved lime, as the dominant tree species in forest stands,
occupies about 0.5 percent of total forest cover [10]. This tree species is the most common
species in urban areas of the country and comprises about 45 percent of the total urban tree
population [11,12]. Similarly, small-leaved lime trees account for about 24 percent of the
total urban tree population in Nordic countries, with a maximum cover of 46.3 percent in
Gothenburg [7].
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Urban trees are related to several site factors, including soil moisture, porosity, fer-
tility, and climatic factors [13,14]. The effects of limited root space, air pollution, water
stress, poor drainage, soil compaction and contamination on urban tree growth has been
documented [15,16]. In the northern regions, melting snow—containing salts used for
de-icing roads—has a negative impact on water quality, and can significantly damage
urban vegetation, including trees [17–19]. Overall, trees in urban areas are exposed to
relatively high stress, which often leads to shorter average lifespan [15,20–22]. The small-
leaved lime, among other deciduous species, is considered a relatively resistant native tree
species, and is adaptable to changing climatic conditions (e.g., higher temperature, drought
periods, etc.) [23,24]. Therefore, based on ecological and biogeographical principles, the
small-leaved lime is often selected for growing in the urban areas of Lithuania.

Previous research has reported that small-leaved lime wood has good technical qual-
ities; it is a strong and flexible wood with fine structure and uniform, straight-grained
texture, making it suitable for veneer [3,25]. The colors of the small-leaved lime’s sapwood
and heartwood are similar. Additionally, the dried wood remains stable and easily work-
able, which makes it easy to use for hand carving, turning, and the manufacture of musical
instruments, furniture, crates, and boxes [26]. However, the wood lacks durability and is
therefore unsuitable for most outdoor construction. The wood of the small-leaved lime
responds well to densification treatment, which improves dimensional wood stability but
reduces thermal stability [27]. The study by De Jaegere et al. [9] reported that the small-
leaved lime grows in a wide range of environmental conditions; among other ecological
and silvicultural features, this species shows potential for wood production in Europe.

The environmental conditions in urban area—including enhanced air, soil and wa-
ter pollution, among other disturbances—alter the wood structure of trees, reduce their
growth and vitality, and can cause higher tree mortality [28]. Up until now, too little
attention has been paid to the wood formation and quality of urban trees [29]. Only a few
studies have investigated the growth and phenology of small-leaved lime trees in urban
environments [30].

An acoustic method has often been used for determining the wood quality of standing
trees and logs; it could also be used for standing urban trees [31–33]. Moreover, earlier
studies [34] showed a good correlation (R2 = 0.63 to 0.91) between stress wave speed and
the dynamic modulus of elasticity (MOE) of standing trees. This method could allow
researchers to obtain data such as the MOE (an important wood parameter) and use them
to develop appropriate management methods for urban trees.

This study aimed to perform a pilot evaluation of a basic wood quality parameter
(dynamic modulus of elasticity) of standing small-leaved lime (Tilia cordata Mill.) trees in
urban areas. The data obtained from urban areas was compared with forested areas.

2. Materials and Methods
2.1. Site Characteristics

The study was carried out in western (Klaipėda city, 55◦43′01′′ N, 21◦07′02′′ E) Lithua-
nia. The mean annual temperature was 6.9 ◦C and the mean annual precipitation was
695 mm [35].

In Klaipėda city, the air quality (the parameters SO2, NO2, CO, and PM10) in the
living environment is mostly affected by the activities of Klaipėda State Seaport, Klaipėda
Stevedoring Company (KLASCO) and road transport [36]. Overall, the air pollution is
described as low to moderate.

For this study, 90–120-year old small-leaved lime trees (grown in four streets and in
City Park in Klaipėda city) were selected, after identifying that all selected trees had similar
growth conditions. Tree age was fixed from historical data provided by the institutions
of Klaipėda city. For control, two sites with 90–120-year old small-leaved lime trees were
selected in pure small-leaved lime stands in nonurban areas. In total, 292 small-leaved lime
trees were assessed in the summer and autumn of 2019–2020.
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2.2. Tree Health Assessment

The health condition of the selected urban trees was assessed visually according
to requirements approved by order of the Minister of Environment of the Republic of
Lithuania in 2008 and updated in 2020 [37]. All assessed trees were assigned to one of
the following classes: (1) healthy trees, e.g., trees which were normally developed, with
dense, evenly distributed foliage, leaves of normal size and color, and no signs of disease,
pests, wounds, stem or branch damage, or tree hollows; (2) slightly damaged trees, e.g.,
trees which are healthy, but exhibited small shoot growth, less foliage, unevenly developed
crowns, signs of minor mechanical/pest damage, or small tree hollows; (3) moderately
damaged trees, e.g., trees that were obviously weakened, overshaded by other trees,
severely damaged by diseases or pests, or exhibited weakly developed crowns, drying or
dried branches, little to no shoot grown, dry tops, damaged stems, large hollows, or raised
tree roots; (4) severely damaged trees, e.g., trees in which the crown was more than 50%
leafless or the stem was more than 40% rotten (including invisible rot noted upon cutting
down of the tree). Examples of healthy and damaged small-leaved lime trees are given in
Figures 1 and 2.
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Figure 1. Examples of healthy and damaged trees in Donelaicio Park. (A) Healthy tree, Donelaicio
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2.3. Wood Quality Assessment

For wood quality assessment of small-leaved lime trees in urban areas, the acoustic
velocity measuring system was used. The approach of time-of-flight (TOF) of a single pulse
wave was taken for this study. The TOF measures the time for the stress wave to travel
from the transmit probes to the receiver probes. Data on longitudinal acoustic waves were
obtained. The acoustic tool ARBOTOM 3D (Rinntech), which was specifically designed for
standing trees, was used for this study.

For each analysis, the standing tree stem was divided into two sections: 0–1 m section,
and 1–2 m section (from the ground) (Figure 3). In each standing tree stem, three levels
were marked: ground-level, one meter from the ground, and two meters from the ground.
The diameter of each section’s top-end (at 1 and 2 m above the ground) was measured
before calculating distances between nails. Then, five nails were inserted at equal distances
from each other into the stembark at each level of the stem. Probes were fixed on the
nails. To measure acoustic velocity waves, the start probe was connected with the second
probe, and the second to the third, and so on until each probe was connected in order. A
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total of 15 sensor probes (transmit and receiver probes) were inserted a few centimeters
into the sapwood of each tree in a vertical plane. Acoustic energy was introduced into
the tree through hammer impact. In order to achieve best results, each probe was hit not
less than five times. In each section, 50 measurements were made. The acoustic velocity
was calculated from the distance between the two sensor probes and the TOF data for
each section.
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The modulus of elasticity was taken as the most important parameter for the assess-
ment of wood quality. Following the methodology applied in previous studies [38–42],
the dynamic modulus of elasticity (MOEdyn) was estimated from the velocity of acoustic
waves passing through the wood, according to the Formula (1):

MOEdyn = ρ V2 (1)

Here, MOEdyn is dynamic modulus of elasticity; ρ is wood density; and V is velocity of
acoustic waves.

To ensure nondestructive testing, wood density of 1000 kg m−3 was taken as a fixed
parameter [43]. The dynamic modulus of elasticity was calculated for two sections per each
standing tree, totaling 584 sections.

2.4. Statistical Analyses

The obtained data were analyzed using the statistical package SAS 9.4 (SAS Institute Inc.,
Cary, NC, USA). To determine significant differences between the sites, ANOVA was per-
formed, followed by the Student–Newman–Keuls multiple range test. Different letters next to
mean values show statistically significant differences at p < 0.05 between the sites.

3. Results
3.1. Wood Quality Measurements

The mean values of the top-end diameter (Dtop-end, cm) and the dynamic modulus of
elasticity (MOEdyn, N mm−2) of the small-leaved lime trees at each site are summarized in
Table 1.

Table 1. Mean top-end diameter (Dtop–end, cm) and the dynamic modulus of elasticity (MOEdyn,
N mm−2) of small-leaved lime trees from different sites. The std. error of the mean is given next to the
mean. Different letters indicate statistically significant differences between the sites at p < 0.05 levels.

Sites n * Tree Age (Years) Dtop–end (cm) MOEdyn (N mm−2)

Neries Street 82 120 39.9 ± 0.7 c 2636.6 ± 77.4 b
Vilties Street 74 120 37.0 ± 0.8 d 2867.8 ± 96.6 b

Sportininku Street 82 90 33.7 ± 0.7 e 2776.9 ± 66.2 b
Tilzes Street 144 90 34.6 ± 0.5 e 2654.6 ± 46.7 b

Donelaicio Park 120 120 57.2 ± 0.8 a 1972.3 ± 56.6 c

Forest Site 1 40 120 42.9 ± 1.6 b 1838.0 ± 63.2 c
Forest Site 2 42 90 33.4 ± 0.9 e 4604.7 ± 138.3 a

* n shows the number of observations made for two sections of each selected standing tree.

For the urban small-leaved lime trees, the Dtop–end varied in a range from 33.7 ± 0.7 cm
to 57.2 ± 0.8 cm. For the forest trees, variance fell within a range of 33.4–42.9 cm. The
parameter Dtop–end at all sites was 1.2–1.3 times higher for 120-year old trees than for
younger trees. The highest mean values of Dtop–end were obtained for trees in the urban
park; the Dtop–end was 1.5 times higher than the values for the trees in the street sites and
the forest site.

The mean values of the MOEdyn parameter showed larger variability between forest
trees of different ages than between trees grown in urban and forest sites (Table 1). Tree
age was not shown to have an effect on the mean MOEdyn in any of the urban sites. The
lowest mean values of MOEdyn were obtained for the trees at the urban park.

To eliminate the influence of tree age on the evaluated parameters, trees of similar
age were analyzed separately (Figure 4). The variation of the values of Dtop–end of 90-year
old trees across all sites was insignificant. In the sites with 120-year old trees, significantly
higher values of Dtop–end were obtained in the urban park and forest site (compared to the
urban streets). The highest values of the parameter MOEdyn were found in 90-year old
small-leaved lime trees in the forest sites, rather than in the urban areas. For older trees,
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higher values of MOEdyn were obtained in urban streets. No significant differences were
found between the values of MOEdyn for trees in the urban park and the forest site.
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top of the columns show statistically significant differences between the sites within each tree age group (separately for 90-
and 120-year old trees) at p < 0.05.

The health of selected small-leaved lime trees in urban areas was assessed, and they
were assigned to different health classes. Health classes 1, 2, 3 and 4 consisted of 25%, 30%,
24%, and 21% of all measured urban trees, respectively. The obtained MOEdyn values of
the small-leaved lime trees were similar for trees assigned to health classes 1–3 (Figure 5).
However, significantly lower values of MOEdyn were obtained for trees in the 4th health
class, representing severely damaged trees.
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3.2. Relations between Wood Quality Parameters

The correlation analysis between the top-end diameter (Dtop–end, cm) and the dynamic
modulus of elasticity (MOEdyn, N mm−2) of the small-leaved lime trees showed moderate
negative correlation (r = 0.495) (Figure 6). Overall, the increase in Dtop–end resulted in the
decrease of MOEdyn.
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(MOEdyn, N mm−2) of small-leaved lime trees in urban sites (analysis included all data, n = 584).

To identify differences between the sites, the data were analyzed separately for trees
growing along urban streets, in the urban park, and in the forest (Figure 7). The best
correlation (r = 0.588) between the Dtop–end and the MOEdyn of the small-leaved lime trees
was obtained for trees in the forest sites. For the trees in the urban park, this correlation
was relatively weak (r = 0.357). The weakest correlation (r = 0.290) was obtained for the
small-leaved lime trees growing along the urban streets.
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4. Discussion

The present study found large variations of the dynamic modulus of elasticity (MOE-
dyn, N mm−2) of small-leaved lime trees in different sites (i.e., urban areas and forest
sites). However, the MOEdyn parameter was related to different growing conditions
and basic tree characteristics. The older urban trees had lower MOEdyn values, which
could be related to specific environmental conditions of the urban area [15,16]. During a
relatively long period of tree growth, environmental stressors in an urbanized territory
could negatively impact tree growth and wood quality. Limited availability of soil, water,
and nutrients in an urban environment can also affect tree root infrastructure. On the
other hand, in some places, roots grow in areas under sidewalks and roads that provide
sufficient water and nutrients for tree survival and growth [44]. In urban areas, mechanical
loads of constructions, vehicles and pedestrians cause soil compaction; soil macropores
necessary for ventilation and irrigation are lost [18,45]. Current management strategies
aim at increasing tree hydration in urban areas, which may reduce the effects of key stres-
sors [46]. De-icing salt often causes direct damage to trees and other urban vegetation,
inducing plant necrosis, followed by chemical drought (decreased availability of water
to plant roots) [17–19,47]. Problems related to the use of salt in ice prevention on streets
and pavements are quite common in the Nordic and Baltic countries [48,49]. The trend of
higher mean annual temperatures and longer vegetation periods in urban areas (compared
to forests) induces specific growth responses in urban vegetation [6,50]. Species with lower
frost resistance can be successfully planted in urban areas [51]. However, unusually higher
temperatures, lower humidity, drought, and increased air pollution during the growing
season can negatively affect the growth and viability of many species [6,19,52,53].

Despite the specifics of growing conditions in urban areas, the evaluated small-leaved
lime trees showed relatively good wood quality. Even those small-leaved lime trees that
were visually evaluated as slightly or moderately damaged (assigned to 2nd and 3rd health
classes, according to the Ref. [37]) showed relatively high values of the MOEdyn parameter
for urban areas. This means that a more accurate determination of the health status of
urban trees should be preferred over a visual assessment. Our results showed that even
if a small-leaved lime tree was classified as moderately damaged (assigned to the 3rd
health class), its wood showed quality parameters suitable for the timber industry. We
considered that the trees assigned to the 3rd and 4th health classes could become potential
risks to public health and safety; their management should be discussed. Only healthy
trees contribute to the overall value of urban green areas. The timber industry is unlikely
to benefit significantly from such amounts, and it is important to keep the trees with higher
quality wood in the urban environment if possible. Therefore, we could cautiously assume
that wood from (removed) moderately damaged urban trees could be used for wood
products while maintaining further carbon storage in the wood.

Urban trees provide various ecosystem services (air cleaning, aesthetic value, etc.). To
ensure the long-term sustainability of urban plantations and avoid the removal of lots of
old trees all at once, it is important to address continuous renewal and permanent arboreal
management in urban areas. The removal of moderately and severely damaged urban lime
trees—in order to replace them gradually with new ones—could serve as a tool for more
intensive carbon sequestration in urban areas. This should be especially emphasized for
small-leaved lime trees, which are noted for their rapid height growth while at young ages
(15–25 years) [9]. At the same time, a fairly large proportion of old, stable, and high-quality
trees could be maintained. In this study, we also found a corrrelation between the top-end
diameter (Dtop-end) of urban small-leaved lime trees and their wood quality (defined by
MOEdyn). The obtained results showed lower values of MOEdyn for older small-leaved
lime trees, and for trees with higher Dtop–end values. For urban trees along the streets,
which were pruned in the past, the parameters Dtop–end and MOEdyn did not correlate.
Most likely, pruning affected the growth and development of the 1–2-m stem section. These
data must be interpreted with caution because this pilot study did not include detailed
historical data and environmental conditions for the whole growth period of 90–120 years.
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In this city, the urban environment is quite dynamic, and has changed significantly in
recent decades.

The growing of urban trees is more often related to principles of urban sustainability.
In this study, we highlighted a potential way to improve the durability of urban trees
via more intensive monitoring of their health status, i.e., assessing the tree wood quality
using nondestructive methods. A full view of the wood properties of urban trees could
be obtained if more parameters of wood quality were included. It would be possible if a
combination of nondestructive and destructive methods were used. Some of the issues
emerging from this study relate specifically to small-leaved lime trees. Further studies on
the current topic will need to be undertaken.

5. Conclusions

This pilot study was designed to evaluate the wood quality of small-leaved lime
(Tilia cordata Mill.) trees in an urban area, using dynamic modulus of elasticity as the main
parameter. The results of this study showed that 90–120-year old small-leaved lime trees
growing in the studied urban area still had the potential to be used in the timber industry.
The data analysis revealed lower dynamic modulus of elasticity (MOEdyn, N mm−2) of
small-leaved lime trees in the urban area, when compared with the control group forest
sites. However, tree age was indicated as an important factor for wood quality assessment
in urban areas, as 90-year old trees exhibited higher mean values of MOEdyn than for
120-years old small-leaved lime trees. Another finding of this pilot study was that the top-
end diameter (Dtop–end) of urban trees moderately correlated with the MOEdyn parameter,
which meant that the wood of larger diameter trees was of poorer quality.

Overall, the empirical findings of this study provide two insights into urban tree
management: (1) the health of old urban trees should be sustained until it poses a risk
for the community, at which point the wood waste could be used as biomass for fuel or
compost; (2) moderately damaged urban trees with high-quality wood could be removed
and used for wood products, (i.e., continued carbon retention). Replanting politics should
be applied quickly, as replanting also contributes to continuous carbon sequestration in
urban areas.
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