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Abstract: Environmental changes in national parks are generally subject to constant observation.
A particular case is parks located in mountains, which are more vulnerable to climate change and
the binding of pollutants in mountain ranges as orographic barriers. The effectiveness of forest
soil monitoring networks based on a systematic grid with a predetermined density has not been
analysed so far. This study’s analysis was conducted in the Stolowe Mountains National Park
(SMNP), SW Poland, using total Pb concentration data obtained from an initial network of 403 circle
plots with centroids arranged in a regular 400 × 400 m square grid. The number and distribution of
monitoring plots were analysed using geostatistical tools in terms of the accuracy and correctness of
soil parameters obtained from spatial distribution imaging. The analysis also aimed at reducing the
number of monitoring plots taking into account the economic and logistic aspects of the monitoring
investigations in order to improve sampling efficiency in subsequent studies in the SMNP. The concept
of the evaluation and modification of the monitoring network presented in this paper is an original
solution and included first the reduction and then the extension of plot numbers. Two variants of
reduced monitoring networks, constructed using the proposed procedure, allowed us to develop the
correct geostatistical models, which were characterised by a slightly worse mean standardised error
(MSE) and root mean squared error (RMSE) compared to errors from the original, regular monitoring
network. Based on the new geostatistical models, the prediction of Pb concentration in soils in the
reduced grids changed the spatial proportions of areas in different pollution classes to a limited
extent compared to the original network.

Keywords: forest soils; geostatistics; soil monitoring; lead; network optimisation

1. Introduction

Soils play a key role in forest ecosystems where they bridge the abiotic and biotic parts
of the ecosystems [1,2]. First of all, soils enable plant growth, but they also participate in
the cycling and binding of water, carbon and xenobiotics [3–5]. The dynamic development
of human civilisation in recent centuries has contributed to adverse changes in the soil
environment. Increasing industrialisation and urbanisation have contributed to higher
pollutant loads entering soils [6–9]. In addition, the intensification of agricultural and forest
management, often handled in an unbalanced manner, leads to the degradation of soils by
nutrient leaching, acidification and erosion [10,11].

Wise management of the environment requires a recognition of the dynamic of con-
temporary threats to ecosystems, including soils. Therefore, monitoring programmes have
become standard [12–14], and their scale and scope vary in relation to the intensity of natu-
ral and anthropogenic transformation, society awareness and ecological policy [2,15–18].
The results of monitoring studies support the sustainable management of soil resources
and programmes for nature conservation, particularly in areas strongly exposed to un-
favourable environmental conditions or substantially transformed by humans, as in the
case of large-scale monoculture forests [19–23]. Today, Geographic Information System
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(GIS) technologies, recently combined with remote sensing, support nearly all environ-
mental inventories and monitoring programmes [24–26]. GIS is widely applied from the
research planning stages, through to the fieldwork, analysis and final presentation of the
results and predictions [27]. The intense development of GIS technologies has provided
an increasing number of tools to enhance research effectiveness. The final results of GIS
application are numerical databases and thematic maps that present the spatial variability
and time trends of the analysed phenomena [28–31].

The unfavourable transformation of environmental quality continues to be a serious
problem in Poland. Hence, the National Programme for Environmental Monitoring was
implemented in 1992 [32] with forest monitoring as a key module in the monitoring of
biological resources [33]. Unfortunately, protected natural areas, which are excluded from
normally managed forests, are not involved in the programme to a satisfactory degree.
In contrast, it is believed that ongoing observation of environmental changes should be
conducted primarily in national parks [3], particularly those located in the mountains
that are especially vulnerable to climate change [34] and pollution retained by mountain
ranges as orographic barriers [35]. Thus, independent local monitoring networks have
been created in the national parks in conjunction with a managed forest monitoring net-
work [36]. Forest monitoring is needed to track environmental changes. Unfortunately,
in Poland the effectiveness of existing networks that use regular grids of an arbitrarily
decided plot density, has not been analysed with respect to forest soil monitoring. As far as
monitoring studies of environmental components are concerned, it is crucial to adopt an
appropriate sampling strategy. The overriding aim in selecting an appropriate structure
for the monitoring network, in which the sampling will be carried out, is to ensure that
the data obtained from it is sufficiently representative [37]. However, this choice is also
conditioned by the number of parameters being monitored and their spatial variability,
as well as by the efficient use of time and human and financial resources [38]. Besides, a
properly designed network structure should include a minimum number of monitoring
plots to guarantee representativeness for a given parameter under study while maintaining
the assumed confidence level [39]. The correctness of the developed monitoring network is
also determined by the adopted sampling design within its structure. There are many such
schemes, e.g., judgmental sampling, simple random sampling, systematic sampling, line-
transect random sampling, line-intercept random sampling, composite sampling, cluster
sampling, stratified sampling, multi-stage stratified random sampling, and conditioned
Latin hypercube sampling. They differ in terms of their sampling strategy and efficiency.
Among the most commonly used sampling designs, the judgmental sampling method
stands out. It is an effective sampling method that uses the researcher’s knowledge, site
history, and field observations, but it has the disadvantage of statistical bias. Moreover,
this can lead to an uneven distribution of sampling areas, necessitating additional sam-
pling to ensure site coverage. Another method is simple random sampling, which allows
statistically unbiased estimates of mean and variability. This technique is most useful
in areas with low variability of the analysed feature as well as a low probability of the
occurrence of hotspots. The irregular distribution of sampling areas in this method may
result in undesirable densification. In turn, one of the more commonly used techniques is
systematic sampling. It is carried out in a square, rectangular, or triangular grid system, or
transects. It provides statistical impartiality, and compared to simple random sampling, is
simpler to describe and less prone to field error, which usually results in better accuracy of
the mean. Also, it is used to detect hotspots. Unfortunately, systematic sampling usually
gives the same error margin as simple random sampling. A more complex method is
stratified sampling, which is mostly used for large areas characterised by a heterogeneous
population that can be divided into fairly homogeneous and non-overlapping subgroups.
Each layer may have a different sampling design and sample density, in which case they
must be analysed separately. The advantage of this sampling method is its high accuracy
due to greater precision in estimating the mean and variance, and the ability to calculate
reliable estimates for subgroups. Nevertheless, reliable knowledge of the research area is
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necessary for its correct application. Due to its specificity, this method may require more
complex statistical analysis. A particular variation of stratified sampling is conditioned
Latin hypercube sampling (cLHS). It is an effective method of sampling from the variability
of the feature space of multiple environmental covariates. A sample is drawn from the
covariates, so that each variable is maximally stratified. This provides a close represen-
tation of the original distribution of the environmental covariates with relatively small
sample sizes. Compared to simple random sampling, stratified random sampling and
sampling along the principal components, cLHS enables the most accurate reproduction
of the original distribution of the environmental co-variates. This method minimises the
number of samples while maintaining optimal representativeness [40–42].

Monitoring networks that are designed and used in research should be evaluated for
possible improvement of their effectiveness [43,44]. For this purpose, classic statistical, as
well as geostatistical methods are used. For example, the classical kriging technique sup-
plemented by Moran’s I analysis [45] or extended by Bayesian modelling methods [46,47]
is used to optimise the density and distribution of monitoring plots. Kriging is also used to
develop new indexes to determine the ratio of sampling efficiency to performance (RSEP)
or sampling density–density of soil samples index (DSSI), or to assess prediction accuracy–
prediction accuracy index (CEPA) [48]. Bearing in mind the correctness of the evaluation
of the monitoring network, the methods used for this purpose should also be subject to
review in terms of their effectiveness.

The present work aimed to examine the effectiveness of a regular monitoring network
to assess forest soil Pb concentrations to increase sampling efficiency in subsequent research
in the SMNP. The analysis applied geostatistical tools (geostatistical analyser and network
density analyser) to survey the number and distribution of observation plots in terms of the
accuracy and correctness of imaging the soil properties’ spatial distribution. The analysis
was conducted using data for the total concentration of lead in soils obtained from the
monitoring network of forest soils in the Stolowe Mountains National Park, SW Poland.

2. Materials and Methods

2.1. Research Area

Stolowe Mountains National Park (SMNP) is one of 23 national parks in Poland (and
also one of the country’s 7 mountain parks). Covering an area of 63.4 km2 in the Sudeten
Mountains, SW Poland (Figure 1), SMNP was established to protect the landscape and
natural phenomena connected with its unique geological structure [49]. The central part
of the area, including the high plateau and hilltops, is constructed of Upper Cretaceous
sandstones and mudstones, whereas the south-western part comprises Carboniferous gran-
ites and Permian sandstones [50]. The area is situated between 391 and 919 m a.s.l., with
an average altitude of 681 m a.s.l. Mean annual air temperature decreases with altitude
from 6.5 ◦C at 500 m a.s.l. to 4 ◦C at 750–919 m a.s.l. The mean annual precipitation
increases with elevation, ranging from 750 to 920 mm. The prevailing winds blow from
the west and south-west directions, which also determines the direction of the inflow of
polluted air masses [51]. The prevailing soils are Dystric/Eutric Cambisols and Stagnic
Luvisols/Alisols, featuring a loamy and silty texture, and Albic Podzols with prevail-
ing sandy texture classes. These dominant soils are locally complemented by Leptosols,
Stagnosols, Gleysols, Histosols and Fluvisols [52]. Forest communities cover ca. 89% of
the SMNP [53] with still-prevailing spruce (Picea abies) forming the conifer monocultures
(typically identified as the Calamagrostio villosae-Piceetum association). The share of beech,
fir, sycamore and other species is gradually increasing as a result of the on-going conversion
of conifer monocultures to mixed and broadleaved stands [54]. Both the monocultures and
their conversion noticeably affect the physicochemical properties of forest soils and humus
type as well as the organic carbon stock [10,55].
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In the present study, the analysis of the quality of the monitoring network was based 
on the total concentration of Pb in the 0–10 cm topsoil layer. Pb was selected for analyses 
because its concentration in the study area was the most variable (among the elements 
under analysis) and exceeded 100 mg kg−1 in several plots, which signals potential soil 
contamination according to the legal regulations for nature conservation areas [58]. Pb 
concentrations were reported in the range of 3.5–219 mg kg−1, with a mean value of 46.6 
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tions were found in the eastern and northern parts, the latter irrespectively of the altitude 
and parent rocks [52]. 

Figure 1. Location of the study area on a digital elevation model (DEM) map. DEM data acquired
from light detection and ranging (LIDAR) [56].

2.2. Field and Laboratory Research Methodology

The grid of monitoring plots for the SMNP area was developed in 2005–2006 [57],
comprising 403 circular plots, 373 of which were located in the forests. Each soil monitoring
plot had a diameter of 16 m, and plot centroids were arranged in a regular, 400 × 400 m grid.
For further analysis, this network was named the “primary monitoring network” (PMNet).

The first soil inventory in the monitoring network was conducted in the period
2010–2012. Ten replicates (primary samples) were collected in each plot using a stainless-
steel frame for the forest litter and a stainless-steel gouge auger for the mineral samples
(from the depths of 0–10 and 10–20 cm). Primary samples from the entire plot were mixed,
separately for respective layers, and the representative sample for analyses was separated
by subdividing. Samples were air-dried, crushed and sieved. The physicochemical analyses
were performed in the fine-earth fraction (<2 mm) and involved particle-size distribution,
pH in distilled water, soil organic carbon, base cation concentration and the “near-total”
(i.e., aqua-regia extractable) concentration of trace elements (Pb, Zn and Cu). A detailed
description of the analytical procedures and a general characterisation of the results have
been presented in previous papers [10,52].

In the present study, the analysis of the quality of the monitoring network was based
on the total concentration of Pb in the 0–10 cm topsoil layer. Pb was selected for analyses
because its concentration in the study area was the most variable (among the elements
under analysis) and exceeded 100 mg kg−1 in several plots, which signals potential soil
contamination according to the legal regulations for nature conservation areas [58]. Pb
concentrations were reported in the range of 3.5–219 mg kg−1, with a mean value of
46.6 mg kg−1 (Table 1). The highest Pb concentrations were mainly recorded on the highly
elevated surfaces, particularly in the western part of the area, whereas the lowest concentra-
tions were found in the eastern and northern parts, the latter irrespectively of the altitude
and parent rocks [52].
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Table 1. Statistical parameters characterizing variability of total Pb concentration in the soils of
SMNP (data source [52]).

N
Minimum Maximum Mean Median Standard

Deviation

mg kg−1

387 * 3.5 219 46.6 41.0 28.6
* Due to the lack of technical feasibility of soil sampling in certain areas, only 387 of the 403 plots were included in
the analysis.

2.3. Geostatistical Analyses

The analysis of the quality of the monitoring network was carried out using the
geostatistical tools included in the ArcGIS software platform, version 10.5. Regarding the
visual presentation of spatial data, a DEM was used. In the geostatistical analyses, the
monitoring plots of the primary monitoring network, as well as the modified networks,
were represented by their centroids. PMNet was designed to determine the direction and
rate of changes occurring in the forest environment [57]. Therefore, bearing in mind that
soils are a selected element of this environment, the analyses were performed, attempting
to keep its main structure based on a square grid.

In the first step of the analysis, a geostatistical model was developed for the spatial
distribution of Pb in the 0–10 cm soil layer in the PMNet grid. The modelling was conducted
using a geostatistical analyser and the kriging technique, which provides a linear unbiased
estimate for spatial variables [59], according to Equation (1):

Z
( .
x0
)
=

n

∑
i=1

λiZ(xi) (1)

where Z(x0) is the predicted value at location x0, Z(xi) is the measured value at location xi,
n is the number of sites within the search neighbourhood used for the estimation, and λi is
the weighting function.

To ensure that the estimation is unbiased, the weighting values must sum to one, and
the estimation errors should be as small as possible, according to Equation (2):

n

∑
i=1

λi = 1 (2)

Based on the model obtained, the subsequent steps of PMNet structure analysis
were carried out using a network density analyser. The aim was to examine the number of
monitoring plots and their distribution in terms of their accuracy and correctness compared
to the obtained spatial distribution of Pb content in soils. The analysis steps were as follows:

1. Modification of the PMNet structure by removing monitoring plots that jointly met
the following conditions:

(a) According to the network density analyser, they showed the lowest probability
of Pb concentration > 30 mg kg−1.

(b) The geostatistical analyser assigned them with the lowest weights at the esti-
mation stage when generating a prediction map of Pb spatial distribution in
the PMNet.

The adopted threshold value of 30 mg kg−1 refers to the geochemical background
for Pb concentration in the soils developed from the rocks prevailing in the area under
study [60]. The new monitoring network structure obtained in this way was named the
“reduced monitoring network” (RMNet).

2. Modification of the RMNet structure by adding new monitoring plots in areas that
jointly met the following conditions:
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(a) In the prediction of spatial distribution for PMNet, the Pb concentrations in
these areas exceeded 100 mg kg−1.

(b) In the geostatistical model for PMNet, the areas generated the largest errors.

In this case, the adopted threshold value of 100 mg kg−1 refers to the maximum permis-
sible Pb content in uncontaminated soils according to [58]. The monitoring network struc-
ture thus created was named the “reduced and extended monitoring network” (REMNet).

3. Development of new geostatistical models for Pb concentration in the RMNet and
REMNet grids and performing predictions of Pb spatial distribution for these grids.
Due to time constraints, it was not possible to return to the field and perform addi-
tional analysis at new sampling points. Therefore, Pb concentrations from the PMNet
prediction map were assigned to the new monitoring plots during the development
of the geostatistical model for REMNet.

Optimisation of all developed models was carried out in a geostatistical analyser using
manual adjustment of their parameters. For each geostatistical model, the curve describing
it was adjusted against the experimental semivariogram by selecting optimal values for its
sill, range, and nugget. The lag size was determined using the average nearest neighbour
module included in the spatial statistics analyser of the ArcGIS platform. The correctness
and accuracy of the geostatistical models were verified using the cross-validation method,
which evaluates the “consistency” of the estimations performed with the measurement
results. Minimisation of the burden of the mean standardised error (MSE) and root mean
squared error (RMSE) was adopted as the main criterion for the optimisation of model
parameters [45,61].

3. Results

3.1. Primary Monitoring Network (PMNet)

The PMNet grid comprised 403 monitoring plots arranged in a regular square grid.
Due to the lack of technical feasibility of soil sampling in certain areas, only 387 plots were
included in the analysis (Figure 2). The geostatistical model for PMNet was developed
using the simple kriging method, for which the spatial dependence was best described
by a stable curve algorithm. The autocorrelation range for Pb concentration exceeded
1000 m. The nugget value was 0.101, which may suggest the presence of small-scale
spatial variations. In turn, the semi-variance values for PMNet indicate the highest spatial
autocorrelation as compared to the other networks (RMNet, REMNet).
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The autocorrelation strength was also indicated by the nugget-to-sill ratio (RNS index),
which determines the ratio of the nugget value to the sill value of semi-variance. RNS
is computed as (C0/(C0 + C)), where C0 is the nugget value, and C is the sill value of
semi-variance.

As reported by [62,63], this ratio shows strong, moderate and weak spatial dependence
in the value ranges <0.25, 0.25−0.75 and >0.75, respectively. In the case of the PMNet
network, it was 0.36 (Table 2), which indicates a moderate spatial autocorrelation of Pb.

Table 2. Semivariogram model parameters for analysed monitoring networks.

Monitoring
Network Model * Number of

Samples
Nugget Partial Sill Range, m RNS

(C0) (C0 + C) (A0) C0/(C0 + C)

PMNet stable 387 0.101 0.182 1002 0.36

RMNet stable 357 0.301 0.621 1162 0.33

REMNet gaussian 377 0.362 0.510 1130 0.42

* Graphs of semivariograms in Appendix A.

In assessing the quality of the model by cross-validation, the value of the error rate
MSE was found to be close to zero and the RMSE was close to 1 (Table 3), which according
to [64] attested to the correctness of the model. The prediction of the spatial distribution
of Pb concentration in the 0–10 cm soil layer, developed on the basis of the geostatistical
model for PMNet, is presented in Figure 3.

Table 3. Model errors for analysed monitoring networks.

Monitoring Network
MSE RMSE

Mean Standardized Error Root Mean Squared Error

PMNet −0.014 1.009

RMNet −0.025 1.000

REMNet 0.023 1.011
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According to the prediction, the highest Pb values (>100 mg kg−1) were recorded in
the central and western parts of the SMNP. They occurred mainly in the highest elevated
areas of the mountains (i.e., in the region of Mt. Skalniak and Mt. Szczeliniec Wielki).

On the other hand, most locations showed Pb concentrations close to the median
(Table 1). These areas covered mainly the eastern part (Batorowo area) as well as the
northern part, but they also appeared in the central region of the area. In the eastern region,
Pb concentrations did not exceed 10 mg kg−1.

3.2. Reduced Monitoring Network (RMNet)

Based on the criteria defined in Section 2.3, the PMNet structure was reduced by
30 monitoring plots. Finally, the total number of plots in RMNet was 357. Most plots were
removed from the northern and eastern region (Figure 4).

Forests 2021, 12, 333 8 of 16 
 

 

 
Figure 3. Prediction map of the spatial Pb distribution, developed by simple kriging for the pri-
mary monitoring network (PMNet). 

3.2. Reduced Monitoring Network (RMNet)  
Based on the criteria defined in Section 2.3, the PMNet structure was reduced by 30 

monitoring plots. Finally, the total number of plots in RMNet was 357. Most plots were 
removed from the northern and eastern region (Figure 4). 

 
Figure 4. Location of 357 plots (red circles) in the reduced monitoring network (RMNet). Yellow 
circles represent removed monitoring plots. 

As in the case of PMNet, the geostatistical model for RMNet was developed using 
the simple kriging method. Spatial autocorrelation was best represented by a stable curve 
algorithm. The autocorrelation range was slightly larger than that in the model for PMNet 

Figure 4. Location of 357 plots (red circles) in the reduced monitoring network (RMNet). Yellow
circles represent removed monitoring plots.

As in the case of PMNet, the geostatistical model for RMNet was developed using
the simple kriging method. Spatial autocorrelation was best represented by a stable curve
algorithm. The autocorrelation range was slightly larger than that in the model for PMNet
and was more than 1160 m, but the values of nugget and partial sill of semivariance
increased. Removal of the selected monitoring plots resulted in an increase in the mean
distance between them and a decrease in spatial autocorrelation as against the PMNet.
Similar to the PMNet model, the RNS value indicated, according to [62,63], a moderate
spatial autocorrelation of Pb concentration (Table 2). Based on the MSE and RMSE errors,
it was found that despite the reduction in the number of monitoring plots, the model was
correctly executed (Table 3).

The prediction of spatial Pb distribution was similar to that developed for PMNet
(Figure 5). There was a decrease in the range of surfaces with a predicted lead concentration
of 10–20 mg kg−1 (mainly in the eastern and northern regions) and >125 mg kg−1 (Mt.
Szczeliniec Wielki), whereas the areas with a predicted Pb concentration of 25–50 mg kg−1,
close to the mean Pb concentration, slightly increased (Figure 5).
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Figure 5. Prediction map of the spatial Pb distribution, developed by simple kriging for the reduced
monitoring network (RMNet).

3.3. Reduced and Extended Monitoring Network (REMNet)

The modification of the RMNet structure according to the assumptions set out in
Section 2.3 resulted in the addition of 20 new monitoring plots. Their number and location
were determined by the network density analyser, taking into account an additional
criterion that excluded the overlapping of the plots. The distribution of the new plots
was characterised by irregularity. The largest number of new plots was located in the
highest elevations (i.e., in the vicinity of Mt. Skalnik and Mt. Szczeliniec Wielki). The
REMNet grid created in this manner finally comprised 377 plots (Figure 6) (i.e., 10 less
than the PMNet). The simple kriging method was also used for modelling, but in this
case, the spatial autocorrelation was best described by the Gaussian curve algorithm. The
autocorrelation range and the values of the nugget and partial sill were similar to the
model made for the RMNet. As with the RMNet, modifying the network structure resulted
in an increase in the mean distance between monitoring plots and a decrease in spatial
autocorrelation. Spatial autocorrelation was noticeably lower compared to the PMNet and
slightly higher than the RMNet.

Forests 2021, 12, 333 10 of 16 
 

 

.  

Figure 6. Location of 377 plots (red and blue circles) in the reduced and extended monitoring net-
work (REMNet). Blue circles represent added monitoring plots. 

The prediction of the spatial Pb distribution for REMNet increased the share of plots 
with Pb concentrations ranging from 25 to 50 mg kg−1 in the central part of the area and 
decreased the share of areas with contents ranging from 10 to 25 mg kg−1 in the eastern 
part (Figure 7). The prediction of the spatial Pb distribution did not bring significant 
changes compared to the map developed for RMNet (Figure 5); however, it came closer 
again to the spatial variability reflected within the PMNet (Figure 3). 

 
Figure 7. Prediction map of the spatial Pb distribution, developed by simply kriging for the re-
duced and extended monitoring network (REMNet). 

  

Figure 6. Location of 377 plots (red and blue circles) in the reduced and extended monitoring network
(REMNet). Blue circles represent added monitoring plots.



Forests 2021, 12, 333 10 of 16

Similar to the models for PMNet and RMNet grids, the value of the RNS index (Table 2)
indicated a moderate spatial autocorrelation of Pb concentration [62,63]. The MSE and
RMSE errors (Table 3) indicated correct modelling [64].

The prediction of the spatial Pb distribution for REMNet increased the share of plots
with Pb concentrations ranging from 25 to 50 mg kg−1 in the central part of the area and
decreased the share of areas with contents ranging from 10 to 25 mg kg−1 in the eastern part
(Figure 7). The prediction of the spatial Pb distribution did not bring significant changes
compared to the map developed for RMNet (Figure 5); however, it came closer again to the
spatial variability reflected within the PMNet (Figure 3).
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4. Discussion

The proposed concept of the evaluation and modification of a monitoring network
is an original solution. As mentioned in the introduction, the procedures presented by
other authors are different and based on individual solutions, however, they have a similar
objective, which is the optimisation of monitoring networks used in environmental studies
in terms of correct imaging of changes that may occur in broader temporal and spatial
perspectives [65,66].

The geostatistical analyses conducted in this study indicated that the initial PMNet
structure allowed for the effective identification of Pb distribution in SMNP soils. The
spatial autocorrelation range for this element exceeded 1000 m, despite a large number of
factors potentially affecting the soil variability in mountainous areas. This finding could be
explained by the poor mobility of Pb in soils or its strong affinity to organic matter [4,9,16],
leading to its accumulation in the topsoil layers, particularly in the forest soils. The geosta-
tistical model for PMNet, applying the cross-validation evaluation, developed in this study
with respect to RMNet and REMNet models, showed mean standardised error and root
mean squared error values closest to the optimal ones (Table 3). However, it did not reach
them, most likely due to the distribution of monitoring plots in a rigid square grid, where
one plot represents 0.16 km2. As indicated by other authors [15,65,67], the representative-
ness of such large plots may be questionable in regions of high relief variability.

The main idea of the new monitoring network structures was an optimisation oriented
towards minimising the number of monitoring plots while maintaining the correctness and
accuracy of soil parameter imaging. Achieving this goal using geostatistical methods may
translate into better economic performance and shorter time of study [68]. Both network
modernisation concepts (RMNet and REMNet) meet the adopted requirements. In both
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cases, the number of monitoring plots was reduced (RMNet by 30, REMNet by 10), and the
geostatistical models developed for them were characterised by fine correctness. The MSE
and RMSE errors are close to the optimal values reported by other authors, but slightly
worse compared to the parameters obtained for the initial PMNet (Table 3). The higher
values of the partial sill and nugget for RMNet and REMNet are due to higher values of
semivariance in the spatial autocorrelation models, potentially as a result of the change
in the structure of these networks caused by reducing the number of monitoring plots
under analysis, which led to an increase in the average distance between them [67,69]. The
increase in the value of error(s) as far as the REMNet is concerned, may also be due to the
fact that Pb contents in the points added at the last stage were not derived from the new
sampling and analysis, but rather, were determined based on the original prediction map.
It cannot be excluded that samples from the added points would have revealed higher
local contamination, which would have affected the prediction.

The spatial variability of Pb concentration imaged in RMNet and REMNet, despite
minor differences, reflected spatial dependencies that compared well to the PMNet. In the
map developed for the REMNet, surfaces with high Pb concentration (>100 mg kg−1) are
enlarged, suggesting poorer representativeness of some monitoring plots in the PMNet
structure. Therefore, the use of the REMNet in future monitoring studies in this study area
may be more beneficial for the recognition of the spatial variability of Pb concentration,
but will slightly reduce workloads. An unavoidable disadvantage of this proposal is the
necessity to designate new monitoring plots outside the original locations. This requirement
will reduce the possibility of comparing the results in successive monitoring studies, and
thus, may weaken the statistical significance of possible time-related trends.

It is worth noting that one of the alternative solutions for optimising the existing
network structure with the use of geostatistical tools could be redesigning it from scratch.
As far as the modelling process is concerned, the application of the kriging method makes it
possible to recognise the spatial variability structure and to use it to produce the sampling
design [70]. As indicated by [71], the maximum standard error of a kriged estimate is a
reasonable measure of the goodness of the sampling design. In this case, using a regular
triangular grid as the sampling scheme usually minimises the maximum standard error. In
turn, for each assumed maximum standard error, the optimal density can be determined
based on the semivariogram for the variable. However, it must be emphasised that the
concept for the evaluation of the existing monitoring network presented was not intended
to introduce a completely new network structure. It aimed to optimise the network with
as little interference as possible of its original regular grid structure. As mentioned in
Section 2.3, the network was also designed to observe other environmental components
(tree stands, vegetation, lichens, etc.). Thus, the introduction of a completely new network
structure just for soils would hinder the implementation of monitoring as well as the
linking and interpretation of data related to all of the components assessed.

Moreover, only one parameter relating to soil contamination was applied in the current
study. As far as the optimisation of the monitoring network is concerned, it is necessary to
analyse at least a few key parameters relating, for example, to macroelement concentration
and organic carbon pools, which are relevant for semi-natural forest reconstruction and
climate-change mitigation policies, respectively. It will only be possible to present the
economic calculation for the proposed method, and thus, determine the validity of its
application, after performing the analyses for a larger number of parameters.

It cannot be ruled out that geostatistical analyses will provide not one, but different
variants of the monitoring network structure, the merging of which will not be substantively
justified. In such an event, it would be more reasonable to use distinct modifications of
the network structure, separately for selected key parameters, developed according to the
methodology presented for the creation of the RMNet structure. It is possible that in the
case of the more mobile soil parameters, their spatial distribution might strongly vary over
time, thus reducing the potential of the presented approaches (RMNet and REMNet). The
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RMNet approach will require more field and laboratory work but this will yield more
reliable analysis results.

5. Conclusions

The use of geostatistical tools to optimise the structure of the original mountain forest
soil monitoring network, which is established based on a regular square grid, resulted in a
reduction in the total number of monitoring plots. Different variants of reduced monitoring
networks, developed using the proposed procedure, make it possible to build correct
geostatistical models characterised by slightly worse MSE and RMSE errors versus the
original, regular monitoring network. The prediction of Pb concentration in soils based
on the new geostatistical models changed the spatial proportions of areas in different
pollution classes to a limited extent compared to the original regular network. Although
the application of the geostatistical tools gave positive results, the final proposal for the
optimisation of the monitoring network should include additional analyses performed
using a similar method for other key soil parameters, particularly macronutrients and
organic carbon pools, which are crucial for the achievement of monitoring objectives as
well as for forest management and protection policies in the national park.
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