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Abstract: This study examined the effects of waterlogging and forest litter introduced to soil on
chemical properties of soil pore water and ecotoxicity of soils highly enriched in As. These effects
were examined in a 21-day incubation experiment. Tested soil samples were collected from Złoty
Stok, a historical centre of arsenic and gold mining: from a forested part of the Orchid Dump
(19,600 mg/kg As) and from a less contaminated site situated in a neighboring forest (2020 mg/kg As).
An unpolluted soil was used as control. The concentrations of As, Fe and Mn in soil pore water
were measured together with a redox potential Eh. A battery of ecotoxicological tests, including
a bioassay with luminescence bacteria Vibrio fischeri (Microtox) and several tests on crustaceans
(Rapidtox, Thamnotox and Ostracodtox tests), was used to assess soil ecotoxicity. The bioassays with
crustaceans (T. platyurus, H. incongruens) were more sensitive than the bacterial test Microtox. The
study confirmed that the input of forest litter into the soil may significantly increase the effects of
toxicity. Waterlogged conditions facilitated a release of As into pore water, and the addition of forest
litter accelerated this effect thus causing increased toxicity.

Keywords: mine dump; forest; beech litter; pore water; incubation; toxicity; microbiotests; Microtox;
Rapidtox; Thamnotox; Ostracodtox

1. Introduction

Arsenic belongs to potentially toxic metalloids; therefore, soils highly contaminated
with this element are the matter of considerable concern. There are several sites in the
Sudetes mountain range (SW Poland) where arsenic ores were mined in the past. Among
them, Złoty Stok (German: Reichenstein) was one of the main European gold and arsenic
mining centers. Numerous mine dumps and slag heaps remained there spread in a forested
area. Waste material disposed on the dumps as well as soils in surrounding forests contain
very high concentrations of As [1,2]. The processes of rock weathering lead to a slow
release of As into soils and water [3,4] thus causing a considerable environmental risk. In
spite of the fact that As usually remains poorly soluble in soils due to its strong binding
by iron, aluminum, and manganese oxides [5,6], its solubility can increase considerably
under certain conditions. The release of arsenic from soil solid phase may be caused by
strongly acidic or alkaline pH, low redox potential or the presence of substances, such as
phosphates or organic compounds, that compete with arsenates for the sorption sites on
oxides [5,7–11].
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Such conditions, i.e., the input of organic matter and periodic anaerobiosis, may occur
in soils formed on forested mine dumps strongly enriched in arsenic, and in the soils in
adjacent forests. Land surface in those sites has a relatively rich microrelief which means
that in certain periods, after longer rainfall or spring snow thaw, waterlogging conditions
may form in local depressions, lasting for several weeks and leading to a significant
decrease in the redox potential. The presence of decaying forest litter should be considered
as an additional factor that can cause deepening of anaerobiosis [10,12].

The processes of As mobilization in such conditions have been the subject of many
studies, however the effects that the increased solubility of toxic As may cause in soil
biocenosis have been poorly understood. Such knowledge would be essential to assess the
ecological risk in those areas.

Reductive dissolution of amorphous and crystalline iron hydroxides, the main hosting
phases for As in soils, may lead to intensive As release under reducing conditions. Those
processes are often mediated by microbial activity [13–15]. Changing redox conditions
usually affect the speciation of As in pore water, influencing its affinity to sorption sites
that is much lower in the case of arsenites As(III) compared to arsenates As(V) [5,15–17].
Soil microbiota, as well as several components of soil pore water can, however, cause also a
subsequent oxidation of As(III) [14,18], which makes the effects of reducing conditions on
the solubility of As in soils difficult to predict.

The presence of dissolved or particulate organic matter makes those processes even
more complex. Numerous researchers reported a release of As from organic matter—
amended soils due to the competition for sorption sites on iron hydroxides [7,9,10,19–22].
Several other mechanisms, such as redox reactions, complexation, and colloid formation
can also be involved in the processes of As mobilization and resorption in soils in the
presence of organic matter [7,22–24]. For instance, the forest litter-derived compounds can
further bind arsenates leading to their sorption on soil solid phase, thus contributing to As
removal from soil solution. The products derived from decomposition of plant residues
under oxidized and anoxic conditions differ in their properties [25–27], which additionally
influences the fate of As in the soil system.

The reaction of biota to the presence of As in soil depends on its release into the
pore water, and additionally on its speciation in the solution and the presence of other
components that can act synergistically or antagonistically. Moreover, the bioavailability of
As for some soil organisms, such as earthworms, depends not only on the current but also
on potential solubility. The ecotoxic effects of As in highly enriched soils are therefore very
difficult to predict based on chemical properties of soil and soil pore water. The response of
various groups of organisms to hazardous substances can be highly site-specific, therefore
the batteries of tests, using a wide range of organisms, should be performed together
with chemical analyses, in order to obtain the comprehensive assessment of ecological
risk [28–30].

Various toxicological tests have been developed up to now and accepted by OECD
or/and ISO as standard procedures [28–32]. Particular attention has been given to com-
mercially available microbiotests, such as the Toxkit tests, which are easy in maintenance,
ecologically relevant, sensitive to a broad range of toxicants and standardizable [33]. The
sets of Toxkit tests contain all materials and the test organisms, necessary to perform the
simple, rapid, sensitive and highly reproducible toxicity tests in aquatic and terrestrial
environments.

The aim of research presented in this study was to assess the effects of waterlogging
and the input of forest litter into the soil on the solubility and ecotoxicity of As measured
with a battery of ecotoxicological tests, including a bioassay with bacteria (Microtox) and
several tests on crustaceans (Rapidtox, Thamnotox and Ostracodtox toxkits). These tests
involved the assessment of both acute and subchronic toxicity posed to biota by soil pore
water and total soil samples. They have proved effective in studying environmental con-
tamination with metals and metalloids [30,31,34,35]. The study covered the soil collected
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from the forested part of the Orchid Dump [12], highly enriched in As, and much less
contaminated soil from a neighboring forest.

2. Materials and Methods
2.1. Soils

Two large (ca. 40 kg) samples of soils, representative for the mineral soil layer 0–20 cm,
were collected from two sites in Złoty Stok: S1—a forested part of the Orchid dump [12] and
S2—a nearby mixed-species forest stand (Figure 1). Beech (Fagus sylvatica L.) associated by
spruce (Picea abies L.) and maple (Acer pseudoplatanus L.) were the dominant tree species in
those sites. The representativeness of samples for the approximately 50 m2 large areas was
ensured in each case by mixing 16 sub-samples taken based on regular grids. Additionally,
a sample of control soil (C) was collected from an unpolluted area, situated outside of the
area of Złoty Stok.
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Figure 1. Location of Złoty Stok in Poland and situation of soil sampling sites.

Soil material was sieved to <5 mm on site, brought to laboratory, air-dried, crushed
and homogenized prior to the experiment. Aliquots of the fine earth fraction (<2 mm) were
analyzed in triplicates for basic properties (Table 1) using the standard methods [36]. Dis-
solved organic carbon (DOC) was extracted in cold water, according to Gregorich et al. [37]
and determined by a TOC 5000 Shimadzu analyzer. Soil pH was measured potentiomet-
rically in a suspension with 1M KCl, 1:2.5 (v:v). Total As was determined by ICP-AES
(Thermo Scientific, iCAP 7400, Waltham, MA, USA), after microwave-assisted digestion
with aqua regia [38]. The accuracy of analytical methods was checked with certified ref-
erence materials, CNS392 and CRM044, supplied by Sigma-Aldrich. Easily soluble As in
soils was determined by ICP-AES after extraction with 1 M NH4NO3 [39].
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Table 1. Basic properties of soils and forest litter (mean values of 3 replicates).

Parameter Unit Control
C

Dump Soil
S1

Forest Soil
S2

Forest Litter
FL

Skeleton (fine gravel, 2–5 mm) % 8 60 20 n/a

0.05–2.0 mm % 52 83 55
0.002–0.5 mm % 42 14 44 n/a

<0.002 mm % 6 3 1

Textural group (USDA) - Sandy loam Loamy sand Sandy loam n/a

Corg g/kg 16.8 1.3 34.2 510
DOC (cold water) g/kg 0.1 <0.1 0.5 4.1

N total g/kg 1.4 0.3 2.6 21.5

pH - 6.1 5.5 4.0 5.2
CEC cmol(+)/kg 27.3 14.4 16.6 n/a

As total mg/kg 3.6 19600 2020 2.7
1 M NH4NO3-extractable As mg/kg <0.05 3.61 1.91 <0.05

n/a—not applicable.

2.2. Forest Litter

Beech forest litter (FL) used in the experiment was collected in an early spring (March
2020) from a 60-year-old beech woodland. It represented a typical ca. 15 cm-thick mull
that contained partly decomposed beech foliage. The beech litter was air-dried, crumbled,
and sieved to 1 cm. Its analysis was performed with same methods as soil analysis, except
for texture that obviously was not determined, and pH which was measured in water
suspension (1:2.5 v:v).

2.3. Incubation Experiment

Soils were incubated in 1-kg pots for 21 days at two various moisture conditions:
oxidized (Ox), i.e., at 70% of water holding capacity, and waterlogged, assumptionally
anoxic (An), i.e., at 100% of maximum water capacity. The experiment, carried out in
triplicates, involved the treatments with the addition of forest litter (FL), mixed with soil at
the rate 20 g/kg on dry matter basis, and those without forest litter (0). Soil pore water was
collected with MacroRhizon suction samplers as described previously [10–12]. The samples
of soil and soil pore water were collected twice, after 7 and 21 days of incubation, analyzed
on their chemical properties and subjected to the battery of ecotoxicological bioassays.

2.4. Chemical Analysis of Pore Water

The analysis of pore water pH and redox potential was performed immediately after
sampling, using potentiometric methods. The values of pH were measured with standard
glass electrode, while redox potential Eh was determined with a platinum electrode InLab
redox Micro (Mettler Toledo). Pore water aliquots for analysis of potentially toxic elements
(As, Fe and Mn) were stabilized by adding a drop of concentrated HNO3. The concen-
trations of those elements in pore water samples were determined by ICP-AES (Thermo
Scientific, iCAP 7400, Waltham, MA, USA).

2.5. Bioassays

The aliquots of pore water for bioassays were placed in completely filled and tightly
closed 30 mL test tubes, without air access, and immediately used for microbiotests:
Microtox, Rapidtox and Thamnotox. Small aliquots of soil samples (ca. 50 g) were taken
from the pots and subject the Ostracodtox bioassay with two different parameters: growth
and mortality measured as the endpoints. All the Toxkit materials and test organisms were
purchased from Tigret (Warszawa, Poland). The tests were performed strictly following
their operational procedures.
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2.5.1. Microtox®

The Microtox® acute toxicity test [40] is based on the inhibition of bioluminescence
of bacteria Vibrio fischeri, presently classified as Allivibrio fischeri [41–43], in contaminated
aqueous samples. The toxicity of soil pore water to bacteria was determined in a screening
mode, using the 81.9% basic test protocol. Readings of bioluminescence were made in
triplicates after 5′ and 15′ exposure of bacteria to soil pore water, using a Microtox® Model
500 analyzer (Strategic Diagnostics Incorporated SDIX, formerly Microbics Corporation,
Newark, DE, USA). The entire procedure followed the 1992 Microtox® Manual [44]. The
toxicity was expressed as percent effect (%).

2.5.2. Rapidtox

The Rapidtoxkit (MicroBioTests Inc., Mariakerke, Gent, Belgium) is a rapid, 30–60 min
sublethal assay based on the measurement of reduction in ingestion of red microspheres
by the test organisms which are the larvae of the freshwater crustacean, a fairy shrimp
Thamnocephalus platyurus [45,46]. Briefly, the cysts of T. platyurus were hatched under stan-
dardized conditions (24 h, 25 ◦C, continuous illumination) and exposed to contaminated
water for 1 h in dark (25 ◦C). Standard Freshwater was used as control. Then, a suspension
of red microspheres was added to test tubes and T. platyurus larvae were allowed to feed
on these spheres for 15 min. The endpoint of this test was the reduction in ingestion of
microspheres, as compared to the control, expressed in %. All the measurements were
made in triplicate.

2.5.3. Thamnotoxkit FTM

The acute toxicity Thamnotoxkit test measures the mortality of the same freshwater
shrimp Thamnocephalus platyurus exposed to the samples of contaminated water [47,48],
according to ISO 14380:2011 [49]. The test is a 24 h bioassay, performed in a multiwell test
plate. The larvae of the shrimp were hatched from cysts 24 h prior to the start of the test.
Then, they were exposed to contaminated pore water and incubated at 25 ◦C for 24 h in the
dark. The number of dead larvae was recorded after that time, and the test endpoint was
mortality expressed in percent (%). The test was performed in triplicate.

2.5.4. Ostracodtoxkit FTM

The Ostracodtoxkit FTM bioassay is a 6 day “direct contact” toxicity test originally
developed to measure the toxicity of freshwater sediments, adopted also for contaminated
soils [47,50–52]. The test uses neonates of the benthic ostracod crustacean Heterocypris
incongruens. The test is performed in multiwell plates in which the test organisms are
hatched from cysts and exposed for 6 days to a thin layer of soil, covered by the Standard
Freshwater. Two different effects, expressed in percent, are determined at the end of the
exposure: the inhibition of growth and the mortality. The results are compared to those
obtained in a parallel test with a non-toxic sample of a reference sediment.

2.6. Statistics

The results of this experiment did not show a normal distribution, and could not
be normalized by common methods, therefore they were statistically analyzed by non-
parametric statistics. The differences among the treatments (Ox vs. An, and 0 vs. FL) were
analyzed by a two-sample Kolmogorov-Smirnov test. The main parameters (median values,
25–75% percentiles and the ranges) of the pairs of variables were additionally illustrated in
the graphs.

Non-parametric Spearman rank correlation coefficients were calculated to examine the
relationships between the chemical parameters of pore water and the results of bioassays.
Principal component analysis (PCA) was performed to illustrate the distribution patterns of
experimental data at reduced number of variables. A 2-D plot displaying the relationships
between components was produced in order to illustrate the relationships between chemical
and ecotoxicological data. Only those components were considered that contributed to a
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total variance to at least 10%. All the statistical analyses were performed using a software
Statistica, version 13.0 (Dell Inc., Round Rock, TX, USA).

3. Results
3.1. Properties of Soils and Forest Litter

Soils differed considerably in their properties (Table 1). The soil S1 contained high
amounts of skeleton (that partly was removed in the field), and the share of a fine gravel
fraction (2–5 mm), determined in the laboratory, was as high as 60%. It’s fine earth fraction
had a texture of loamy sand. This soil was poor in organic matter (C org. 1.3 g/kg), had
a slightly acidic pH and contained extremely high concentration of As (19,600 mg/kg).
Soils C and S2 had the textures of sandy loams and contained higher amounts of organic
matter. Soil S2 was more acidic in reaction compared to S1 (pH 4.0) and contained lower
concentration of As: 2020 mg/kg. The concentration of As in the control soil C was typical
for unpolluted sites (3.6 mg/kg).

The forest litter had slightly acidic pH 5.2 and contained relatively low amounts of
DOC (4.1 g/kg, i.e., 0.8% of total C).

3.2. Chemistry of Soil Pore Water

The main parameters that characterize chemical composition of soil pore water, i.e., the
concentrations of As, Mn and Fe, as well as the values of redox potential Eh are presented
in Figure 2. The columns present mean values and error bars stand for confidence intervals
at p = 0.95.
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Figure 2. Chemical parameters that characterize soil pore water collected after incubation of variously treated soils C, S1
and S2. Error bars stand for standard deviation. Abbreviations: Ox—oxidized conditions of incubation (moisture: 70%
of field water capacity), An—anoxic conditions of incubation (waterlogged soils: 100% of total water capacity); 0—soils
without addition, FL—soils treated with forest litter; time of incubation: 7 days (7d) or 21 days (21d).

In the case of S1, the addition of forest litter (FL) caused an apparent increase in As
concentrations in soil solutions compared to the treatments without that addition(0), while
in the case of S2, such an effect was not observed. Extremely high concentrations of As in
soil solutions, exceeding 50 mg/L, and reaching 135 mg/L in soil S1, were recorded after
a longer incubation time, i.e., 21 days, in the treatments with forest litter (FL) and under
waterlogged conditions. It can partly be explained by the effect of As (V) reduction to As
(III), as the affinity of arsenites (As (III)) for iron hydroxide sites is much lower than that of
arsenates (As (V)) [16,17]. The prolonged incubation of soils under waterlogging conditions
(An), especially in the treatments with forest litter (FL), resulted in a statistically significant
decrease in redox potential. This was accompanied by the release of Mn and Fe, especially
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in soils C and S2, while in S1 this effect was relatively small. Reductive dissolution of Mn
and Fe oxides apparently caused in the case of soil S2, a further, considerable release of As
from solid phase in spite of its much lower total concentration compared to soil S1.

3.3. Bioasssays

The response of test organisms examined in bioassays to soil treatment with forest
litter and to different moisture conditions is shown in Figure 3. Surprisingly, in unpolluted
control soil (C) incubated at 70% of soil moisture, i.e., under oxic conditions (Ox) without
the addition of forest litter (0), non-zero toxic reactions were observed in the case of the
Microtox test. The Rapidtox test performed on the soil C yielded highly diverse results
with the non-zero means which were, however, not statistically significantly different from
zero. The toxicity measured in all the treatments in two soils contaminated with As (S1, S2)
was apparently much higher than that in the control soil (C) and it often reached 100%, in
particular in waterlogged soils treated with forest litter. This effect was observed in all the
bioassays with crustacean, i.e., both in the acute toxicity tests Rapidtox and Thamnotox,
and in the sub-acute Ostracodtox tests.
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control soil, clear toxicity effects were revealed under waterlogging conditions, which 
can be explained by the release of toxic Fe and Mn, as well as quite likely by an oxygen 
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Figure 3. The results of bioassays performed on pore water and soils. Error bars stand for standard deviation. Abbreviations:
see Figure 2.

4. Discussion

The experiments confirmed a higher sensitivity of the tests with crustaceans in com-
parison to Microtox bacterial tests based on the luminescence of Vibrio fischeri [53].

It should be stressed that the toxicity in all these tests was undoubtedly caused not
only by the presence of As in soil or soil pore water, but also by other factors, as evidenced
by the results for the control soil. In the Rapidtox and Thamnotox tests in the control soil,
clear toxicity effects were revealed under waterlogging conditions, which can be explained
by the release of toxic Fe and Mn, as well as quite likely by an oxygen deficiency under
these conditions. Rather unexpectedly, in the Ostracod tests, the toxicity effect at the level
over 50% occurred in the treatments of control soil (C) with the addition of forest litter,
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regardless of the moisture conditions and the incubation time (Figure 3). This referred to
both parameters measured in the Ostracodtox tests, i.e., growth and mortality.

The presence of Fe at various oxidation states, as well as the products of organic matter
transformation in soil pore water, make the interpretation of As(III) and As(V) behavior
and toxicity in the soil system quite complex [54]. Reduced forms of As (III) are known to
be much more toxic compared to As (V) [5,14]. Unfortunately, As speciation in pore water
was not examined in this study. On the other hand, however, at neutral or alkaline pH,
the radicals produced by transformation of organic matter can act as oxidants and oxidize
arsenite to arsenate, thus decreasing As toxicity and mobility [54]. In order to statistically
examine the effects of waterlogging and the presence of forest litter on the toxicity of
soils, the experimental results were subjected to statistical analysis using non-parametric
methods. Figure 4 illustrates the comparison of treatments differing in moisture conditions
during incubation (Ox vs. An). The medians (i.e., the main indicators in non-parametric
analysis), of both As concentrations in pore water and the results of all ecotoxicological
tests were higher in the waterlogged conditions (An) compared to 70% soil moisture. The
ranges of the second and third quartiles (25–75%) were also clearly different between those
two sets of results (Figure 4).
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Figure 4. The comparison of treatments differing in moisture conditions during incubation (Ox
vs. An).

Similarly, the comparison of the medians for the variants with and without forest
litter (Figure 5) clearly illustrate that the input of forest litter to soils resulted in generally
higher ecotoxicity determined throughout the experiment. The results of a non-parametric
Kolmogorov-Smirnov test (Table 2) confirm that the addition of FL significantly affected the
results of the Ostracod tests throughout the experiment (at p < 0.05 for and at p < 0.01 for
mortality as the endpoints). Waterlogging proved to have a statistically significant effect on
As concentrations in soil pore water and on the results of Microtox and Thamnotox tests.
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Table 2. The results of two-sample Kolmogorov-Smirnov test for differences between the pairs of variables.

Parameter

Tested Pairs of Variables: Ox/Anox Tested Pairs of Variables: 0/FL

Mean
Ox

SD
Ox

Mean
Anox

SD
Anox p Mean

0
SD
0

Mean
FL

SD
FL p

As, mg/L 2.8 * 6.2 31.3 * 41.4 p < 0.05 8.0 17.3 26.1 41.4
Microtox—5′, % 41.5 * 14.0 57.4 * 21.3 p < 0.05 43.5 18.9 56.4 20.3
Microtox—15′, % 42.3 * 12.4 58.1 * 23.3 p < 0.05 45.5 17.9 56.8 17.4

Rapidtox, % 59.2 30.1 79.1 23.6 63.6 30.3 74.8 26.3
Thamnotox, % 40.0 * 37.3 75.6 * 40.9 p < 0.05 52.5 45.4 63.1 40.4

Ostracod-growth, % 49.9 28.8 81.1 29.4 53.2 * 30.1 77.8 * 24.4 p < 0.05
Ostracod-mortality, % 53.0 30.4 80.8 30.5 52.2 ** 37.5 81.7 ** 20.0 p < 0.01

*, ** Asterisks indicate the means that differ significantly at p < 0.05 and p < 0.01.

Mobilization of As into soil water under anoxic conditions is a well known phe-
nomenon described by numerous authors [11,13–16,55], though the removal of As from
pore water after a long term waterlogging was reported as well [11,14,56], and explained
for instance by subsequent biological oxidation of As (III) [14,18], its sorption by newly
formed FeS [56] or binding by sulfur groups [57].

The results of all the tests based on soil pore water reflected well the concentrations of
As. The relationships between the chemical parameters of pore water (pH, redox potential
Eh and As, Mn and Fe concentrations) and the results of biotests—examined in pairs in a
non-parametric Spearman rank correlation test—confirmed strong relationships between
As in pore water and the results of Microtox, Rapidtox and Thamnotox tests (Table 3).
The relationship between pore water As and the results of Ostracod tests were weaker, as
shown by lower correlation coefficients and lower significance. These relationships are also
well seen in the PCA graph (Figure 6).
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Table 3. Significant Spearman correlation coefficients between soil pore water parameters and the results of bioassays.

Mn
mg/L

Fe
mg/L Redox Microtox

5′
Microtox

15′ Thamnotox Rapidotox Ostracod-
Growth

Ostracod-
Mortality

Incubation time - - −0.506 * - - - - - -
pH - - - - - - - −0.489 * −0.598 **

As, mg/L - - - 0.827 *** 0.873 *** 0.883 *** 0.847 *** 0.484 * 0.502 **
Mn, mg/L x 0.821 *** - - - - - - -
Fe, mg/L x −0.431 * - - - - 0.452 * 0.464 *

Redox x - - - −0.557 ** - -
Microtox-5′ x 0.985 *** 0.826 *** 0.780 *** 0.610 ** 0.641 ***
Microtox-15′ x 0.865 *** 0.822 *** 0.568 ** 0.605 **
Thamnotox x 0.723 *** 0.473 * 0.506 *

Rapidotox toxicity x 0.450 * 0.484 *
Ostracod-growth x 0.954 ***

*, **, *** Asterisks indicate the significance of correlations: p < 0.05, p < 0.01, and p < 0.001, respectively.
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The attention should be given to the fact that the toxicity revealed by the Ostracod
tests for soil S2—both with and without the addition of forest litter—was greater than that
shown for soil S1, despite much lower total As concentration in the soil S2. Moreover, soil
S2 had acidic pH, which normally would not promote a release of As from the solid phase.
Relatively high toxicity found in the Ostracodtox test in the case of this soil, particularly
under prolonged waterlogging, should be attributed to a relatively high solubility of both
As, and Mn and Fe, the latter being higher than in the soil S2. Ostracodtox test performed
in much longer time (6 days) than the other assays, seems to be much more sensitive to
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sub-toxic concentrations of contaminants in pore water. Moreover, similarly to the tests
with springtails, it is believed to indicate a full toxicity of sediments of soils, including that
caused by a “direct contact” and resulting from the ingestion of solid particles that contain
potentially bioavailable species of toxic components [34,58,59].

5. Conclusions

All the bioassays performed in this study turned out to be good tools for identifying
high concentrations of As in pore water of soils in the forested areas of former As mining
industry. Tests with crustaceans indicated that—despite the low solubility of As in soils—
its presence can cause a very high toxicity to soil fauna. The results of tests that were
adapted from standard analysis of acute toxicity in natural water (Microtox, Rapidtox and
Thamnotox) showed a very good correlation with As concentrations in soil solution. It has
also been confirmed that the bioassays with crustaceans (T. platyurus, H. incongruens) are
more sensitive than those with luminescent bacteria V. fischeri.

The input of forest litter into the soil may significantly increase its toxicity—not only
in the presence of toxic As, but also in unpolluted soils. The sub-acute toxicity test based on
the direct contact of Ostracod crustaceans with soil is particularly sensitive in this respect.
Waterlogged conditions may cause increased release of As into the solution in polluted
soils, and the addition of forest litter can accelerate this effect and radically increase the
toxicity of soil pore water and the soil itself. This effect deepens over time up to 21 days.

For a comprehensive interpretation of experimental results obtained from bioassays,
comparative studies should be performed with a real soil fauna, for instance with spring-
tails and earthworms, with considering various soil properties, various conditions and
speciation of arsenic in soil system.
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