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Abstract: Future climate change will result in profound shifts in the distribution and abundance of
biodiversity in the Tropical Andes, and poses a challenge to contemporary conservation planning in
the region. However, currently it is not well understood where the impacts of climate disruption
will be most severe and how conservation policy should respond. This study examines climate
change impacts in the Peruvian Andes, with a specific focus on tropical montane forest ecosystems,
which are particularly susceptible to climate change. Using an ensemble of classification models
coupled with different climate change scenarios, we estimate high and low potential impacts on
montane forest, by projecting which areas will become climatically unsuitable to support montane
forest ecosystems by 2070. These projections are subsequently used to examine potential impacts
on protected areas containing montane forest. The modeling output indicates that climate change
will have a high potential impact on 58% of all montane forests, particularly in the elevation range
between 800 and 1200 m.a.s.l. Furthermore, about 64% of montane forests located in protected areas
will be exposed to high potential impact. These results highlight the need for Peru’s conservation
institutions to incorporate climate change considerations into prevailing conservation plans and
adaptation strategies. To adjust to climate change, the adaptive capacity of forest ecosystems in the
Peruvian Andes should be enhanced through restorative and preventive conservation measures such
as improving forest functions and mitigating deforestation and forest degradation pressures.

Keywords: conservation planning; protected areas; cloud forests; species extinction; climate impact;
ecological niche modeling

1. Introduction

A growing body of literature points out that changing climate conditions will become
a major threat to global biodiversity within the next 100 years [1–3]. Shifts in temperature
and precipitation regimes at global and regional scales are expected to have profound
impacts on the composition and stability of terrestrial ecosystems [4]. Climate-induced
changes in the spatial distribution and extent of the world’s major vegetation classes have
already been observed [5]. As it appears, climate change is inevitable and increasing in
magnitude over time [6]. Hence, its consideration in conservation planning is becoming
critically important to ensure that long-term conservation goals can be achieved.

To improve conservation decision making, the discipline of Systematic Conserva-
tion Planning (SCP) has emerged, which aims to systematically identify representative,
complementary and cost-effective priority areas for conservation to ensure the long-term
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persistence of biodiversity [7]. Yet, there is uncertainty on how conservation planning
should effectively anticipate the impacts of climate change. Thus far, only a limited num-
ber of studies have explicitly considered climate change in conservation prioritization
assessments [8]. Most of them have accommodated the effects of climate change by priori-
tizing the future distribution of target species (e.g., [9,10]). Reserve selection algorithms
are then used to design a comprehensive network of protected areas that safeguards the
distribution of these species in the future. Albeit, range shift projections are surrounded
by large uncertainties as they generally ignore species-specific traits that are linked to
dispersal potential [11] and do not account for key biotic interactions such as predation
and competition [12]. Additionally, location-specific dispersal barriers imposed by topo-
graphic gradients and landscape fragmentation are rarely addressed in biogeographic
models [13]. These limitations of models to more accurately forecast where ecosystems and
individual species will move as climate changes, poses a critical difficulty in conservation
planning [14].

Alternatively, it could be argued that instead of projecting future ranges, it is more
straightforward and robust to make predictions about where climate disruption could
potentially lead to negative impacts within current distributional ranges [15]. In other
words, it may be more straightforward to predict a change in climate suitability, rather
than the impact thereof on the geographical distribution of biodiversity. This approach,
however, may not enable conservation planners to prioritize cost-effective, representative
and complementary protected area systems under future climate change. Nevertheless, it
could advance our understanding as to where in the landscape the impact of climate change
may be most severe, what its consequences for land use may be and where conservation
actions may be necessary.

Assessing the impact of climate change is particularly important for regions where
changing bioclimatic conditions will induce severe biodiversity loss and degradation,
such as tropical mountain regions [16]. Particularly in these regions, many restricted
range endemic species occur that may be unable to keep pace with rapidly changing
climate conditions, which could ultimately lead to their extinction [17]. As noted by
Jones, Watson, Possingham and Klein [8], research and investment prioritization should
be allocated to species and ecosystems that are believed to be most vulnerable to climate
change. This echoes the latest guidelines of the International Union for Conservation of
Nature [18], which recommend the use of Species Distribution Models (SDMs) to define
the Red List status of species highly vulnerable to climate change. Consequently, in areas
severely threatened by climate change, where species and ecosystems with limited adaptive
capacities occur, it might be necessary to look beyond traditional conservation planning
principles as species representation, costs and complementarity, and prioritize conservation
efforts in the long term for those species and ecosystems most likely to be affected by
climate change.

Peru contains the fourth largest tropical forest coverage in the world, after Brazil,
the Democratic Republic of Congo and Indonesia [19]. While much of the forest and
deforestation-related research in Peru focuses on lowland Amazon ecosystems, some of
the country’s most important areas for biodiversity conservation are located within the
Peruvian Andes forests [20]. These forests contain exceptional concentrations of endemic
plants and vertebrate species, that are undergoing dramatic losses of native habitat [21].
A substantial portion of the Peruvian Andes forests is composed of tropical montane
cloud forests [22], which are particularly rich in endemic flora and fauna [23]. Cloud
forests are recognized as one of the world’s terrestrial ecosystems most affected by climate
change, due to their high sensitivity to rising temperatures and changes in precipitation
and cloud distribution patterns [24,25]. Reductions in their spatial extent are already being
observed [26,27], which emphasizes the significance of understanding climate-related forest
change dynamics in the Peruvian Andes for conservation planning.

Previous studies from the Andes have examined species-specific responses to climate
change based on species-based ecological niche modeling (SDMs). For instance, Mavárez
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et al. [28] modeled the current ecological niche of 28 species of Espeletiinae (Asteraceae)
in the Venezuelan Andes and estimated the future distributions of potential climatically
suitable habitats for these species. While species-based approaches provide important
insights for the long-term conservation of specific species, it is argued that ecosystem and
biome-based modeling could be more informative for the identification and prioritization
of areas where a broad range of ecological communities and habitats can be preserved in
the anticipation of climate change [29]. For the Tropical Andes, a region-wide biome-based
assessment was provided by Tovar et al. [30], showing to what extent climate could affect
biome distribution and where conservation actions would be appropriate in the future.

Here, we develop an ecosystem-based modeling approach to examine where and to
what extent a change in climatic conditions could impact montane forest ecosystems. Given
their biodiversity significance and high sensitivity to climate change, we specifically focus
on Peruvian Andes forest ecosystems. First, the distribution of potential climate change
impacts on montane forest is examined, by projecting which areas will become climatically
unsuitable to support this type of ecosystem by 2070. This is done, using an ensemble of
climate change scenarios. This information is then used to examine potential impacts of
climate change on montane forests within current protected areas. Finally, we explore the
implications of our results for conservation planning in the Peruvian Andes, by linking our
climate change projections to land use change scenarios.

2. Methods

A nationwide land cover layer produced by Peru’s Ministry of the Environment [22]
was used to identify high jungle humid/perhumid forests (in Spanish: bosque húmedo/
perhúmedo -semisaturado) in the Peruvian Andes (hereafter montane forests) see Table 1 and
Figure 1. The MINAM layer consists of 75 different land cover types and was produced
based on Landsat 5 TM satellite imagery from 2011 at 30 m resolution, and complemented
with high resolution RapidEye and Google Earth imagery. Eight land cover types corre-
spond to montane forests, located between 800 and 3600 m.a.s.l., with a total extent of about
117,000 km2, covering approximately 9.1% of Peru’s national territory (Table 1). Using
ArcGIS 10.1 [31], we aggregated Peru’s ecosystems into four distinct land cover classes for
later modeling purposes: (1) montane forest ecosystems, (2) anthropogenically disturbed
areas, (3) water bodies, and (4) all other ecosystems.

Table 1. Montane forest ecosystems.

Spanish Name English Name Altitude
(m.a.s.l.)

Area
(km2)

Area
(%)

Bosque de terraza baja basimontano Lower terrace forest 800–2000 31 0.002
Bosque de terraza alta basimontano Upper terrace forest 800–2000 4 0.0003
Bosque inundable de palmeras basimontano Floodplain palm forest 800–2000 49 0.004
Bosque de montaña basimontano Lower montane forest 800–2000 76,503 5.95

Bosque de montaña basimontano con paca Lower montane forest with
bamboo 800–2000 1364 0.11

Bosque de montaña montano Mid-montane forest 2000–3000 30,724 2.39
Bosque de palmeras de montaña montano Mid-montane palm forest 2000–3000 137 0.01
Bosque de montaña altimontano Upper montane forest 3000–3600 8318 0.65

Peruvian montane forest ecosystems are distributed along the eastern slopes and valleys of the Andean mountain range, located between
coordinates 3◦5′10 South, 79◦1′15 West, 14◦29′24 South and 68◦49′37 West, and elevations ranging from 800 up to 3600 m.a.s.l. This natural
region is locally known as the yungas or the selva alta [22].

2.1. Current Montane Forest Distribution Modeling

The WorldClim version 2.0 bioclimate dataset [32] at 30 arc second spatial resolution
(equivalent to about 1 km2 at the equator) for the period 1970–2000 was obtained to model
the distribution of montane forests under current climate conditions. This dataset con-
sists of 19 bioclimatic raster variables commonly used in species distribution modeling
(see Supplementary Materials, Table S1). Furthermore, using the WorldClim along with
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solar radiation data [33,34] and the “Envirem” R-package [35], we generated an additional
dataset consisting of 16 alternative climate variables (hereafter referred to as the Envirem
variables, see Supplementary Materials, Table S2). The use of these variables has proven
to significantly improve ecological distribution modeling performance [35]. All 35 rasters
were cropped to Peru’s national territory. Using a Pearson’s correlation matrix, we dis-
carded highly correlated variables (r > 0.8). This resulted in a dataset of three WorldClim
variables (mean annual temperature, isothermality and precipitation seasonality) and three
Envirem variables (continentality, potential evapotranspiration seasonality and potential
evapotranspiration of the wettest quarter of the year). These variables were used to train
an ensemble of different classification models.
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of the eight different forest types that correspond to tropical montane forest.

Ensemble forecasting has shown to reduce the uncertainties associated with individual
statistical modeling procedures, by combining projections from multiple models into a
single consensus forecast [36,37]. For this study, we selected five modeling techniques
commonly applied in species distribution modeling: (1) Artificial Neural Networks (ANN;
Ripley [38]), (2) Generalized Linear Models (GLM; McCullagh and Nelder [39]), (3) Boosted
Regression Trees (BRT; Elith et al. [40]), (4) Random Forests (RF, Breiman [41]), and (5) Mul-
tivariate Adaptive Regression Splines (MARS, Friedman [42]). Training data was extracted
based on Peru’s aggregated land cover layer, using a random sample of 10,000 data points
corresponding to land cover class 1 (montane forest ecosystems) and 10,000 data points
corresponding to land cover class 4 (other ecosystems) as the dependent variable, and
corresponding climate data as the independent variables. The performance of each model
was evaluated by means of a 10-fold cross validation using 30% of the training data [43].
We calculated the area under the curve (AUC) of the receiver operating characteristic
(ROC) to estimate model accuracy. AUC ranges from 0 to 1, with values >0.9 indicating
very good, values >0.8 indicating good and values >0.7 indicating acceptable modeling
performance [44].
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2.2. Potential Climate Change Impacts on Montane Forests in 2070

The fitted models were used to extrapolate the potential distribution of montane
forests under projected climate change conditions to the year 2070. Following Ponce-Reyes
et al. [45], we only examined which areas within the present distribution of montane forests
remain climatically suitable to support montane forests in the future. This means that the
potential formation of montane forest beyond its present distribution is not examined here,
as this is a process that could potentially take several centuries [45,46] and is therefore
considered beyond the temporal scope of this study. Moreover, it is assumed that tropical
montane cloud forests are unable to expand their range beyond the tree line towards higher
elevations [47].

We obtained spatial climate datasets for 2070 from WorldClim version 1.4 [48], and
generated the Envirem variables for 2070 following the procedure described above. World-
Clim provides downscaled and calibrated output from a range of General Circulation
Models (GCMs) that have simulated the change in climate under four different green-
house gas emission scenarios (referred to as representative concentration pathways; RCPs).
These climate simulations were developed through the Coupled Model Intercomparison
Project Phase 5 (CMIP5; Taylor et al. [49]), whose results were used in the Fifth Assessment
Report (AR5) of the Intergovernmental Panel on Climate Change [50]. In this study we
considered RCP8.5, which is believed to be the most realistic scenario for the middle-long
term [6]. RCP8.5 assumes a business as usual scenario, where high population growth, low
income growth and modest rates of technological innovation induce a prolonged increase
of energy demands and greenhouse gas emissions [51]. To account for uncertainties and
variability associated with climate simulations, we adopted a consensus approach. That
is, we used future climate data from 17 GCMs available via WorldClim that correspond
to RCP8.5 to predict the potential distribution of montane forests under climatic condi-
tions in 2070. Consequently, based on the 5 classification models we fitted earlier and the
climate data provided by the 17 GCMs, we generated 85 predictions of future montane
forest distribution.

For the areas classified as montane forest in less than 50% of the predictions, we
assumed a high potential impact of future climate change. Hence, the majority of the
predictions indicate that these areas will become climatically unsuitable to support montane
forest ecosystems by 2070. These areas were aggregated into a layer that defines where
the impacts of future climate change on montane forests are projected to be high. On the
other hand, low potential impacts were assumed for areas classified as montane forest in
more than 50% of the predictions. The breaking point at 50% was based upon the “majority
vote criterion” proposed by Araújo, et al. [52]. To explore the variability between the
classification models and climate datasets used, we overlaid all predictions and mapped to
what degree the distribution of montane forest was predicted consistently. All distribution
modeling procedures were carried out using the R statistical software [53]. The approach
followed to estimate the potential impact of climate change on montane forest and current
protected areas (see following section) is displayed in Figure 2. An overview of the datasets
used in this study is provided in the Supplementary Materials (Table S3).

2.3. Potential Climate Change Impacts on Montane Forests within Current Protected Areas

The layer that was developed to identify high potential impacts of future climate
change on montane forests was subsequently used to examine the impact on montane
forests within current protected areas. We considered national, regional and private
protected areas, as they constitute Peru’s principal conservation areas, both in terms of
surface area and biodiversity conservation [54]. Using spatial datasets of protected areas
obtained from Peru’s Ministry of the Environment [55], we first calculated the current
coverage of montane forests within protected areas. Subsequently, we calculated the extent
of high potential impact within protected areas for 2070 (see Figure 2) and examined
differences between protected area categories.
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Figure 2. Flow diagram of the methodology employed to examine potential impacts of climate change on montane forests
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by black polygons; (g) are estimated by calculating the extent of high climate change impact within their current distribution
(indicated by the shaded areas.

3. Results
3.1. Projected Climate Change Impacts on Montane Forest in 2070

The five classification models that were fitted to define the relation between the current
distribution of montane forests and current climate conditions yielded AUC-values >0.70,
of which three models yielded AUC-values >0.85 (see Supplementary Materials, Table S4).
This indicates good modeling performance and confirms the applicability of these models
for projecting the distribution of climate suitability for montane forest ecosystems in
future scenarios.

The outcomes of the modeling procedures to examine future climate suitability and
potential climate change impacts are displayed in Figure 3. The areas highlighted in dark
grey indicate climate conditions that are projected to remain suitable for montane forests in
2070 which, in turn, points to low potential climate change impact. In contrast, the areas
highlighted in red indicate climate conditions that are projected to become unsuitable for
montane forests, which in turn, points to high potential climate change impact. Conse-
quently, the modeling outcomes point to an area of about 68,000 km2 (which corresponds to
58% of all current montane forest areas), where the impacts of climate change are projected
to be high. Out of this, 66,000 km2 (~97%) corresponds to lower montane forests in the
elevation range between 800 and 2000 m.a.s.l. These forests are mainly distributed along
the eastern flank of the Peruvian Andes. For these areas, variability among modeling
results is generally low (see Supplementary Materials, Figure S1), indicating a relatively
high certainty of the predictions. Further, the model projections point to 900 km2 (~3%) of
mid-montane forest and 1300 km2 (~16%) of upper montane forest areas, where climate
conditions are projected to be no longer suitable to support these types of ecosystems
in 2070. This implies that at mid to higher elevations, the impact of climate change on
montane forests could be expected to be limited.
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3.2. Projected Climate Change Impacts on Protected Areas

We identified twenty-three national, five regional and thirty private protected areas
that in conjunction provide coverage to 39,093 km2 of montane forests, which corresponds
to 33% of the total montane forest area (Figure 3). According to the model projections,
about 25,042 km2 (~64%) of all protected montane forests will be highly impacted by the
future change in climate suitability. Striking differences in the projected impact of climate
change can be observed between protected area categories. That is, the change in climate
suitability and its associated impacts on montane forests are projected to be most extensive
in national protected areas (~69%) and notably less extensive in regional (~33%) and private
protected areas (~2%).
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Nearly two-thirds (~62%) of all protected forests are contained within 6 large national
protected areas, each of which contains more than 2000 km2 of montane forests (Figure 3).
The expected impacts of climate change will vary considerably among these areas. For
instance, high projected impacts on montane forests within the Cordillera Azul National
Park and the El Sira Communal Reserve correspond to about 95% of the area (6448 km2

and 4026 km2, respectively), while high projected impacts in the Otishi National Park
correspond to <20% of the current area.

4. Discussion

This study has projected the climatic suitability for Peruvian Andes forest ecosystems
under future climate change. The projected shift in suitable climatic conditions for these
ecosystems implies a range of changes that may directly or indirectly impact montane forest
biodiversity within the coming decades, including changes in rainfall patterns, reduced
cloud formation, temperature increases and associated drought stress, compositional
changes in current species assemblages and rising incidence of pests and plagues [56–58].
Our results suggest that in some places of the Peruvian Andes, future climate conditions
will no longer be suitable to support rare montane forest ecosystems such as terrace forests
and floodplain palm forests. The loss of floodplain palm forests would for instance imply
that characteristic plant species such as those from the genus Alchornea would go locally
extinct [22]. In more general terms, the ecological consequences of a changing climate will
potentially be most severe along the Andean foothills. The disruption of climatic conditions,
particularly those at elevations between 800 and 1500 m.a.s.l., tends to concur with high
concentrations of threatened and endemic vascular plants and vertebrate species [59].

Biodiversity conservation in the Andes largely depends on national protected areas,
with estimates indicating that between 70 and 80% of protected species are covered by
protected areas at the national level [60]. The results of our models highlight potential
impact of climate change on montane forest biodiversity within national protected areas in
the Peruvian Andes. Most notable is that nearly all (~95%) of the montane forest ecosystems
within Peru’s Cordillera Azul National Park and El Sira Communal Reserve are projected
to undergo severe climate-induced change. Rising temperatures will cause species with
limited climate-adaptive capacities to migrate upslope towards higher elevations, where
generally less land is available due to the natural geometric shape of mountains [61]. For
instance, in the specific case of the El Sira Communal Reserve, empirical findings from
Forero-Medina et al. [62] point to an upward shift in the range of Andean bird species due
to gradual changes in temperature, habitat conditions and the availability of food resources.
Given that climate conditions are becoming increasingly unsuitable to support species’
montane forest habitats, and montane species have nowhere else to go but upwards, it will
become more and more difficult for these species to find patches of suitable habitat that
respond to their needs. Eventually this implies that several species in the El Sira Communal
Reserve and the Cordillera Azul National Park could go extinct, unless they are able to
adapt quickly enough to the change in climate and habitat conditions. These so-called
“mountaintop extinctions” are becoming more common in the Peruvian Andes [63] and
as a future environmental crisis, it is a subject that deserves greater attention in present
conservation planning.

Beyond addressing the threat of species extinction, a pragmatic approach to achieve
long-term conservation outcomes might be to focus on identifying and protecting biodi-
versity in those areas that have good chances to withstand climate-induced changes [15].
Our results show that climate change-resilient forests are predominantly located at higher
elevations, as a consequence of the upward shift of climate suitability. These forests are,
at the same time, increasingly threatened by human intervention. Peru’s high altitude
grasslands located above the tree-line (above approximately 3000–3500 m.a.s.l.) are ex-
tensively used for farming and other productive activities, which hinders the forest to
naturally migrate towards higher areas through colonization and succession processes [47].
Furthermore, anthropogenic activities in these places may be causing the Peruvian Andes
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tree-line to retreat downwards [25], with potentially detrimental effects on the underlying
cloud forest ecosystems. On the other hand, the shift in climatic conditions as highlighted
in our study is likely to displace forest extractive practices from low-lying areas towards
higher locations. Ovalle-Rivera et al. [64] argue, for example, that temperature changes will
push deforestation associated with the cultivation of coffee further upwards, as farmers
will be forced to move their plantations to higher elevations. These synergistic changes in
climate and land use point to a parallel up and downslope contraction of the already nar-
row distributional limits of montane forest ecosystems, which poses an evident challenge
for their conservation in the future. Hence, under the dual threat of climate change and
deforestation, conservation planners should take actions in areas that are resilient in terms
of climate stressors but also vulnerable in the face human activities [65].

Unlike most conservation planning assessments, the aim of this study was not to
propose a comprehensive protected area network for the Peruvian Andes. As shown by
other studies [66–68], the development of cost-effective, representative and complementary
protected area networks requires the incorporation of arguably infeasible amounts of
land area, which emphasizes the need for prioritization [20]. Systematic conservation
planning that includes future climate change scenarios brings along additional challenges,
because it remains rather difficult to accurately forecast how species and ecosystems will
respond to a changing climate. Alternatively, in this study we proposed an ecosystem-
based modeling approach to identify areas where a change in the bioclimatic envelope
could potentially affect montane forest. The outcomes presented here are intended to
inform Peru’s conservation policies and help prioritize conservation efforts and resources
in the Peruvian Andes in the long run.

To explore the relevance of our results to inform conservation decisions, it is needed
to reflect on some of the methodological limitations and uncertainties associated with
climate change models such as the ones developed in our study. First, to fit our models
we used downscaled WorldClim datasets, which are based on interpolated climate data
from weather stations. It has been argued that WorldClim data may not reflect well the
climate conditions in places where sparse weather station networks exist, as in the Andean
forest region [69]. However, other authors have shown that WorldClim data concur closely
with climate data from weather stations located near cloud forest ecosystems [70], which
suggests these datasets are suitable for modeling Andean forest distributions. Second, to
reduce uncertainties associated with future projections, we adopted a consensus approach
using climate data from 17 GCMs available via WorldClim that correspond to RCP8.5.
Some of the GCMs we used may not adequately represent future climatic conditions in our
study area and it has been proposed to employ selection procedures through which the
incorporation of the least plausible GCMs can be avoided [71]. Nevertheless, we decided to
use all GCMs available to rule out any form of model selection bias and ensure we capture
the maximum possible range of changes in future climate conditions. Finally, it should be
noted that possible spatial autocorrelation in our data may have affected the performance
of our models. Following the approach by Tovar, Arnillas, Cuesta and Buytaert [30] we
randomly drew a data sample with an Euclidean distance of 3 km between individual data
points, but it proved impossible to completely remove spatial autocorrelation. Meanwhile,
we did our very best to decrease modeling uncertainty more generally, by using five
different modeling techniques and by generating an additional set of climate variables to
reduce the possibility of omitting relevant predictor variables, which is also known to be
an important cause of spatial autocorrelation [72].

Scenarios for Conservation Prioritization under Future Climate Change

Here, we describe some the practical implications of our study for conservation plan-
ning in the Peruvian Andes. Our results point to an extensive area where future changes
in climatic conditions could severely affect montane forests. The question remains how
current and future conservation actions could adequately respond to these changing condi-
tions. First, it is important to note that a shift in climatic conditions will not result in an
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impact on forest cover per se. The capacity of trees and forest ecosystems to adjust to new
climatic conditions has been associated with a range of evolutionary adaptive mechanisms
at different hierarchical levels (from the individual to the species and community level),
including acclimation and epigenetic responses, natural selection and local adaption, suc-
cession and colonization and biotic interactions [73,74]. To what extent these processes take
place depends on overall ecosystem functioning and, in turn, the degree of anthropogenic
disturbance [75,76]. Consequently, to estimate climate-induced forest change scenarios and
prioritize for conservation, understanding local human-forest interactions over the course
of time is also required. With respect to the Peruvian Andes, the rapid development of eco-
nomic activities in the last few decades has caused severe loss and degradation of natural
forest ecosystems [77]. Changes in land use have primarily occurred at elevations below
1500 m.a.s.l., which is also where our model results show the most prominent changes in
climate conditions. These destructive land use practices under a rapidly changing climate
constitute a major threat to the fragile montane forest ecosystems within these places.

Peru’s conservationists will thus be facing the challenge to identify and take actions in
areas where we could expect changes in climate and land use to reinforce each other within
the coming decades. To support conservation decision-making in light of future climate
change in Peru’s montane forest region and elsewhere, we operationalize two scenarios
to illustrate when and what type of conservation measures are needed to improve forest
ecosystem functioning and, in turn, better allow these ecosystems to adapt to changes
in climatic conditions (Figure 4). For clarity, each scenario is presented and discussed
separately, but in reality, a combination of the two scenarios is likely to exist. This will have
implications for the design and implementation of conservation measures.
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Figure 4. Two conceptual scenarios to describe when and what type of conservation measures are needed to increase the
resilience of forest to changes in climatic conditions. Left: Scenario 1. Without conservation measures, anthropogenic
disturbance of forest will increase over time, leading to a higher vulnerability to climate change in the future (displayed by
the solid line). When preventive conservation measures are implemented, currently low levels of anthropogenic disturbance
could be maintained, leading to enhanced forest functioning and a lower vulnerability of forest to climate change (displayed
by the dashed line). Right: Scenario 2. Without conservation measures, anthropogenic disturbance of forest will remain high
over time, leading to a higher vulnerability to climate change in the future (displayed by the solid line). When restorative
conservation measures are implemented, currently high levels of anthropogenic disturbance could be reduced, leading to a
lower vulnerability of forest to climate change (displayed by the dashed line).

The first scenario describes a situation where anthropogenic disturbance of forest
is currently low but likely to rise quickly over time. This corresponds, for example, to
in-tact forest areas that represent high economic value due to their geographical location or
physical properties [78]. To enhance forest resilience, it may be argued that an anticipated
shift in climate suitability should be accompanied with adequate measures to prevent local
deforestation and forest degradation pressure. This may increase forest functioning and het-
erogeneity, which allows for tropical forests to better respond to and recover from climatic
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stressors over time [79,80]. With regard to the Peruvian Andes, Bax and Francesconi [81]
developed land use models to identify areas where anthropogenic activities are likely to
expand within the coming decades. The climate projections presented in our study, in
conjunction with the land use change scenarios from Bax and Francesconi [81], provide a
first glance of opportune forest locations for the expansion of protected areas as part of a
precautionary forest management approach. These locations include, for instance, some of
the largely in-tact forest areas to the west of the Otishi National Park (located in the Junín
region), where both deforestation and climate change pressures are expected to intensify in
the foreseeable future.

The second scenario describes a situation where large-scale anthropogenic disturbance
of forest has already been taking place. In the case of already disturbed and degraded
forest ecosystems, a better strategy to counter the impacts from climatic stressors will be to
strengthen ecosystem functioning through restoration and reclamation efforts [82]. Imple-
menting payments for ecosystem services schemes and agroforestry initiatives may also
be an appropriate strategy to restore degraded tropical forest areas, while simultaneously
addressing rural poverty and development needs within the Peruvian Andes. Candidate
areas for restorative measures, taking into account current disturbance regimes, human
presence and potential climate change exposure, are for instance located to the southeast of
the Otishi National Park in the Cusco region.

5. Conclusions

The prospects of climate change illustrate a future in which major conservation chal-
lenges and uncertainties lie ahead. The outcomes of this study show that under a worst-case
climate change scenario for the year 2070, more than half of all Peruvian Andes forests will
no longer be climatically suitable to persist within their current distribution. Most striking
is that by the year 2070, nearly all montane forest ecosystems within Peru’s Cordillera Azul
National Park and El Sira Communal Reserve will be subjected to climatic circumstances
that are not adequate for the existence of these ecosystems.

Changes in climatic conditions are not isolated, but set in motion a myriad of mech-
anisms that, in one way or another, will be causing ecosystems to migrate, acclimatize,
adapt or break apart and disappear. Resource managers and conservation specialists are
now confronted with the exceptionally difficult task of developing approaches that incor-
porate climate uncertainties into prevailing conservation plans and planning principles.
The modeling framework presented in this study provides a pragmatic method to guide
conservation decision making in the Peruvian Andes, by assessing where a shift in suitable
climatic conditions could translate into impacts on forest ecosystems. In addition, based
on the outcomes of our study we present two scenarios applicable to the Peruvian context
that could guide conservation planners to identify and take actions to reduce land-use
change pressures and, in turn, enhance climatic resilience of montane forest ecosystems.
More empirical research is, at the same time, needed to further our understanding of
human-forest-climate interactions.

In the cases where no conservation or adaptation actions are taken for whatever
reasons, as society, we need to face the threat that climate change poses to ecosystem
degradation and large scale species extinction. As financial resources for conservation are
scarce and apathy is plentiful, focusing efforts on areas that provide the biggest bang for
buck, may be our best bet to safeguard rare and fragile ecosystems in a specific region, such
as montane forest ecosystems in the Peruvian Andes. Conservation strategies that target
potential climate change impacts on species and ecosystems, will need to integrate multiple
stakeholders and implement diverse landscape conservation strategies to increase climate
resilience. These principles are for instance embedded in the Amazonía Resiliente project, a
UNDP conservation project that targets climate change impacts and other human induced
pressures in the Peruvian Amazon and premontane Andes forests. The project aims at
increasing the extent of protected areas, improving connectivity between conservation
areas and remaining habitat, increasing the diversity of habitats within the conserved
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ecosystems, and importantly, working with the communities and organizations that seek
the proper management of natural resources. The climate change projections presented
in this study provide knowledge-based support for conservation efforts such as Amazonía
Resiliente, showing where conservation actions are feasible and most needed within a
rapidly changing environment.
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