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Abstract: Forest sustainable management aims to maintain the income of woody goods for companies,
together with preserving non-productive functions as a benefit for the community. Due to the progress
in platforms and sensors and the opening of the dedicated market, unmanned aerial vehicle–remote
sensing (UAV–RS) is improving its key role in the forestry sector as a tool for sustainable management.
The use of UAV (Unmanned Aerial Vehicle) in precision forestry has exponentially increased in recent
years, as demonstrated by more than 600 references published from 2018 until mid-2020 that were
found in the Web of Science database by searching for “UAV” + “forest”. This result is even more
surprising when compared with similar research for “UAV” + “agriculture”, from which emerge
about 470 references. This shows how UAV–RS research forestry is gaining increasing popularity. In
Part II of this review, analyzing the main findings of the reviewed papers (227), numerous strengths
emerge concerning research technical issues. UAV–RS is fully applicated for obtaining accurate
information from practical parameters (height, diameter at breast height (DBH), and biomass).
Research effectiveness and soundness demonstrate that UAV–RS is now ready to be applied in a
real management context. Some critical issues and barriers in transferring research products are also
evident, namely, (1) hyperspectral sensors are poorly used, and their novel applications should be
based on the capability of acquiring tree spectral signature especially for pest and diseases detection,
(2) automatic processes for image analysis are poorly flexible or based on proprietary software
at the expense of flexible and open-source tools that can foster researcher activities and support
technology transfer among all forestry stakeholders, and (3) a clear lack exist in sensors and platforms
interoperability for large-scale applications and for enabling data interoperability.

Keywords: UAV; drone; precision forestry; forest management; meta-analysis; inventory parameters;
biomass; hyperspectral; machine learning; technology transfer

1. Introduction

It is now undoubted that the scientific production on the use of UAV (Unmanned
Aerial Vehicle) for forest remote sensing is growing exponentially, especially in recent
years [1]. In this framework, it may prove useful to arrange and analyze the unmanned
aerial vehicle–remote sensing (UAV–RS) scientific knowledge and based solutions to make
it easily accessible both to researchers and to forestry stakeholders, such as foresters,
consulting companies, and public organisms for improving sustainable forest management
and conservation [2].

The present review is organized into two parts (Part I and Part II) and tries to ac-
complish a systematic analysis of the recent peer-reviewed literature (2018–mid-2020) on
using UAV in forestry remote sensing (RS) applications. The focus is on exploring existing
new research papers and dealing with both purely scientific issues and practical applica-
tions to the forestry sector. Part I deals with general aspects of applying UAV in natural,
semi-natural, and artificial forestry ecosystems, with the aims of (1) creating a selected

Forests 2021, 12, 397. https://doi.org/10.3390/f12040397 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-1619-4826
https://orcid.org/0000-0001-9184-0707
https://orcid.org/0000-0003-0065-1113
https://orcid.org/0000-0001-8244-2985
https://doi.org/10.3390/f12040397
https://doi.org/10.3390/f12040397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12040397
https://www.mdpi.com/journal/forests
https://www.mdpi.com/1999-4907/12/4/397?type=check_update&version=2


Forests 2021, 12, 397 2 of 41

bibliographic dataset that other researchers can draw on, (2) analyzing general and recent
trends in RS forest monitoring, and (3) reveal gaps in the general research framework. The
targeted audience is mainly represented by forest stakeholders (entrepreneurs, technicians,
public authorities) and young researchers who want to approach UAV–RS in forestry.
Furthermore, even skilled researchers could benefit from Part I, as underpinning for their
activities [3].

In this paper (Part II), the authors intend to give a clear picture of recent advances
in forest UAV remote sensing and wish to increase general understanding of the current
research topic by synthesizing technical key points from previous scientific papers. In
particular, specific goals are threefold: (1) to give an overview of the technical issues ad-
dressed by researchers and identify the most popular forestry topics to lay the foundations
for the widespread of practical applications through forestry sector stakeholders, (2) to
show how different UAV systems (platform + sensor) are used for multipurpose tasks and
provide advice on pros and cons of the highlighted solutions, and (3) to reveal critical
points (not only at the technological level) where additional effort is needed and suggest
future directions to address the research questions that could not be resolved with this
synthesis. Part II of the present review is primarily aimed at a skilled audience, such as
expert researchers, technicians, and consultants.

After a brief synthesis of the workflow for the dataset creation, the Materials and
Methods Section presents the research questions utilized for guiding the systematic analysis
along with specific technical issues investigated for each topic. Basing on a rigorous review,
results are elaborated to address the pivotal research questions for the set of studies,
previously clustered by six forestry topics. Here, the authors present, where applicable,
a focus for each topic sub-section on hyperspectral sensors, comparison with other RS
platforms, and gathering and use of field data. Then, the discussion section focuses on
the comparison of different UAV system solutions, technical advantages and drawbacks
of the reviewed UAV technology, and considerations on technology transfer of UAV–RS
in a real management context. Finally, the main conclusions stemming from Part II of the
present review are drawn, outlining both popular topics and strengths and providing some
suggestions for research gap filling and future hot points.

2. Materials and Methods
2.1. Workflow for Dataset Creation

The specific details for searching comprehensive literature and retrieving the final
dataset are described in the first paper of this series (Part I) [3]. Briefly, the authors type the
Web of Science search engine a combination of semantic keywords for the investigated topic
(“UAV”, “unmanned aerial vehicle”, “UAS” (Unmanned Aerial System), “unmanned aerial
system”, “drone” + “forest” or “forestry”). Through the exclusion criteria available in the
search engine, papers are filtered for time boundaries (from 2018 to 30 June 2020), document
type (original articles, conference papers, book chapters), and language (English). The
second filtering step consists of applying customized exclusion criteria such as (1) paper
adequacy to review aims, (2) relevance of publishing source and paper citations, and
(3) online availability within bibliographic resources of our research Institute. Finally, a
database of 227 peer-reviewed works was created to analyze and discuss both generic
(Part I) [3] and specific issues (Part II) on using UAV–RS in the forestry sector, regarding
recent applications (2018–mid-2020).

2.2. Topic Classification and Related Research Questions

Papers have been categorized into six main topics following the main research issues
investigated in the selected papers. The addressed topics are listed below while a brief
description of each topic is reported in Part I [3]. After categorization, information ex-
traction from each paper is carried out following three degrees of detail. Firstly, general
data for paper identification through publication year, author, title, publication name,
and publication type are collected. Secondly, technical details common to all research
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papers regarding, sensor type, study location (continent and country), forest type, plant
group, species are extracted; moreover, a focus on machine learning techniques (crown
segmentation algorithms/object detection methods), other RS platform uses or comparison
and ground truth data are performed, when relevant. Thirdly, for an in-depth analysis,
specific information is gathered considering the particularities of each topic.

This synthesis is then used to address the research questions (RQs), which are reported
below together with the topic list and topic-specific information gathered in the third step
of paper analysis. The authors compiled the RQs that allowed both a systematic report of
the results and a comparison between different papers within the same category.

1. Setting and accuracy of imagery products:

The acquisition, preprocessing and processing of UAV data for forest structure char-
acterization are the key issues within this topic. Photogrammetry software and related
versions, where available, are analyzed, which are used for processing UAV data for forest
structure characterization.

RQs: What are the flight and imagery processing settings the researchers have focused
on? What are the most generated products? How these products and their creation differ
between scientific papers?

2. Tree detection and inventory parameters:

This topic encompasses the retrieving of several forest inventory parameters, such
as height diameter at breast height (DBH), crown area, etc. Considering that individual
tree detection and crown delineation are hot issues within this topic, the focus is on crown
segmentation algorithms and object detection methods. Additionally, information on
software packages employed to implement machine learning techniques is gathered.

RQs: What are the most investigated forest structural parameters? What purpose their
estimation served? What are the main machine learning techniques that have been used
for tree detection and delineation?

3. Aboveground biomass/volume estimation:

Biomass estimation is a key issue in UAV–RS forest monitoring. The authors collect
the biomass parameter on which the assessment is centered (i.e., aboveground biomass
(AGB), overall volume, stock growing volume, carbon content). Then, allometric equations or
modeling methods for retrieving and upscaling UAV-monitored biomass are also highlighted.

RQs: What purpose their estimation served? What are the main machine learning
techniques that have been used for tree detection and delineation? What kind of allometric
equations the do authors use?

4. Pest and disease detection:

Examining papers dealing with forest health monitoring, the review focuses on the
host–pathogen system. Therefore, tree species involved in pathogen outbreak are identified
and causal agent (disease, insect pest or abiotic stressor) has been classified.

RQs: Which diseases or pests are mainly discussed? In which types of forests is
disease incidence most severe? Which sensors are diseases monitored with?

5. Species recognition and invasive plant detection:

In this topic, the recognition goals of the selected studies are underlined. In particular,
papers are classified according to their main aim, i.e., assessment of species (dominant or
not) in forest stands or spatial analysis of weed/alien plant invasions. A brief description of
the general context in which the studies are carried out and target species are also specified.
Moreover, as in the case of inventory parameters topic, crown segmentation algorithms
and object detection methods are analyzed due to their importance in crown delineation
and tree detection.

RQs: What are the main goals for which tree recognition is applied? Which invasive
species are mapped the most and in which type of ecosystem/research place? What are the
main machine learning techniques that have been used for tree detection and delineation?
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6. Conservation, restoration, and fire monitoring:

This section includes a broad range of sub-topics. Hence, there is a need to clarify what
is the main objective for each study. The present review categorizes into different groups
the selected papers that have the following research purposes: land-use classification,
biodiversity conservation, fire monitoring, post-disturbance monitoring, and restoration.

RQs: What are the main sensors employed in the conservation sub-topic? In which
cases concerning the restoration is UAV technology used? What are the main research
applications, and which are the sensors utilized in fire monitoring?

At the end of each topic section, the authors present, where applicable, a focus on
hyperspectral sensors, comparison with other RS platforms, and gathering and use of
field data. The RQs that helped us report findings and structure related discussions are
the following:

RQs: Which applications are the hyperspectral sensor used for? How are other RS
platforms used, and what pros and cons emerge? What are the inventory parameters
collected as ground data, and how they are used?

3. Results
3.1. Global Results: A Brief Recap of Part I

A total of 227 papers were selected to form the final dataset of the present systematic
review. The global analysis results together with the displaying of the overall dataset are
reported in Part I [3]. Below, the authors report a brief synthesis of the general results
achieved after applying the second level of the filtering criteria (adequacy, relevance, and
paper availability) in Part I. Hence, it emerges that, even in the short timespan analyzed
(2018–mid-2020), the trend in the increase of the number of scientific publications in UAV-
based forestry research seems to be confirmed, considering also the projection for 2020.
Analyzing the geographic distribution of research sites, Asia and Europe are top-ranked for
scientific production (33% and 31%, respectively), while Africa presents only five research
items. The researchers have focused mainly on natural forests (142 papers) and, among
plant groups, on broadleaf woodland (37%). Tree detection and inventory parameters are
the most discussed topic (42%), while pest and disease detection are poorly addressed
(7%). The settings of image accuracy and AGB estimation are particularly discussed in the
natural forest and, as could be expected, species recognition and invasive plant detection
are not tackled in the planted/irregular forest. Regarding sensors, it turns out that the
RGB (Red Green Blue) camera emerges by far from other technologies, having been used
in almost 51% of the selected papers, especially for gathering tree inventory parameters.

From here on, the authors systematically report findings on the selected UAV forestry
topics that researchers have dwelt on and on the recent advances gained.

3.2. Setting and Accuracy of Imagery Products

The research papers dealing with setting and accuracy of imagery products are 22
and are reported in Table 1; all of these papers are carried out on natural/irregular forests,
except for [4–6].

As we can infer from Table 1, the most used photogrammetry software is AgiSoft
Photoscan (Agisoft LLC, St. Petersburg, Russia), from version 1.2.2 to 1.4.6 [4,7–17]. Some
of the reviewed studies perform a comparison among leading structure from motion (SfM)
packages for UAV image processing [5,18,19]. In particular, Brach et al. [19] examine six
of the most frequently used photogrammetric software in forestry applications: AgisSoft
Photoscan, DroneDeploy (San Francisco, CA, USA), Pix4Dmapper (Pix4D S.A., Lausanne,
Switzerland), APS (Menci Software S.r.l., Arezzo, Italy), PrecisionMapper (PrecisionHawk,
Raleigh, NC, USA), and Maps Made Easy (Drones Made Easy, San Diego, CA, USA. In
addition to photogrammetric software performances, researchers have focused on image
acquisition setting in terms of flying height [16,18], overlap [7,13,16], timing [10,20,21] and
resolution [16].
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The comparison of UAV digital aerial photogrammetry (DAP) imagery products with
other imagery sources represents an interesting issue in analyzing this topic. A terrestrial
laser scanning (TLS) derived ground point cloud is employed as the ground reference for
UAV digital terrain model (DTM) in teak plantations [4], while Graham et al. [22] compare
error values of the UAV digital elevation model (DEM) with airborne laser scanning (ALS)
point clouds generated in stratified classes of canopy cover.

Only a few studies utilize the hyperspectral sensor. Hakala et al. [11] and Oliveira et al. [15]
use a 2D Fabry–Pérot interferometer-based (FPI) camera (prototype 2012b) (VTT Photonic
Devices and Measurement Solutions, Espoo; Finland), while Yu et al. [23] present a pipeline
to correct spatial coordinates of images acquired by a Gaia sky-mini pushbroom hyperspec-
tral imaging system.

UAVs are compared with other RS platforms using airborne lidar [12] or spaceborne
optical sensors, such as in [14], in which mangroves are mapped also with Pleiades multi-
spectral images. Moreover, aircraft imagery products are used as a reference for accuracy
assessment [13,24].

Through the present topic, only four studies carried out intensive field campaigns.
Diaz et al. [5] and Aguilar et al. [4] acquire data from a TLS. Jayathunga et al. [12] collect,
in two consecutive years, DBH, species, and height of eight canopy trees in each of the
105 plots, while Ruwaimana et al. [14] obtain measurements from mangroves plots and
recorded the existing land-use/cover of the study area. This scarceness in terms of field
data gathering demonstrates how research efforts are aimed to image acquisition setting
and processing workflow.

Among the most representative papers, Seifert et al. [16] aim to increase knowledge
on the influence of altitude, image overlap, and image resolution on a multi-view geometry
(MVG) reconstruction of a forest from RGB video-based UAV imagery. Low flight altitudes
(15–30 m) yield the highest reconstruction details, particularly in combination with high
image overlaps (95% for forward and 70% for side overlap). Conversely, lower altitudes
required a reduced UAV speed to avoid motion blur and hence reduced UAV endurance
and area covered with one battery load. Diaz et al. [5] propose a multi-camera array for
acquiring nadir-oblique images and conclude that, in open canopy deciduous forest patches,
the system increases the estimation of maximum canopy height by 50% in comparison
to a single camera system. Discussing multiplatform data fusion for lidar, Guan et al. [6]
show a lidar data registration framework to avoid manual efforts and overcome errors
due to forest complexity and irregularity. Unlike [25], they merge three different datasets
(namely, backpack and UAV lidar with multi-scan terrestrial lidar), reaching a satisfying
data registration accuracy (horizontal root-mean-square error (RMSE) < 30 cm and vertical
RMSE < 20 cm).
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Table 1. Reviewed studies for setting and accuracy of imagery products topic: sensor, research place, tree species, and
photogrammetry software.

Research Paper Sensor Research Place Species Photogrammetry Software

Fraser and
Congalton [18] RGB USA Various AgiSoft PhotoScan, Pix4Dmapper

Pro 3.2

Frey et al. [7] RGB Germany Norway Spruce AgiSoft PhotoScan

Goodbody et al.
[10] Multispectral Canada Maple, birch AgiSoft Photoscan

Hakala et al. [11] Hyperspectral England Unspecified AgiSoft Photoscan

Jayathunga et al.
[12] RGB Japan Sakhalin fir (dominant),

Various AgiSoft Photoscan 1.3.2

Ni et al. [13] RGB China Larch AgiSoft Photoscan 1.2.2

Ruwaimana et al.
[14] Multispectral Malaysia Mangroves AgiSoft Photoscan

Aguilar et al. [4] RGB Ecuador Teak AgiSoft Photoscan 1.4.4

Brach et al. [19] RGB Poland Unspecified Various (6)

Graham et al. [22] RGB Canada Douglas fir, hybrid spruce,
western redcedar Pix4Dmapper Pro 4.1

Kellner et al. [20] Lidar Czech Republic European beech, Norway
spruce -

Oliveira et al. [15] Hyperspectral Brazil/Finland Tropical forest, birch AgiSoft Photoscan 1.2.6

Polewski et al. [25] Lidar China Metasequoia, poplar LiForest 1

Seifert et al. [16] RGB (Video) Germany Norway spruce, sycamore
maple, silver birch AgiSoft Photoscan 1.4.0

Tomastik et al. [17] RGB Slovakia Beech, larch, Norway spruce AgiSoft Photoscan 1.4.6

Wallace et al. [8] RGB Chile Various AgiSoft Photoscan 1.4.1

Diaz et al. [5] RGB Argentina Ponderosa pine MicMac 2, Pix4Dmapper Pro 3.0.17
and 4.1.24, VisualSFM 3

Fletcher and
Mather [21]

RGB,
Multispectral Australia Eucalyptus Pix4Dmapper 4.2.6-4.3.33

Graham et al. [24] RGB Canada Douglas fir, hybrid spruce,
western redcedar Pix4Dmapper Pro 4.1

Guan et al. [6] Lidar China Scots pine, Manchurian red
pine LIDAR360 1

Jurjevic et al. [9] RGB Croatia Various Agisoft PhotoScan 1.4.3

Yu et al. [23] Hyperspectral China Various DPW Photomod 4

1 GreenValley International, Berkeley, CA, USA 2 Free and open source software (Rupnik et al. 2017) https://github.com/micmacIGN/
micmac (accessed on 16 February 2021) 3 Free for personal, non-profit or academic use (Wu, 2013) http://ccwu.me/vsfm/ (accessed on 16
February 2021) 4 Racurs, Moscow, Russia. Abbreviations: RGB = Red Blue Green.

3.3. Tree Detection and Inventory Parameters

Most of the papers analyzed in the present review are classified within the tree
detection and inventory parameters topic, consisting of 95 research works (Table 2). The
topic encompasses a wide range of research issues. Detection techniques and inventory
parameter extraction are often joint together in the workflow of the reviewed studies.
Detection mainly concerns the localization of a single whole tree through the forest structure
both in planted [26–28] and in natural/irregular forests [29–31]. In some case, even newly
grown leaves [32,33], seedling [34], stump [35], fallen log [36], and forest gaps [37] are
the detected target. Moreover, detection (especially for crown) may be followed by object
classification [38–41]. The more frequent inventory parameters extracted in the reviewed

https://github.com/micmacIGN/micmac
https://github.com/micmacIGN/micmac
http://ccwu.me/vsfm/
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studies, alone or as a combination, are height [42–47], DBH [48–53], crown diameter [54–57],
Leaf Area Index (LAI) [58–60], and thermal data [61–63]. In addition to the common tree
features, tasks regarding phenology [64,65], phenotyping [66–68], light behavior [69,70],
photosynthetically active radiation [71], and solar radiation to infer on seedling growth [72]
are also accomplished. Furthermore, the first group of dendrometric characteristics is often
related to works that have practical or technology transfer purposes.

More than half of the papers (49) use specific algorithms or machine learning tech-
niques to automatically detect, segment, and classify trees. Many studies segment tree
crown through the watershed algorithm [39,73–78] and similar ones, such as the inverse wa-
tershed [79,80] and the marker-controlled watershed [54,81–83]. Others use convolutional
neural networks (CNN) based on existing architectures [38,41,84,85] or novel ones [86].
Comparison among segmentation techniques is also carried out [87–90]. As shown in
Table 2, the mainstream software tools are eCognition (Trimble Geospatial, Westminster,
CO, USA), Matlab (MathWorks, Natick, MA, USA) and R (with LidR and rLidar packages)
(free software https://www.r-project.org/ (accessed on 16 February 2021)).

Forest hyperspectral applications are quite limited in this topic (only four papers).
Image recording is carried out with customized solutions [78,91,92] or with an off-the-shelf
sensor, i.e., FireflEYE 185 (Cubert GmbH, Germany) [93].

Regarding other RS platform comparison/use (13 papers), authors focus mainly on
the use of aircraft ALS as opposed to UAV–DAP for estimating tree height [94,95] and
canopy features [96,97]. Satellite images are used as ancillary data for observing plant
phenology [98] and calculating new spectral indexes [93]; on the contrary, St-Onge and
Grandin [99] utilize a spaceborne sensor as the main data source for measuring individual
tree height.

About 70% of the research works gather field data. For the sake of brevity, only
a few papers that stress this issue (citing the word “field” in the title) are briefly
reported—Hentz et al. [74] and Ganz et al. [77] measure height on standing trees, while
Jin et al. [100] also record age and DBH, together with height.

By highlighting the most interesting works, Gu et al. [83] focus on segmentation
routine. In particular, they compare the accuracy of segmentation using structural versus
spectral information, concluding that single tree crowns segmented using the spectral
lightness are more accurate compared to a canopy height model (CHM) approach. Abdol-
lahnejad et al. [79] consider successfully the extrapolation of the UAV data to a larger area,
using a correlation with Pleiades satellite (R2 = 0.94). Finally, recent research [101] analyzes
three data sources (field survey, UAV–DAP, and UAV–ALS) to measure height and DBH in
a high-value timber forest; about tree height, the authors conclude that UAV–DAP could
underestimate this inventory parameter, while traditional field height measurement is
likely to be influenced by individual species.

Table 2. Reviewed studies for tree detection and inventory parameters topic: sensor, tree species, segmentation algo-
rithm/object detection method, software for object detection, other remote sensing (RS) platforms use/comparison, and
field data gathering.

Research Paper Sensor Species Segmentation/Object
Detection Algorithm Software Field Data

Abdollahnejad
et al. [72] RGB Scots pine •

Abdollahnejad
et al. [79] RGB Scots pine Inverse watershed ArcGIS 1 •

Alexander et al.
[29] RGB Tropical forest

Bagaram et al. [37] RGB Beech, Turkey oak Contrast split segmentation eCognition Developer •

https://www.r-project.org/
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Table 2. Cont.

Research Paper Sensor Species Segmentation/Object
Detection Algorithm Software Field Data

Balsi et al. [73] Lidar Hazel Watershed -

Carr and Slyder
[102] RGB Various Iteratively growing from

seed points) Customized tool •

Chen et al. [33] RGB Tropical savanna Constrained energy
minimization/Otsu method -

Demir [28] RGB Stone pine •
Fankhauser et al.

[45] RGB Ponderosa pine,
lodgepole pine •

Feduck et al. [34] RGB White spruce,
lodgepole pine

CART
algorithm/Multiresolution

Salford Predictive
Modeler v. 70

2/eCognition 9.1
•

Goodbody et al.
[39] RGB Various

Watershed by immersion
segmentation/Random

forest (OBIA)
- •

Guerra-
Hernandez et al.

[94]
RGB Eucaliptus •

Guo et al. [60] Multispectral Mangrove •

Hentz et al. [74] RGB Eucalyptus,
Loblolly pine Watershed ArcGIS 10.4 •

Huang et al. [81] RGB Fragrant olive,
Buddist pine Marker-controlled watershed Matlab

Iizuka et al. [61] Thermal,
RGB

Acacia crassicarpa
Northern wattle

Iizuka et al. [75] RGB Japanese cypress Watershed SAGA-GIS 3 5.0.0 •

Kattenborn et al.
[52] RGB Southern beech •

Klosterman et al.
[98] RGB Oak, maple •

Kuzelka and
Surovy [51] RGB Norway spruce,

European beech •

Lin et al. [32] RGB Big leaved
mahogany

Mayr et al. [76] RGB Savannah Watershed SAGA-GIS •
Medauar et al.

[103] Multispectral Eucaliptus

Mokros et al. [49] RGB Beech •

Morales et al. [85] RGB Moriche palm CNN semantic level
segmentation -

Puliti et al. [35] RGB Unspecified Iterative region growing R software •
Qiu et al. [104] RGB Pear Seed region growing -

Rosca et al. [92] Hyperspectral Tropical forest •
Shin et al. [105] Multispectral Ponderosa pine Top-to-bottom region growing R software •

Thomson et al. [91] Hyperspectral Tropical forest •
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Table 2. Cont.

Research Paper Sensor Species Segmentation/Object
Detection Algorithm Software Field Data

Webster et al. [62] Thermal,
RGB Norway spruce

Yan et al. [106] Lidar Metasequoia,
poplar

Improved NCut
segmentation/Marker
controlled watershed

Microsoft Visual
Studio 2013 4

(programed using
C++) and MATLAB
2016a/ArcGIS 10.2

Blonder et al. [68] Multispectral Quaking aspen •

Brieger et al. [54] RGB
Larch, Siberian
pine, Siberian

spruce

Marker-controlled
inverse watershed R software

Carl et al. [40] RGB, Multi-
spectral Black locust

OBIA with multiresolution
segmentation/CNN

developed by the authors

eCognition
Developer/Python 5 •

Chakraborty et al.
[107] RGB Unspecified Multi-resolution eCognition Developer •

Chung et al. [95] RGB Various •
dos Santos et al.

[38] RGB Dipteryx alata Faster R-CNN, YOLOv3,
RetinaNet

Base codes
freely available

Durfee et al. [108] Multispectral Juniper •

Fawcett et al. [109] RGB Oil palm Centroidal Voronoi
tessellation R software •

Ganz et al. [77] Lidar, RGB Douglas fir Watershed - •
Gulci [55] RGB Calabrian pine ForestCAS R software •

He et al. [43] RGB Cunninghamia,
pine •

Huang et al. [46] RGB Various •
Imangholiloo et al.

[78]
Hyperspectral,

RGB
Scots pine,

Norway spruce Watershed SAGA-GIS 2.3.2 •

Jayathunga et al.
[96] RGB Various •

Krause et al. [44] RGB Scots pine •
Lendzioch et al.

[59] RGB Norway spruce Manual - •

Li et al. [57] Lidar Metasequoia,
poplar Top-to-bottom region growing -

Liang et al. [50] Lidar Scots pine, Norway
spruce, birch •

Maturbongs et al.
[89] RGB Douglas fir Variable window filter,

Graph-theoretical, Watershed

R software, Tree
Extraction software,

ArcGIS 10.5.1

Nuijten et al. [82] Multispectral Various Marker-controlled watershed R software •

Panagiotidis et al.
[36] RGB Norway spruce,

Scots pine

Canny approach edge
detection/Hough

transformation
Matlab 2017b
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Table 2. Cont.

Research Paper Sensor Species Segmentation/Object
Detection Algorithm Software Field Data

Park et al. [65] RGB Tropical forest Stochastic gradient
tree Boosting R software •

Puliti et al. [97] RGB Norway spruce,
Scots pine •

Rissanen et al. [69] RGB Various •

Santini et al. [66]

Thermal,
Multispec-

tral,
RGB

Aleppo pine

Santini et al. [67] Multispectral Black pine •
Schneider et al.

[110] Lidar Beech, tropical
forest •

Shashkov et al.
[111] RGB Pine, birch,

spruce, fir •

St-Onge and
Grandin [99] RGB Black spruce •

Tian et al. [42] RGB Metasequoia •

Wang et al. [26] RGB Oil palm HOG features and
SVM classifier -

Wu et al. [87] Lidar Kew tree

Watershed, Polynomial fitting,
Individual tree crown
segmentation, Point
cloud Segmentation

- •

Xu et al. [31] RGB Saxaul •

Xu et al. [93] Hyperspectral Manchurian red
pine, larch

Yancho et al. [112] Lidar
Western hemlock,
Western red-cedar,

Douglas fir

Modified top-to-bottom
region growing R software •

Yilmaz and
Gungor [90] RGB Various Polynomial fitting based

methodology Matlab

Yin and Wang et al.
[56] Lidar Mangrove Seeded region growing,

Marker controlled watershed Matlab 2017a •

Yurtseven et al.
[41] RGB Various OBIA (unspecified) eCognition •

Zhang et al. [58] RGB Dahurian larch,
white birch, aspen Algorithm by Liu, 2017 - •

Zeng et al. [71] Lidar Cyclocarya paliurus •

Apostol et al. [113] RGB Norway spruce,
beech

Multiresolution
segmentation/OBIA eCognition ver. 7 •

Balkova et al. [80] Multispectral Beech, spruce, fir Inverse watershed -

Brullhardt et al.
[70] RGB Various

Chen et al. [84] Lidar Unspecified Fully CNN -

Dalla Corte et al.
[48] Lidar Camden white

gum •
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Table 2. Cont.

Research Paper Sensor Species Segmentation/Object
Detection Algorithm Software Field Data

D’Odorico et al.
[64] Multispectral White spruce •

Dong et al. [114] Lidar Various Graph-based segmentation -

du Toit et al. [115] Lidar Douglas fir Top-to-bottom region growing R software

Gil-Docampo et al.
[30] Multispectral Scots pine,

birch, rowan •

Gu et al. [83] RGB Various Marker-controlled watershed -

Hastings et al. [88] Lidar Various 5 algorithms available in
lidR package R software

Hu et al. [86] RGB Larch Neural network developed by
the authors -

Isibue and Pingel
[116] RGB Various •

Jin et al. [100] RGB
Pines,

Japanese larch,
Manchurian fir

•

Jurado et al. [117] RGB, Multi-
spectral

Oak, pine,
eucalyptus K-means clustering algorithm - •

Krisanski et al. [53] RGB White peppermint •

Kuzelka et al. [118] Lidar Norway spruce,
Scots pine Voronoi diagram - •

Li et al. [119] RGB Mongolian pine,
larch

Superpixel segmentation,
half-Gaussian fitting method Matlab 2018a •

Marzahn et al. [63]
Thermal,

Multispec-
tral

Various

Moe et al. [101] RGB
Monarch birch,

castor aralia,
Japanese oak

•

Picos et al. [27] Lidar Eucalyptus

Vanderwel et al.
[47] RGB

Lodgepole pine,
white spruce,

trembling aspen
•

Yan et al. [120] Lidar Metasequoia,
poplar

Self-adaptive bandwidth
mean shift Matlab 2016a •

1 ESRI, Redlands, CA, USA 2 Minitab LLC, State College, PA, USA 3 System for Automated Geoscientific Analyses, free software
(Böhner et al. 2006) https://sourceforge.net/projects/saga-gis/ (accessed on 16 February 2021) 4 Microsoft, Redmond, WA, USA 5 Free soft-
ware https://www.python.org/ (accessed on 16 February 2021). Abbreviations: CART = Classification and Regression Trees; OBIA = Object-
Based Image Analysis; CNN = Convolutional Neural Network; NCut = Normalized Cut; R-CNN = Region Based Convolutional Neural
Network; YOLO = You Only Look Once; HOG = Histogram of Oriented Gradients; SVM = Support Vector Machine; The symbol • indicates
field data gathering in the research.

3.4. Aboveground Biomass/Volume Estimation

Biomass estimation is certainly encompassed in the topic of inventory parameters,
but considering its importance in research and professional forestry from an economic
and ecological point of view, we choose to report the related results in a dedicated section.
Moreover, this choice is corroborated by the high number of selected papers (45) (Table 3).
All reviewed studies start from one or more remote-sensed basic inventory parameters (i.e.,
height, DBH, crown diameter) and then estimate the biomass. When it comes to biomass,
most papers refer to AGB (43%) and volume (31%), in particular, to stem volume [121–125].

https://sourceforge.net/projects/saga-gis/
https://www.python.org/
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Other authors refer to biomass as carbon stock [126–129], pruning wood biomass [130], or
woody debris volume [131].

Once biophysical parameters such as DBH, height, or canopy diameter have been
estimated by UAV, biomass can be calculated mainly in two ways—through allometric
equations or targeted models. Allometric equations provide an efficient way to estimate
biomass but require genus- or species-specific equations. Nevertheless, numerous studies
use allometric equations from the literature [128,132–139]. The other way through which
biomass can be estimated is represented by general (multi-species) and often newly de-
veloped models. The most popular models among the reviewed studies are represented
by simple or multiple linear regression models [124,127,130,140–146]. It is worth noting
that machine learning regression techniques are also exploited, in particular, random
forest regression [122,126,147,148], support vector regression [122,126,149], and k-nearest
neighbors [150], and artificial neural network model [126].

For retrieving single tree basic features, many studies (46%) utilize segmentation
algorithms. As in Section 3.3, the watershed algorithm and its variants are the most
used [122,125,130,135,137,145,151–154].

The hyperspectral sensor is used only by Zou et al. [155]. They collect hyperspectral im-
ages to predict the growth rate of a Chinese fir (Cunninghamia lanceolate) plantation through
a 176-band off-the-shelf camera (Gaiasky-mini2-VN, Zuolihanguang, Beijing, China).

Overall, 38% of the reviewed studies handle images gathered from other RS platforms.
Manned aircraft are always equipped with a lidar sensor for establishing a reference
dataset [156], for comparing results in respect to UAV [124,127,135,140,142,152], or for
constructing reliable DTMs [140,148,157]. Instead, satellite platforms are exploited to
upscale biomass estimation generated by UAV to broader areas. Both optical and radar
sensors carried by different platforms are used, such as Sentinel-2, WorldView-2, and Gao
fen-2 (optical) and ALOS-2, PALSAR-2, Sentinel-1, and Gaofen-3 SAR (radar) [122,147,149].

All the selected studies, except for a few (seven papers), present field data. Fol-
lowing the selection criterion reported in Section 3.3, five articles are highlighted. To-
gether with the measurement of common tree inventory parameter (DBH, height, crown
diameter) [123,129,132,138,158,159], a tough task consisting of mangrove species recognition
is accomplished by Otero et al. [132] and Wang et al. [158]. Moreover, Fernandes et al. [129]
take several soil samples for carbon content analysis and measure directly in the field the
aboveground fresh weight of the endemic grey willow (Salix atrocinerea), in which no allomet-
ric equation was found.

Regarding the handful of newsworthy papers, Hyyppa et al. [121] compute stem
volume using lidar in a regular conifer stand with a relative RMSE of 10.1%, compared
to TLS. The peculiarity is that data are obtained with an under-canopy flying UAV that
was manually piloted with the help of video goggles receiving a live video feed from
the onboard camera. Puliti et al. [138] assess the growing stock volume through UAV–
ALS by wondering if it can be carried out without field data. Using field data only for
independent validation, they conclude that the need for fieldwork can be reduced only to
the acquisition of some data for quality control. Regarding carbon dynamics simulation,
Fujimoto et al. [160] develop an end-to-end process based on UAV–SfM and the individual
model FORMIND 3.2 (free software, http://formind.org/model/ (accessed on 16 February
2021)). They visualize carbon dynamics with a time horizon up to 2100, inferring that the
investigated forest will bear a reasonable demand for timber.

http://formind.org/model/
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Table 3. Reviewed studies for aboveground biomass (AGB)/volume estimation topic: sensor, tree species, biomass parameter, allometric equation/modeling method, segmentation
algorithm, other RS platforms use/comparison, and field data gathering.

Research Paper Sensor Species Biomass Parameter
Allometric

Equation/Modeling
Method

Crown
Segmentation

Algorithm

Other RS Platform
Use/Comparison Field Data

Alonzo et al. 151] RGB Black spruce, white
spruce, birch, aspen AGB Sum of individual crown

volumes
Watershed,
Mean-shift •

Giannetti et al. [140] Lidar, Multispectral
Beech, silver fir,
Norway spruce,
Scots pine, birch

Growing stock
volume

Multivariate linear
regression models (3) Aircraft •

Jayathunga et al.
[141] RGB Various Merchantable

volume, carbon stock
Generalized linear mixed

model Helicopter •

Lin et al. [161] RGB Minjiang fir AGB New allometric equation
(predictor variable: H)

Multi-resolution
segmentation

Liu et al. [150] Lidar Kew tree AGB Partial least squares,
K-nearest neighbors models

Point cloud
segmentation •

Otero et al. [132] RGB Mangroves AGB Allometric equation by Ong
et al. (2004) •

Pena et al. [133] RGB, Multispectral Poplar Dry biomass Biomass = a (DBH)2 × H •

Puliti et al. [157] RGB Norway spruce,
Scots pine, birch

Growing stock
volume

Hierarchical model-based
inference Satellite (main) •

Brede et al. [153] Lidar Beech, oak, Norway
spruce, fir Volume TreeQSM method Marker-controlled

inverse watershed

Cao et al. [162] Lidar, RGB Dawn redwood,
poplar AGB Exponential predictive

models (3) •

Domingo et al. [142] Multispectral Tropical forest Biomass (generic) Multiple linear regression
models (5) •

Fujimoto et al. [160] RGB Cypress, cedar AGB FORMIND model ForestCAS •

Gonzalez-Jaramillo
et al. [134] RGB, Multispectral Tropical forest AGB

Allometric equation by
Chave et al. (2005),

NDVI-based equation by
Das and Singh (2014)
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Table 3. Cont.

Research Paper Sensor Species Biomass Parameter
Allometric

Equation/Modeling
Method

Crown
Segmentation

Algorithm

Other RS Platform
Use/Comparison Field Data

Guerra-Hernandez
et al. [152] RGB Eucalyptus Growing stock

volume Power function models (2) Watershed Aircraft •

Jayathunga et al.
[148] RGB

Erman’s birch
(dominant), Sakhalin

fir
Living biomass

Simple/multiple linear
regression model, Random

Forest
Aircraft •

Li et al. [126] RGB Mangroves Above ground
carbon stock

Random Forest, Support
Vector Regression, Artificial
Neural Network (Regression

models)

Multi-resolution
segmentation •

McClelland et al.
[127] Lidar, RGB Various Carbon content Functional and linear model

by Zhao et al. 2009 Aircraft

Navarro et al. [149] RGB Red mangrove AGB Support vector regression
models (2) ForestCAS Satellite •

Ni et al. [156] RGB Larch (dominant),
birch, aspen AGB Power function models (3) Aircraft •

Ota et al. [163] RGB Teak AGB Type 1 Tobit model •

Qiu et al. [154] Lidar Mangroves AGB Individual tree-based
inference method

Marker-controlled
watershed Satellite •

Shen et al. [164] RGB, Multispectral Kew tree Volume Partial least squares
regression models (2)

Swinfield et al. [128] Lidar, RGB,
Multispectral Tropical forest Aboveground carbon

density
Allometric equation by

Jucker et al. (2017)

Tian et al. [159] Lidar Euphrates poplar Biomass (generic) Customized allometric
model for GLAS lidar •

Vaglio Laurin et al.
[135] RGB Tropical forest AGB Allometric equation by

Chave et al. (2014) Watershed Aircraft •

Wang et al. [139] Lidar Various AGB Finnish species-specific
allometric equations

Algorithm by Wang
et al. (2016) •
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Table 3. Cont.

Research Paper Sensor Species Biomass Parameter
Allometric

Equation/Modeling
Method

Crown
Segmentation

Algorithm

Other RS Platform
Use/Comparison Field Data

Wang et al. [165] Lidar Mangroves AGB G~LiDAR model •

Windrim et al. [131] RGB Radiata pine Woody debris
volume

V = π (d2/4) L (cylinder
volume)

Convolutional
Neural Network •

Xu et al. [146] Lidar, RGB
Japanese zelkova,

Paper mulberry, Blue
sandlewood

Volume, AGB Multivariate linear
regression •

Zou et al. [155] Hyperspectral Chinese fir Biomass (generic) -

Di Gennaro et al.
[130] Multispectral Sweet chestnut Pruning wood

biomass Linear model Watershed •

d’Oliveira et al. [143] Lidar Rubber tree, Brazil
nut AGB Multiple linear regression

models (2) Aircraft •

Fernandes et al. [129] RGB, Multispectral Various Carbon stock Non-linear regression model •

Hyyppa et al. [121] Lidar Scots pine Stem volume Method by Hyyppä et al.
(2020) •

Iizuka et al. [122] RGB Japanese cypress Stem volume Random forest regression,
Support vector regression Watershed Satellite

Jones et al. [144] RGB Gray mangrove Biomass (generic) Linear regression models •
Kotivuori et al. [123] RGB Unspecified Stem volume Non-linear regression model Aircraft •

Lu et al. [136] Lidar Black locust AGB
Allometric equation by the

Chinese state forestry
administration

Point cloud
segmentation •

Navarro et al. [137] RGB Gray mangrove AGB
Allometric equations by

Owers et al. (2018) and Fu
and Wu (2011)

Marker-controlled
watershed •

Puliti et al. [138] Lidar Scots pine, Norway
spruce, birch

Growing stock
volume

Species-specific allometric
models

Algorithm by
Dalponte and
Coomes (2016)

•
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Table 3. Cont.

Research Paper Sensor Species Biomass Parameter
Allometric

Equation/Modeling
Method

Crown
Segmentation

Algorithm

Other RS Platform
Use/Comparison Field Data

Puliti et al. [122] Lidar, RGB Radiata pine Stem volume Multiple linear regression
models Aircraft •

Wang et al. [158] Lidar Mangroves AGB G∼LiDAR∼S2 model Satellite •

Yrttimaa et al. [125] RGB Scots Pine Stem volume Stem taper curve Marker-controlled
watershed •

Zhou et al. [145] Lidar, RGB Larch, Chinese pine Biomass (generic) Linear models (stepwise
regression method) Watershed •

Zhu et al. [147] RGB Sonneratia apetala AGB Random forest regression Satellite •
Abbreviations: AGB = Aboveground Biomass; DBH = Diameter at Breast Height; H = Height; NDVI = Normalized Difference Vegetation Index; GLAS = Geoscience Laser Altimeter System. The symbol •
indicates field data gathering in the research.
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3.5. Pest and Disease Detection

Pest and disease detection is the least represented topic in this review (17 papers)
(Table 4). The researchers dealing with this issue mainly focus on coniferous forests (59%) and
in particular on various species of pine [166–172] and Norway spruce (Picea abies) [173–175].
A broad range of pathogenic organisms are investigated, including insects [167–169,175–177],
fungi [172–174,178], bacteria [179], and nematodes [170,171]. Other target stressors for
plants are represented by the hemiparasitic plant (Amyema miquelii) [180] and herbicide-
induced stress [166], while Padua et al. [181] discuss a case study regarding three key
plagues affecting sweet chestnut (Castanea sativa).

UAV imagery products are mostly generated by using RGB sensors, also in combi-
nation with hyperspectral, multispectral, and thermal ones (53%). Hyperspectral sensors
are used mainly in the wavelength range from visible to near-infrared (450–950 nm) but
with a different number of spectral channels and hyperspectral imaging systems. Thus,
a prototype FPI hyperspectral camera with 24 bands is used in [175], an off-the-shelf
Headwall Nano-Hyperspec (Headwall Photonics Inc., Bolton, MA, USA) in [178], while
Zhang et al. [168] compose their hyperspectral system with a UHD 185 imaging spectrom-
eter (Cubert GmbH, Ulm, Baden-Württemberg, Germany).

Other RS platform products are exploited for several purposes within this topic.
Regarding aircraft, Smigaj et al. [172] acquire a lidar dataset to calculate CHM and then
multiple structural metrics, while Nasi et al. [175] use the same hyperspectral sensor
mounted both on a UAV and on a Cessna aircraft to compare images with a different
spatial extent. Multispectral imagery from spaceborne sensors is used in combination with
UAV products to increase the monitored area for detection of physiological stress by using
RapidEye [166] and Landsat 8 [167].

The fieldworks and surveys are mainly aimed at recognizing the presence/severity of
the stress-induced damages. Moreover, fundamental dendrometric variables, such as DBH
and tree height [173,175,180], and weather parameters [172], are surveyed.

Regarding the most interesting researches, the authors have selected the papers by
Kloucek et al. [176], Cardil et al. [169], and Smigaj et al. [172]. Kloucek et al. [176] evaluate
the possibilities of UAV-mounted RGB and modified near-infrared sensors to detect bark
beetle infestation (Ips typographus) at different stages for individual trees. They assess the
severity of infestation damages through various vegetation indexes and perform recogni-
tion of still green but already infested trees (so-called green attack), using a retrospective
time series. Instead, for quantifying pine processionary moth (Thaumetopoea pityocampa)
defoliation, the results by Cardil et al. [169] show the effectiveness of using NDVI (Normal-
ized Difference Vegetation Index) in mixed forests; moreover, they gain a high accuracy
(81.8%) in classifying automatically pines among non-defoliated, partially defoliated, and
completely defoliated trees. Using a thermal sensor in a Scots pine (Pinus sylvestris) mono-
culture plantation, Smigaj et al. [172] monitor changes in the forest physiological status due
to the red band needle blight (Dothistroma septosporum). They find a fairly good correlation
between canopy temperature depression and disease levels (R2 up to 0.41), which may be
related to loss of cellular integrity, necrosis, and desiccation.
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Table 4. Reviewed studies for pest and disease detection topic: sensor, research place, tree species, type of
pest/disease/stress, and field data gathering.

Research Paper Sensor Research Place Species Type of Stressor Field Data

Brovkina et al.
[173] Multispectral Czech Republic Norway spruce Honey fungus

(Armillaria ostoyae) •

Dash et al. [166] Multispectral New Zealand Radiata pine Herbicide-induced
stress •

Ganthaler et al.
[174] RGB Austria Norway spruce

Needle bladder rust
(Chrysomyxa
rhododendri)

•

Maes et al. [180] RGB,
Thermal Australia Grey box, red ironbark Box mistletoe

(Amyema miquelii) •

Nasi et al. [175] Hyperspectral Finland Norway spruce European spruce bark
beetle (Ips typographus) •

Otsu et al. [167] RGB Spain Black pine, Scots pine
Pine processionary
moth (Thaumetopoea

pityocampa)
•

Padua et al. [181] Multispectral Portugal Sweet chestnut

Chestnut ink disease
(Phytophthora

cinnamomi), chestnut
blight (Cryphonectria
parasitica), oriental
chestnut gall wasp

(Dryocosmus kuriphilus)

•

Sandino et al. [178] RGB, Hy-
perspectral Australia Paperbark tea trees Myrtle rust

(Austropuccinia psidii) •

Zhang et al. [168] Hyperspectral China Manchurian red pine

Chinese pine
caterpillar

(Dendrolimus
tabulaeformis)

•

Barmpoutis et al.
[182] RGB Greece Fir Stress (general)

Cardil et al. [164] Multispectral Spain Scots pine, holm oak
Pine processionary
moth (Thaumetopoea

pityocampa)
•

Dell et al. [179] RGB Malaysia Red mahogany Bacterial wilt
(Ralstonia spp.)

Jung and Park
[170] Multispectral Korea Pine

Pine wilt disease
(Bursaphelenchus

xylophilus)

Kloucek et al. [176] RGB, Multi-
spectral Czech Republic Norway spruce,

mountain-ash, beech, silver fir
European spruce bark
beetle (Ips typographus)

Lee and Park [171] RGB Korea Pine
Pine wilt disease
(Bursaphelenchus

xylophilus)

Safonova et al.
[177] RGB Russia Siberian fir (dominant)

Four-eyed fir bark
beetle (Polygraphus

proximus)

Smigaj et al. [172] Thermal Scotland Scots pine
Red band needle

blight (Dothistroma
septosporum)

•

The symbol • indicates field data gathering in the research.
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3.6. Species Recognition and Invasive Plant Detection

The selected papers (24) and their recognition goals are listed in Table 5. Within this
topic, all the UAV applications are carried out in natural/irregular forests and distributed
among all the continents, except for Africa. There are also two types of “special” study
sites, such as arboretum [183,184] and plant nursery [185]. Moreover, it should also be
noted that the complete range of UAV–mountable optical sensors, both passive and active,
are successfully utilized for species detection goals throughout the selected papers.

A total of nine research works aim to identify invasive plants, especially in places
where the biodiversity rate is high, such as in subtropical and tropical forests (Ecuador,
Chile, Costa Rica, Malaysia), in mountain zones (China), or isolated ecosystems (New
Zealand). The invasive plants that were chosen as targets belong to perennial creepers, i.e.,
lianas and bitter vine (Mikania micrantha) [186–188], conifers, i.e., Pinus spp. [189,190], and
broad-leaved trees, i.e., Acacia spp. [190,191] and black locust (Robinia pseudoacacia) [192].

Crown segmentation algorithms and object detection methods are widely tested
and discussed for species detection. The most used automatic segmentation method is
the multiresolution segmentation algorithm [193–196]. Machine learning techniques are
especially exploited to recognize and classify plant species. Among the most frequent, there
are support vector machine [183,188,197–200], random forest [184,189,191,193,194,201],
convolutional neural networks [192,202–204] and k-nearest neighbor [184,188,199,205].
Performing machine learning algorithms, authors are supported by different software
packages, such as eCognition [188,194,198], ENVI (Harris Geospatial Solutions, Boulder,
CO, USA) [183,185], and R [191,206].

Applications of the hyperspectral sensor are numerous within this topic (eight papers).
Hyperspectral cameras, which are exploited for detecting spectral futures of different tree
species, can be classified into two major groups. Many authors use commercial solutions,
such as Cubert UHD 185 [199], Senop Rikola (Rikola Ltd., Oulu, Finland) [201,204], and
two FPI-based models by Senop [196,205]. Conversely, the UAVs that were flown by
Tuominen et al. [184] and Nezami et al. [202] mount FPI-based prototype cameras. All the
cited hyperspectral cameras acquire images from the visible to the near-infrared spectral
range, except Tuominen et al. [184], who use also a short-wave infrared hyperspectral sensor.

In this section, the comparison/use of other RS platforms refers to few cases mainly
because of the hitch to accomplish tree species identification task by airborne or spaceborne
sensors, often associated with a low spatial resolution. Nevertheless, Rivas-Torres et al. [195]
use Landsat 8 fusion imagery to obtain the vegetation map of the Galapagos archipelago,
while Kattenborn et al. [190] test the upscaling of the UAV-estimated species cover to the
spatial scale of Sentinel-1 and Sentinel-2. Aircraft are used to obtain ALS-derived CHM [201]
and both lidar and multispectral datasets to compare them with the same acquired by
UAV [189].

All the studies carrying field campaigns (13) survey features of the target plant, such
as species [183,196,199,200], flower counting [191], crown shape [193], liana load [186] and
spectral signals [198]. Additionally, other tree-related parameters are gathered, i.e., height,
DBH, health status, and age [189,197,201,205,206].

Among the noteworthy papers, mangrove species discrimination through NDVI is
performed by Yaney-Keller et al. [197]. At 100 cm/pixel resolution, UAV-derived tree
metrics result not statistically different from ground measurements, unlike at 10 cm/pixel,
indicating lower accuracy as the resolution becomes extremely fine. In freshly new research
work, Casapia et al. [206] quantify the abundance of non-timber palm species, i.e., they
delineate palm crowns using color and textural information and then test four different
machine learning techniques, yielding the best results with the random forest classifier
(85% overall accuracy). Moving to European forests, de Sa et al. [191] seek to map the
invasion of Portuguese coastal areas by an alien species (Sydney golden wattle, Acacia
longifolia) through its flowering. The authors generate flower presence/absence maps
using supervised random forest but the correlation between the number of in-field counted
flowers and the area covered by flowering result weak.
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Table 5. Reviewed studies for species recognition and invasive plant detection topic: sensor, research place, recognition
goal, target species, crown segmentation algorithm/object detection method, and field data gathering.

Research Paper Sensor Research
Place Recognition Goal Target Species

Crown
Segmentation/Object

Detection
Field
Data

Cao et al. [199] Hyperspectral China
Classification of
seven mangrove

species
Mangroves

Bottom-up region-
merging/K-nearest
neighbor, support

vector machine

•

de Saet al. [191] Multispectral Portugal
Mapping an invasive

plant through its
flowering

Sydney golden
wattle Random forest •

Franklin and
Ahmed [193] Multispectral Canada Classification of

4 hardwood species

Aspen, white
birch, sugar
maple, red

maple

Multi-
resolution/Random

forest
•

Gini et al. [185] Multispectral Italy
Classification of
11 species in a
plant nursery

Various Maximum likelihood
classifier

Komarek et al.
[183]

RGB,
Multispectral,

Thermal

Czech
Republic

Classification of tree,
shrub, and

herbaceous species in
an arboretum

Various
(arboretum)

Edge method/Support
vector machine •

Liu et al. [198] Multispectral China
Detection of an

endangered
tree species

Firmiana
danxiaensis

SVM/Bottom-up
region-merging •

Mishra et al.
[194] Multispectral Nepal

Mapping tree and
shrub species along

the Himalayan
ecotone

Himalayan
fir, bell

rhododendron

Multi-resolution,
spectral difference seg-

mentation/Random
forest

Rivas-Torres
et al. [195] RGB Ecuador

Mapping native and
invasive vegetation

in the Galapagos
Islands

Various
Multi-

resolution/Fuzzy
membership function

Saarinen et al.
[205]

Hyperspectral,
RGB Finland

Quantifying
deciduous species

richness as a
biodiversity indicator

Scots pine,
Norway spruce,

birch, alder

Watershed/K-nearest
neighbor •

Tuominen et al.
[184] Hyperspectral Finland

Recognition of 26 tree
species in an
arboretum

Various
(arboretum)

K-nearest neighbor,
random forest

Dash et al. [189] Lidar,
Multispectral

New
Zealand

Detection of invasive
exotic conifers in

New Zealand

Scots pine,
ponderosa pine

Random forests,
logistic regression. •

Kattenborn
et al. [190] RGB Chile

Mapping woody
invasive species

in Chile

Radiata pine,
gorse, Silver

wattle
Maximum entropy

Sothe et al.
[200]

Hyperspectral,
RGB Brazil

Classification of
12 tree species in a
subtropical forest

Subtropical
forest

Support vector
machine •

Waite et al.
[186] RGB Malaysia

Assessing liana
infestation in a
tropical forest

Liana (tropical
forest) •

Wu et al. [188] RGB China
Mapping an invasive
plant in a mountain

area
Bitter vine

Support vector
machine, classification

and regression tree,
K-nearest neighbor



Forests 2021, 12, 397 21 of 41

Table 5. Cont.

Research Paper Sensor Research
Place Recognition Goal Target Species

Crown
Segmentation/Object

Detection
Field
Data

Yaney-Keller
et al. [197] Multispectral Costa Rica

NDVI discrimination
between the 7 most
abundant mangrove

species
Mangroves Support vector

machine •

Yuan et al. [187] Thermal,
Multispectral Costa Rica

Detection of
liana-infested areas
in a tropical forest

Liana (tropical
forest)

Casapia et al.
[206] RGB Peru

Identifying and
quantifying

economically
important palm tree

species

Palms Region growing and
merging/Various (4) •

Kattenborn
et al. [203] RGB New

Zealand

Mapping (i) tree
species in primary
forests, (ii) woody

plant invasion, and
(iii) vegetation

succession

Various CNN semantic
segmentation

Kentsch et al.
[192] RGB Japan

Detection of an
invasive broadleaf
tree in a coniferous

coastal forest
Black locust

Miyoshi et al.
[204] Hyperspectral Brazil

Identifying
single-tree species in

a highly
vegetated area

Queen palm CNN

Miyoshi et al.
[201] Hyperspectral Brazil

Identifying 8 tree
species in a highly

diverse forest
Various Random forest •

Nezami et al.
[202]

Hyperspectral,
RGB Finland

Classifying 3 major
tree species in a

boreal forest

Scots pine,
Norway spruce,

silver birch.

3D convolutional
neural networks

Sothe et al.
[196] Hyperspectral Brazil

Classifying 16 tree
species in subtropical

forest fragments
Various Multiresolution region

growing/Various (4) •

The symbol • indicates field data gathering in the research.

3.7. Conservation, Restoration, and Fire Monitoring

Conservation, restoration, and fire monitoring is a composite topic, and it presents
multiple research issues, consisting of 24 papers in total (Table 6). Generally, firefighting
has the highest number of scientific works and in particular the post-fire monitoring. This
activity is conducted mainly for damage assessment with a multispectral sensor [207–210]
and with RGB for planning rehabilitation measures [211]. In only one case [212], fire
prevention activity is carried out with the help of a lidar sensor in the characterization of
the forest fuels. For conservation targets, UAVs mount an RGB camera for predicting tree-
related microhabitats [213], while a multispectral sensor is used in different case studies of
plant conservation [214].

Restoration monitoring is a challenging task that can be tackled effectively through
UAV. The core issue is the monitoring of restoration in planted [215–217] or natural [218]
forests. Thus, in planted forests, mine site revegetation is remotely sensed [219] and
detection of conifer seedlings in seismic lines in natural woodland [220].

In this section, drones are never equipped with a hyperspectral sensor.
Satellite platforms are utilized both for comparing multispectral datasets in respect

to UAV in the burned landscape [207] and for testing different land-use classifiers with
SPOT6 [221] and Pleiades [208] imagery. On the contrary, UAV-acquired images are used
as validation dataset to assess the effectiveness of satellite in post-fire monitoring [210] and
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in tracking the spring phenology in trees [222]. Moreover, UAV products are examined for
compensating for the fraction of vegetation cover computed with Sentinel-2 images [223].
The use of aircraft is present only in a few studies and it is aimed at gaining ALS–DTM and
tree metrics [217] and at generating a hyperspectral dataset with the NASA Glenn HSI2
sensor [221].

Field measurements are widely used within this topic (14 papers). Together with
common tree characteristics, such as species [208] and health status [218,224,225], pruning
height [212], and tree-related microhabitats [213] are also recorded. In land-use case studies,
ground truth points for the generation of thematic maps [226,227] and the field reflectance
of different land cover types [221] are surveyed.

Regarding the most valuable contributions, Khokthong et al. [224] monitor a biodiver-
sity enrichment assessing the mortality of interplanted trees in an oil palm (Elaeis guineensis)
monoculture. Although further long-term analysis on other control factors is required, the
probability of mortality depends on the amount of oil palm canopy cover, which is related,
in turn, to the light requirements of the interplanted species. In a Canadian research study,
both aspen (Populus tremuloides) sucker density and height decrease significantly as the
level of skidder traffic intensity increases. Therefore, the authors propose and successfully
verify the suitability of using winter harvesting to mitigate severe soil compaction. In
the scope of fire prevention, Fernandez-Alvarez et al. [212] identify priority areas in the
wildland-urban interface by using a UAV-mounted lidar; this way, parameters of pruning
height and tree spacing are automatically and objectively obtained.

Table 6. Reviewed studies for conservation, restoration, and fire monitoring topic: sensor, main objective, species, and field
data gathering.

Research Paper Sensor Main Objective Species Field Data

Baena et al. [214] Multispectral Plant conservation: issues on UAVs use
and case studies Various

Fernandez-Guisuraga et al.
[207] Multispectral Post-fire monitoring: vegetation survey

on burned areas Maritime pine

Nagai et al. [225] RGB Forest disturbance: evaluation of heavy
snow damage Japanese cedar •

Roder et al. [218] RGB
Post-disturbance monitoring: an

inventory of natural regeneration and
deadwood

Norway spruce •

Rossi et al. [208] Multispectral Post-fire monitoring: delineation of forest
cover after mixed-severity fires Various •

Rupasinghe et al. [221] RGB Land use: mapping vegetation of coastal
areas Riparian vegetation •

Whiteside et al. [219] Multispectral Restoration: monitoring mine site
revegetation at scale Unspecified

Almeida et al. [215] Lidar Restoration: quantifying forest changes
from a mechanical thinning treatment Various •

Belmonte et al. [216] RGB Restoration: assessing the structure of a
mixed-species plantation Ponderosa pine •

Berra et al. [222] Multispectral Ecosystem monitoring: tracking the
temporal dynamics of spring phenology Various •

De Luca et al. [226] Multispectral Land use: vegetation layer classification
in a structurally complex forest ecosystem Cork oak •

Fernandez-Alvarez et al.
[212] Lidar Fire prevention: characterizing the forest

fuels in a wildland-urban interface Eucalyptus •
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Table 6. Cont.

Research Paper Sensor Main Objective Species Field Data

Fraser and Congalton [227] RGB Land use: assessment of thematic map
accuracy Various •

Iizuka et al. [223] RGB,
Multispectral

Land use: vegetation cover changing in a
plantation forest Northern wattle

Khokthong et al. [224] RGB
Biodiversity enrichment: assessing the
mortality of interplanted trees in an oil

palm monoculture
Various •

Paolinelli Reis et al. [217] Multispectral Restoration: assessing land cover as an
indicator of management interventions Eucalyptus

Rossi and Becke [211] RGB Post-fire monitoring: planning of adaptive
rehabilitation measures Tropical forest

Sealey and Van Rees [228] Multispectral
Disturbance mitigation: evaluating

suitable practices to lessen soil
compaction

Aspen •

Shin et al. [209] Multispectral Post-fire monitoring: classification of
forest burn severity Korean red pine

Yeom et al. [229] RGB Post-fire monitoring: forest fire damage
assessment Unspecified

Frey et al. [213] RGB
Biodiversity conservation: predicting

tree-related microhabitats for the selection
of retention elements

European beech,
Norway spruce,

silver fir
•

Fromm et al. [220] RGB Restoration: detection of conifer seedlings
in seismic lines Various

Padua et al. [210] RGB,
Multispectral

Post-fire monitoring: assessment of the
fire severity and multi-temporal analysis Various

Sealey and Van Rees [230] RGB
Post-disturbance monitoring: effect of

residual slash coverage on forest
regeneration

Trembling aspen •

The symbol • indicates field data gathering in the research.

4. Discussion

This section reports the discussions for each topic following the RQs formulated in
Section 2.2 as a general guide. Cross issues regarding hyperspectral sensors, comparison
with other RS platforms, and gathering and use of field data are argued. Moreover, a
comprehensive discussion is dedicated to the application of machine learning techniques.
Constraints and opportunities for technology transfer of UAV–RS to a real management
context are also debated. Finally, brief considerations are drawn on the costs of different
UAV solutions.

In setting and accuracy of imagery products, researchers focus mainly on forward
and lateral overlap, acquisition timing through daytime and seasons, view angle, and
ground resolution as an outcome of flight altitudes × sensor resolution. It worth noting
that although intensifying forward overlap can be performed without any additional cost in
UAV campaigns [231], enhancing lateral overlap would bring up the operational cost due
to the requirement of more flight lines [232]. In some research works [5,145,161], an oblique
angle (off-nadir) is set for image acquisition in association with low fling altitude; this view
from the side rather than from the top (nadir) can be challenging in the analysis when
using traditional RS algorithms [233]. Nevertheless, off-nadir acquisition can contribute
to the completeness of the image reconstruction as evidenced by Nesbit [234]. The most
representative imagery products are point cloud, DTM, DEM, and CHM. Moreover, 3D
point clouds contain primary structural information to calculate forest attributes. In
particular, point clouds by acquiring both ground surface and tree vegetation allow deriving
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CHM, which represents tree height and one of the main sources for estimation of other forest
attributes. When acquiring point cloud for deriving CHM, UAV images are recommended
to be acquired during the leaf-on season [235] to avoid negative results, such as image
aberration. For UAV data acquisition, there are two major structural sources within the
reviewed studies—DAP and ALS. The imagery acquired with DAP is then processed using
the SfM technique to obtain a 3D point cloud. Sometimes, forest uniform texture, repeating
patterns, and potential movement due to wind can be challenging for SfM matching
algorithms, potentially leading to incomplete reconstruction or noisy point clouds [236].
Despite this fact, SfM is widely and successfully applied in forest monitoring. Point clouds
derived from UAV–DAP and UAV–ALS are substantially denser than those acquired by
aircraft-mounted ALS; the latter results in a more continuous canopy representation and
improved detection of canopy tops [45], even if the 3D quality is strongly related to flight
parameters and camera settings [237]. DAP has recently become a very popular technique
because it can require only a consumer-grade solution, which often includes an off-the-shelf
RGB sensor as resulted by the current review [7,12,19]. As a major drawback in comparison
to UAV–ALS, DAP is limited to the characterization of the outer canopy envelope [238],
while lidar can acquire the vertical profile of vegetation also operating under-canopy
conditions [121]. Finally, photogrammetry software products are quite numerous on the
market and new ones are constantly appearing. Surely, they play a fundamental role in
UAV product reconstruction, but they present several critical points, such as high demand
for computation time/resource, poor availability of open-source solutions, and, sometimes,
limited impact on processing workflow by the user.

UAV technologies proved to be a very effective and powerful tool in the modern
management of forest inventories. Their applications in this area are based on detecting
the entire tree or some specific features, such as newly grown leaves, seedling, stump,
fallen log, and forest gaps. Nevertheless, it is worth noting that the number of works
dedicated to the evaluation of forest regeneration (seedling) is surprisingly low. This could
be considered a shortcoming for forest practitioners who utilize regeneration status as
essential information for management decisions, i.e., for replacing damaged seedlings [239].
In parallel, UAV–RS is fully applicated for obtaining accurate information from practical
parameters (height, DBH, and crown diameter). The best-described parameter in vege-
tation assessment is height. Both individual tree delineation or area-based (stand-level)
approaches are successfully used for a direct measure of vegetation height. High accu-
racy in data assessment is obtained also by the two main types of sensors—optical and
lidar. In some cases, the reviewed papers investigate research-oriented tasks, such as
phenology assessment, phenotyping, and canopy light behavior. The number of scientific
papers encompasses within this topic is considerable and their results show a high degree
of effectiveness and soundness. This demonstrates how UAV–RS is now a ready-to-use
tool applicable in a real management context. Regarding the assessment of forest basic
structural parameters, UAV–RS is a quick and reliable technology and research achieve-
ments can be made available to forest practitioners. The goal, however, is not entirely
accomplished— there is a need for more efforts by academia in technology transfer and
training of technicians.

UAV–RS provides an alternative for estimating tree biomass on various forest extents
in comparison to field surveys. Despite this being an accurate method, collecting and
weighing samples of vegetation is time-consuming, labor-intensive, and destructive [240].
In this framework, UAVs can bridge the gap between ground observations and traditional
manned aircraft or spaceborne platforms [148]. Tree biomass estimation is performed
aiming at two major research goals—environmental assessment and potential profitability
of timber. The environmental research goal is pursued in the natural forest where biomass
is often estimated as carbon stock [127–129]. More practical issues are conversely addressed
and declined in various aspects for estimation of timber biomass, namely, in estimating
the merchantable volume of mixed forests [140], assessing AGB of high-value timber and
its sustainability over time for logging operations [160], or quantifying pruning biomass
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as a coproduct for sale in a sweet chestnut orchard [130]. No remote sensing method
directly measures biomass. Therefore, researchers use basic variables (height, DBH, crown
diameter) to indirectly predict biomass through scaling equations/models, which are
themselves developed from a relatively small number of trees that have been measured,
harvested, and weighed [20]. Several studies use allometric equations from literature; these
equations relate biomass to measurable biophysical parameters (DBH, height, or canopy
area) and represent an effective method for biomass estimation. Nevertheless, their use is
strictly associated with tree genus or species and their development needs calibration with
direct biomass information [241]. The other approach for gathering UAV-derived biomass
is represented by general or often customized (newly developed) models. They require a
formal analysis being implemented through a fitting method, mainly simple and multiple
linear regression or machine learning regression. Moreover, most or all these models lean
on field data for their construction or validation [129,132,138,158], as demonstrated also by
the intensive campaigns performed by 82% of the reviewed studies. Despite these critical
issues, custom models have the undoubted advantage of being specific to the forested
area under investigation. Finally, a possible way to overcome allometry uncertainty could
encompass the estimation of wood volume using very high-density laser scans [242].

Considering that threats to forests are globally increasing, monitoring of forest health is
of pivotal importance as part of sustainable forest management [243]. When compared with
field assessments, UAV–RS may represent a very suitable solution by providing an objective
and modulable approach, high spatiotemporal resolution, and quick results [166,237].
Hence, the identification of causal agents inducing the declining forest health becomes
imperative. The present review collects papers that mostly deal with biotic stressors, such
as insects, fungi, bacteria, and nematodes. In particular, the decay of forest health is mainly
due to insects belonging to different orders, such as Coleoptera (European spruce bark beetle
and four-eyed fir bark beetle), Lepidoptera (pine processionary moth and Chinese pine
caterpillar), and Hymenoptera (oriental chestnut gall wasp). A relevant share of the forested
area under investigation is composed of conifer trees, such as Norway spruce and various
species of pine. These species are located in different countries (Czech Republic, Austria,
Finland, Korea), where forests represent a key environmental and economic asset and where
UAV–RS technology can be considered quite widespread for few years. UAV imagery
products are mostly generated by using RGB sensors, which can detect reflectance increases
in the red and green band of discolored vegetation stressed by a pest or disease [244]. Being
sensitive to a decrease in the NIR (Near Infrared) reflectance, multispectral cameras are
also used to identify and quantify forest defoliation [245]. Although progress needs to be
made in research, UAVs can allow managers to effectively operate to maintain healthy and
productive forests, as demonstrated by the reviewed papers.

In species recognition and invasive plant detection topic, all the research applications
are carried out in natural/irregular forests, especially in places where the biodiversity rate
is high, such as in subtropical and tropical forests, and boreal and cold-temperate wood-
lands. Species detection involves the classification of few dominant hardwood trees, the
recognition of mangrove species and economically important palms, and the discrimination
of vegetation types (herbaceous, shrub, and tree). In some cases, researchers perform a
proof of concept by detecting more than 10 tree species in a plant nursery [185] and arbore-
tum [184]. Invasive plant identification is also a research issue of great interest—isolated
and high-biodiverse ecosystems are threatened by perennial creepers, conifers, and broad-
leaved trees. Regarding future research, species recognition and invasive plant detection
will benefit from the analysis of streamed imagery. Real-time processing will enable timely
detection and, in a not very far future, eradication of invasive plant could be performed at
the same time together with the identification step [246] (i.e., through spraying drones). In
the end, acquiring specific richness and presence of invasive species over time can give
information about forest resilience, also after disturbance events, for predicting forest status
and its capacity to recover [247].
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Conservation, restoration, and fire monitoring is a composite topic comprehending
a constellation of scientific issues. Restoration monitoring is performed for mine site
revegetation and the evaluation of mechanical thinning. For detection of seedling, drone
imagery represents an unrivaled tool by providing ground sampling distance often reach-
ing sub-centimeter level [239]. Land use is declined as thematic map creation or as an
indicator of conservation interventions, while studies on biodiversity are addressed to
plant conservation, species enrichment, and prediction of tree-related microhabitat. The
impacts of logging activities are evaluated in postharvest areas by analyzing the effect of
residual slash coverage on forest regeneration and the suitable practices to lessen soil com-
paction. Wildfires are an increasing global concern especially because of global warming
and changes in land use [248]. UAV technologies are employed only in one of the reviewed
studies for a crucial activity as fire prevention. On the contrary, post-fire monitoring is de-
bated by various studies, especially for planning adaptive rehabilitation measures and for
classifying forest burn severity. Since the reflectance of a burned area has higher visible and
SWIR (Short-Wave Infrared) values and lower NIR values in comparison to an untouched
forest [249], burned vegetation can be determined by classification through a single-time
post-fire image. On the contrary, for large and heterogeneous areas, an approach based on
temporal comparison of thermal anomalies is considered more reliable [250]. Moreover,
post-fire monitoring is essential for preventing the danger of landslides or other secondary
disasters [209]. To a broader extent, understanding forest dynamics and drivers of change
are pivotal for preservation in a context of rapid change [250]—UAV–RS can regularly
acquire up-to-date and affordable data for all the above-mentioned forest conservation
purposes. This confirms the findings of Eugenio et al. [251], who state that the use of UAV
for ecosystem conservation has gained notoriety in different directions.

The specific combinations of wavelengths identified through hyperspectral sensors
could be used to improve forest inventory and health information and increase information
about biodiversity and natural disturbances. The present studies review 19 research papers,
in total, acquiring UAV imagery utilizing a hyperspectral sensor. Camera technologies
vary from off-the-shelf shelf packages to newly developed commercial products not yet on
the market (used for test) and customized/prototype solutions. The most used imaging
approach is the line scan (i.e., the so-called pushbroom). Species detection (woodland
tree/invasive plant) makes the widest use of hyperspectral sensors (42% of the reviewed
studies within this topic). A performance assessment of vegetation indexes retrieved
through the hyperspectral sensor and a correct waveband region selection are key factors
to identify different species [252]. Moreover, the wavebands selected for classification are
influenced by taxonomic and structural features of the plant and the methods and scale at
which hyperspectral imagery is acquired [253]. Nowadays, there is a fast-growing trend
observed recently in hyperspectral research in terms of technological developments (data
collection, data resolution, spatial coverage, and processing) and in the application do-
main, where multidisciplinary approaches emerged, including forestry applications [254].
Nevertheless, hyperspectral sensors are not yet available, especially in many developing
countries, because of the high market prices of commercial packages. This deprives forest
managers of a potential monitoring tool whose characteristics could be used to promptly
block disease outbreaks or the diffusion of invasive species in tropical and subtropical
woodland.

The comparison between UAV and other RS platforms is crucial for understanding
how different technologies are used and for selecting the most suitable solution for research
and management purposes. Spaceborne platforms are mainly employed for upscaling
results derived from UAV to broader areas and as a source of complementary data or in
multi-temporal forest monitoring. In a few cases, satellite images are used as the main
data source. Manned aircraft, often equipped with lidar, are used for providing reference
datasets or for comparing images with a different spatial extent. It is worth mentioning
that a new generation of high spatial resolution satellites with a revisit time of less than
a week is coming to the fore [255], together with new sources of open satellite imagery,
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such as Landsat and Sentinel-2 [256]. Despite all of these developments, compared to
satellites, UAV flexibility makes them more suited to acquire local imagery promptly at a
very high spatial resolution [257]. Compared to manned aircraft, instead, UAVs represent a
growing alternative to commercial airplanes, which are more expensive also than crew-
based field campaigns for a typical forest extent [127]. In 2015, Tang and Shao [1] have
already reasonably anticipated that the role of drone remote sensing would have overtaken
manned aircraft in the near future. Moreover, small unmanned aerial platforms have the
advantage of being able to be flown in response to specific events (post-fire monitoring,
disease outbreak) and can also fly under a cloudy sky [258]. However, above all it is to be
highlighted that, especially in professional forestry, the RS platform choice must be guided
by the specific purposes of the activity, considering also the technical skills and resources
required for data management and processing.

More than 60% of studies through the entire dataset collect ground data. Field cam-
paigns are carried out to gather mainly basic inventory parameters (DBH, height, crown
diameter), tree species, or health status. In several studies, also ground control points
are acquired through GPS (Global Positioning System) for the geometric calibration of
UAV-derived imagery products. Ground measurements of woodland features consume
substantial resources in terms of both time and cost at any spatial scale. Moreover, in-field
surveys are de facto impossible over large spatial and temporal scales [259]. Nevertheless,
field data gathering still plays a crucial role in forest monitoring and management. They
are often labeled as “ancillary data,” but this definition seems a bit reductive, considering
their importance. Among the reviewed studies, they are indeed collected and used for
dataset validation, accuracy assessment, result comparison, and regression analysis in
biomass estimation. Few studies [123,138] try not to use field data but, necessarily, they are
obligated to rely on previous surveys or collect new measurements for comparing results
or validating their workflow.

The implementation of automatic processes is crucial to extract information and pro-
vide forest inventories from remote sensing data [260]. Object-based image analysis (OBIA)
is usually composed of two main phases, namely, (1) image segmentation and (2) feature
extraction and classification. [261]. Crown segmentation algorithms and object detection
methods are intensively exploited through inventory parameters, biomass estimation, and
species recognition to automatically detect, segment, and classify trees. Image segmen-
tation is a critical and important step in the OBIA process. Most of the approaches for
individual tree crown delineation utilize interpretation of CHM derived from photogram-
metric or lidar 3D point cloud by applying different algorithms, such as the watershed
algorithm and its variants, the multiresolution segmentation algorithm, and existing or
new developed convolutional neural networks architectures. Machine learning offers
great potential for the efficient processing of remote sensing data, and it is often used for
final object classification in OBIA. These techniques are especially exploited to recognize
and classify plant species. Among the most frequent, there are support vector machines,
random forest, and convolutional neural networks. Automatic tree detection is a complex
process in imagery processing. Different types and numerous objects could be identified
through UAV images; therefore, robust algorithms are required to correctly detect the
targeted objects [262]. Performing crown segmentation and machine learning algorithms,
authors are supported by different software packages both proprietary applications, i.e.,
eCognition, Matlab, and ENVI, and open-source applications, i.e., R (especially with LidR
and rLidar packages). Through built-in algorithms, they can identify objects from UAV
imagery exploiting spatial, spectral, and texture forest characteristics and thus extract
specific tree features [263]. Machine learning algorithms are efficient tools and ensure
standardization of the process. Their results are not necessarily more correct than those
achieved through visual interpretation. However, they can handle automatically massive
workloads, thus allowing to extend monitoring over large forested areas—this is one of the
undoubted advantages that has boosted their use in UAV forest monitoring. Nevertheless,
the implementation and use of automatic processes for image analysis have some weak



Forests 2021, 12, 397 28 of 41

points. One of the major obstacles is the perceived lack of interpretability of these methods,
which are often considered to be black-box models [264]. The full replicability of the
results using such techniques is made difficult by complex workflows (sometimes also for
researchers!) and by proprietary software that limits the ability to understand some pro-
cessing outcomes [21]. This weak point strongly hinders the technology transfer of image
automatic analysis and limits the fruition for professional users to the mere acceptance of
the results rather than to the understanding of the entire processing workflow.

Hereafter, this discussion section brainstorms two general aspects of UAV–RS forestry
research—technology transfer and operational costs.

Research in forestry remote sensing often has an applied perspective, as demonstrated
by numerous reviewed papers (39%) containing in the abstract words related to manage-
ment. Tackling the challenges of knowledge transfer from scientists to managers is a key
issue for the development of sustainable forestry. Hence, it is of pivotal importance to focus
on how remote sensing advances can be converted into valuable and available tools to
forest managers. They are doubtful about the operational potential of RS techniques [265].
The objectives of technology transfer are often quite tough to define by mutual consent of
researchers and managers. To obtain the best achievements, there is a need for explicit space
for collaboration and sometimes it is required to challenge the work routine of managers
for seeking adapted solutions [266]. This process could be assisted by a technology transfer
professional and a pool of scientists with different expertise to avoid narrow solutions. In
the case of UAV platforms, researchers can be considered both RS data producers and RS
tool developers. As data producers, they can provide affordable and easy-to-use datasets;
as developers, they can implement tailored tools using raw data and interacting closely
with forest managers [267]. Therefore, after the identification of the objectives, researchers
bear most of the burden of developing new solutions to make RS more accessible to profes-
sionals. The final step in conveying RS techniques is the evaluation by final users. Tailored
tools must be easy to use and integrated into existing workflows [265]. Moreover, feedback
from practitioners on real use and gained results is fundamental also for continuously
improving the proposed solutions. Having said that, what are the concrete actions to
improve the technology transfer process? For sure, one of the pillars on which technology
transfer must be based is training. It can also be carried out through remote classes includ-
ing at the same time in-person visits by specialists to forestry companies. Secondly, the
tailored processing routines developed by researchers should be embedded into flexible
and interoperable open-source toolboxes. These tools could be a foundation that forest
stakeholders could adapt to specific projects [267]. Thirdly, it is necessary to facilitate
access to RS data to broaden the user base, also by implementing open and user-friendly
environments to handle data [268]. This issue concerns particularly forest management
in developing countries considering that expertise in RS data acquisition and analysis is
mainly held by stakeholders of wealthier countries [269]. Part I of the present review [3]
reported on how UAV–RS research studies are poor in places where the forest heritage
is enormous (especially in Africa and South America)—technology transfer is essential,
but, in these cases, its success does not depend only on researchers’ efforts but involves all
forestry stakeholders, especially public organisms.

UAV platform and sensor technologies are constantly evolving; moreover, forest
monitoring can be considered a niche sector compared to other UAV civilian applications.
Therefore, a thorough cost analysis of UAV for forest application is not easy to complete
nor is it one of the main objectives of this study. However, it can be stated that simple
remote sensing approaches can be sometimes deployed with only minor investment [267].
Nevertheless, the fixed costs are often relatively high, and implementing a remote sensing
approach can be prohibitive for forest stakeholders. Global costs include designing the
operational plan, deploying the platform, and acquiring processing software. Not least,
performing certain analyses requires technical skills, and therefore, external trained staff
or training course for in-house personnel are required. Below, some examples of budget
assessment for UAV in forestry applications are reported. Padua et al. [270] estimate costs
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of UAV systems in small areas (up to 50 ha) as follows: EUR 10,000 for disease detection
and identification (multispectral), EUR 3000 for vegetation height maps (optical), and
EUR 2000 for biomass estimation (optical). For broader areas (up to 5 km2), the estimated
costs are EUR 30,000 and EUR 25,000 for forest inventory (lidar) and post-fire burn area
estimation (multispectral), respectively. In the Canadian boreal forest, Chen et al. [271]
measure vegetation height for 30 sites on seismic lines (overall extension of ca. 3 ha).
They estimate a total cost, including field crew, of about EUR 9300 for UAV–ALS and
EUR 6800 for UAV–DAP. A possible solution for reducing costs of UAV–RS could be
represented by high-performing and fully free software for image processing, which is
increasingly appearing on the market or customized full packages, directly usable by final
users. This last hypothesis, even if more suitable, seems to be more difficult to pursue due
to the different missions of stakeholders involved in forest management. Moreover, UAV-
forestry narrow market provides relatively limited opportunities for companies to develop
tools adapted to any specific goals of woodland monitoring. This is why the authors
hope for greater collaboration among companies, researchers, and forestry stakeholders to
implement new solutions that are increasingly suited to the needs of forest management.

5. Conclusions

The present study analyzes a substantial body of literature by gathering a comprehen-
sive dataset (227 articles) dealing with UAV forest remote sensing over a recent timespan
(2018–mid–2020). This Part II of the review discusses specific technical issues of applying
UAV–RS research in different forest ecosystems. As reported also in Part I [3], the final
assessment presents many positives, but few weak points also emerge.

UAV–RS contributes to understanding forest ecosystems better by allowing insights
into forest status and dynamics. Regarding strong points, UAV data acquisition is based
mainly on two consolidated structural sources, i.e., DAP and ALS. SfM processing tech-
nique is particularly exploited and investigated with positive results by the reviewed
papers. UAV–RS is fully applicated for obtaining accurate information from practical
parameters (height, DBH, and crown diameter) with a considerable number of researches
dealing with this topic. Their effectiveness and soundness demonstrate that UAV–RS is
now ready to be applied in a real management context. Researchers have made a lot of
effort to estimate tree biomass, especially through allometric custom models, which have
the undoubted advantage of being specific to the forested area under investigation.

Nevertheless, challenges still exist regarding both purely technical (real-time image
processing, hyperspectral sensor spreading, RS platform interoperability) and general
issues (i.e., flight regulatory regime, technology transfer), and they can hinder UAV–RS
progress. Therefore, improvable and unclear issues require additional research. To help
managers maintaining healthy and productive forests, the number of articles tackling pest
and disease detection should be greatly increased. Real-time species recognition should
be desirable for an on-the-flight detection and timely eradication of invasive plants, by
merging the steps of image acquisition and processing. Even though huge efforts are being
made in this direction, great potentials remain to be explored for the hyperspectral sensor.
Hyperspectral imagery is too little used. Novel applications for species recognition or pest
and disease detection should be based on the capability of acquiring spectral signature,
which is linked with tree characteristics and status. Greater interoperability would be
desirable between UAV and freely available satellite data, even if they are not always
easy to access for professionals. Spaceborne imagery could be used as a screening tool to
pinpoint forest anomalies and then, where problems or peculiarities arise, UAVs could
be deployed to perform in-depth monitoring. Although field data are widely gathered
throughout the reviewed papers, they should be leveraged more for model validation,
especially when using UAV to predict vegetation biomass as this guarantees robust and
transferable results. The use of automatic processes for image analysis is certainly destined
to grow and represents a leap forward for UAV–RS forest monitoring—sometimes they
seem to be black boxes due to the poor flexibility of proprietary software and the complexity
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of workflow. These aspects can be very challenging and can hinder the technology transfer
and thus the full understanding (conscious fruition) of non-specialist users, such as forest
managers and professionals.

While the technical skills of researchers are appropriate for addressing the complexity
of forest UAV–RS, there is still a lot that can be accomplished to bridge the gap between
academia and forest stakeholders. For improving technology transfer, researchers should
develop approaches that are robust to slightly different contexts and that take advantage of
easy-to-collect data. Additionally, processing routines tailored to stakeholder needs should
be embedded into flexible and interoperable open-source tools. To boost the technology
transfer, there is also a need for funding through public and dedicated resources. Moreover,
cooperation projects could help the spread of RS monitoring in some areas where it is
lacking and where its use could be strongly recommended to help manage and protect the
huge forest heritage. Of course, the burden of technology transfer cannot be entirely borne
by researchers, and for this reason, the authors hope for an effective collaboration among all
forestry stakeholders to develop new solutions increasingly tailored to forest management.

In completing this review, the authors came across only a few studies (here not en-
compassed) dealing with the use of UAV as a tool of forestry operations. These are limited
to aerial seeding [272,273] and to pesticide spraying [274], which, for the sake of complete-
ness, is not yet allowed in large areas within the European Union. Nevertheless, the rapid
advancement of UAV–RS seems to be unstoppable, and developing unmanned operating
platforms could be one of the new frontiers of UAV research in forestry applications.
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