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Abstract: Climate change will affect radial growth patterns of trees, which will result in different
forest productivity, wood properties, and timber quality. While many studies have been published
on xylem phenology and anatomy lately, little is known about the phenology of earlywood and
latewood formation, also in relation to cambial phenology. Even less information is available for
phloem. Here, we examined year-to-year variability of the transition dates from earlywood to
latewood and from early phloem to late phloem in Norway spruce (Picea abies) from three temperate
sites, two in Slovenia and one in the Czech Republic. Data on xylem and phloem formation were
collected during 2009–2011. Sensitivity analysis was performed to determine the specific contribution
of growth rate and duration on wood and phloem production, separately for early and late formed
parts. We found significant differences in the transition date from earlywood to latewood between
the selected sites, but not between growth seasons in trees from the same site. It occurred in the first
week of July at PAN and MEN and more than two weeks later at RAJ. The duration of earlywood
formation was longer than that of latewood formation; from 31.4 days at PAN to 61.3 days at RAJ.
In phloem, we found differences in transition date from early phloem to late phloem also between
the analysed growth seasons; from 2.5 weeks at PAN to 4 weeks at RAJ Compared to the transition
from earlywood to latewood the transition from early phloem to late phloem occurred 25–64 days
earlier. There was no significant relationship between the onset of cambial cell production and the
transition dates. The findings are important to better understand the inter-annual variability of these
phenological events in spruce from three contrasting temperate sites, and how it is reflected in xylem
and phloem anatomy.

Keywords: Picea abies; xylem formation; phloem formation; cambium; tracheid; sieve cell; conifer;
temperate environment

1. Introduction

Global warming is expected to shift phenological phases of trees and thereby lengthen
the growing season. Even small increases in the duration of xylogenesis could correspond
to a substantial increase in xylem width because of non-linear relationships between
cambial phenology and rate of cell production [1,2]. In conifers from temperate forests,
for example, the rate of cell division was found to explain most of the variability in cell
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production [3,4]. Increment width is thus affected by both the duration and rate of cambial
cell production, but their influence on the width may vary depending on tree species, tree
age and vitality, tree part, site conditions, etc. [3,5,6]. Since ring width is tightly connected
with wood structure in conifers, changes in radial growth patterns in the future will affect
forest productivity, wood properties, and timber quality [7].

Novel image processing and analysis systems have facilitated analysis of xylem mor-
phological features (e.g., lumen size, cell wall thickness) [8]. Using this approach, it is pos-
sible to elucidate how various environmental factors impact on wood formation processes,
which result in different wood anatomy [9]. Since wood structure defines its hydraulic and
mechanical properties, it directly affects tree performance (growth and survival) [10]. It has
been shown that the same tree species growing in different environments can adjust the
structure of vascular tissues to some extent to local conditions, indicating their plasticity of
radial growth for optimal tree functioning [11–13]. These data may be critically important
in evaluating the range of plasticity in species under different environmental conditions as
a first step in predicting their responses to future climatic scenarios [12]. While numerous
papers have recently been published on xylem phenology and anatomy, little is known
regarding year-to-year variability in transition date from earlywood to latewood in relation
to their widths [14]. In terms of tree functioning, earlywood and latewood proportions are
important, since large and thin-walled earlywood tracheids, produced at the beginning of
the growing season, are more efficient in transporting water, but are also more vulnerable
to cavitation. Narrow but thick-walled latewood tracheids, formed in the second part of
the growing season, provide mechanical support [15]. Even less is known about phloem
phenology and transition from early phloem to late phloem, tissue parts with different
main roles in a tree [16].

Previous studies have shown that cambial phenology in Norway spruce (Picea abies (L.)
H. Karst.) differs among three temperate forest sites with different climatic conditions,
but it is quite stable over years in trees from the same site. Furthermore, the timing of the
onset of cambial production of xylem and phloem cells proved to be synchronous, whereas
the duration and dynamics of xylem and phloem formation differed [17]. In addition, the
structure of earlywood and early phloem was more stable compared to latewood and late
phloem [18]. The radial growth and anatomy of xylem and phloem increments were found
to depend on climatic factors, although compensatory mechanisms exist to mitigate the
effect of environmental signals [19]. However, large variability in increments and also
xylem and phloem anatomy in trees growing under different environmental conditions
confirm the plastic response of secondary growth [18]. Here, we examined year-to-year
variability of the transition dates from earlywood to latewood and from early phloem
to late phloem and how this variability is related to increment width and structure. For
this purpose, we used wood and phloem formation data of Norway spruce from three
temperate sites, two in Slovenia and one in the Czech Republic, collected during 2009–
2011. Weather conditions at the selected sites varied, but were within the temperature
and precipitation ranges that are optimal for growth in most spruce forests. We assessed
the sensitivity of spruce to different growing conditions and looked for similarities in the
selected phenological events in xylem and phloem. Sensitivity analysis was performed
to determine the specific contribution of growth rate and duration on wood and phloem
production, separately for early and late formed parts. Based on the previous findings,
we raise the hypothesis that that the transition dates are more site-specific traits and
vary less between growth seasons, especially in the case of phloem (H1). In the second
hypothesis (H2), we assumed that transition dates were closely related to the onset of
cambial cell production.

2. Materials and Methods
2.1. Study Sites

The study was carried out at three forest sites with different altitudes and latitudes:
two in Slovenia and one in the Czech Republic. In Slovenia, sampling was performed at
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two uneven-aged mixed forest stands differing in altitude. The low elevation site, Panška
reka (PAN), is located near Ljubljana and is classified as Hacquetio-fagetum typicum forest
type (dolomite rock type), in which Fagus sylvatica L., Acer pseudoplatanus L., and Picea
abies (L.) H. Karst prevail (Table 1). The high elevation site, Menina planina (MEN), is on
a pre-Alpine Karst plateau in the Kamnik–Savinja Alps and is classified as Abieti fagetum
prealpinum typicum forest type (limestone rock type), with F. sylvatica, P. abies, and Abies alba
Mill. being the dominant species. The site in the Czech Republic, Rájec–Němčice (RAJ),
is located north of Němčice, ca. 400 km from the Slovenian sites. The site is classified as
Abieto–Fagetum mesotrophicum with Oxalis acetosella L. (acid granodiorite rock type). It is
spruce monoculture (the first generation after mixed forest) [20].

Table 1. Study site and characteristics of Picea abies trees. Temperature (T) and precipitation (P) data are for the period
1901–2011. DBH—diameter at breast height.

Site ID Country Latitude Longitude Altitude
(m a.s.l.)

Mean
Annual T

(◦C)

Mean
annual P

(mm)

Tree Age
(year)

Tree
DBH
(cm)

Tree
Height

(m)

Duration of
Cambial Cell
Production

(days)

PAN SI 46◦00′ N 14◦40′ E 400 11.4 1400 68 ± 8 36 ± 5 30 ± 5 126 ± 15
MEN SI 46◦16′ N 14◦48′ E 1200 7.6 1670 102 ± 31 37 ± 12 25 ± 1 95 ± 15
RAJ CZ 49◦29′ N 16◦43′ E 650 8.1 630 88 ± 4 34 ± 2 32 ± 2 126 ± 24

In Slovenia, daily weather data for the low elevation site PAN were obtained from the
nearby Ljubljana weather station (Ljubljana–Bežigrad 46◦3′ N, 14◦30′ E, 299 m a.s.l.) of
the Environmental Agency of the Republic of Slovenia. At the high elevation site MEN,
a Davis® weather station was installed to measure air temperature and precipitation at
hourly intervals. It was placed in the vicinity of the test trees in a small forest clearing,
approximately two meters above the ground. The weather station tower at the RAJ site
was located directly in the middle of the research plot for measuring air temperature
(ModuLog datalogger, EMS Brno, Czech Republic). Precipitation (open space) was taken
from permanently open sampling collectors in five repetitions. All weather measurements
were provided by the Department of Forest Ecology, Mendel University in Brno. Average
air temperature and the sums of precipitation were calculated for every week of the year.
The general features of climatic regime at the three study sites are presented in Table 1.

2.2. Tree Selection and Sample Preparation

At each site, six dominant or co-dominant, healthy Norway spruce (Picea abies (L.)
H. Karst) trees were selected. Tree characteristics are presented in Table 1. Micro-cores
(1.8 mm in diameter) were collected at 6–8-day intervals from mid-March until mid-October
in 2009, 2010, and 2011, using a Trephor tool [21]. In the two Slovenian sites (PAN and
MEN), sampling was carried out on the same day, while in the Czech Republic (RAJ) it
could differ by 1–2 days. The samples were collected on stems at 1.1–1.7 m above the
ground following a spiral pattern. To avoid wound effects, adjacent sampling locations
were 5–10 cm apart. Each micro-core contained inner phloem, cambial region and at least
the two youngest xylem increments. The protocol of permanent cross-section preparation
for histometrical analysis is described in detail in [17]. In short, the samples were cut with a
rotary microtome and stained with a water solution of safranine/astra blue and embedded
in Euparal. Observations and measurements of xylem and phloem developing tissues were
performed with a light microscope and image analysis system.

2.3. Phenology and Dynamics of Formation of Xylem and Phloem Tissues

The onset and cessation of cambial cell production and maximum rate of xylem and
phloem cell production were determined and defined as explained in [17]. Generalized
additive models (GAMs) were used to model the seasonal dynamics of xylem and phloem
growth ring formation expressed in number of cells [14,22]. To fit GAMs, the package
mgcv [23] was used within R statistical software [24].
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The models were used to evaluate the duration of the cell enlargement period (dE) and
rate of cell production (rm) for earlywood and latewood, as well as for early phloem and
late phloem formation. To calculate the transition dates from earlywood to latewood for
each tree at a specific site and year, we used tracheidograms [18] and the Gompertz/GAM
function [17]. Tracheidograms (representing the variation in cell radial dimension and
wall thickness within a growth ring) were prepared by analyzing fully developed xylem
increments in the samples taken at the end of the growing season—i.e., at the end of
September/beginning of October [18]. Earlywood and latewood tracheids where distin-
guished based on Mork’s index, i.e., latewood tracheids were characterised by lumen
diameter smaller than twice the cell wall thickness [15]. This approach was selected since
this criterion cannot be applied on developing cells. The transition dates from earlywood
to latewood (t) were calculated based on GAMs.

The duration of earlywood and latewood formation can be assessed in terms of
cambial cell production, i.e., the period in which the cambium produced earlywood or
latewood cells. Alternatively, the completion of the differentiation process can be included
in the period of formation of the two tissues. Earlywood and latewood formation thus
overlap for a while; the differentiation of earlywood cell walls continues when cambial
production of latewood cells is already occurring. In this paper, the period of earlywood
and latewood formation was related to the cambial cell production period. The duration
of earlywood production was calculated as the difference between the time when the
first enlarging earlywood cells (actual observation) were observed and the time when the
last earlywood cell was formed (calculated based on GAMs). The duration of latewood
formation was determined as the period from when the first differentiating latewood cell
was calculated based on GAMs to the date when no enlarging cells were observed at the
end of the growing season (actual observation). The transition date from early phloem to
late phloem was determined when the first axial parenchyma cells appeared [25].

2.4. Data Analyses

Differences between years and sites in the transition from early to late wood and
phloem increments, as well as the duration of early and late wood/phloem formation were
determined with one-way repeated measurements ANOVA using the ez package within
the R statistical environment [24], in which ‘site’ was the treatment factor and ‘year of
growth’ was the repeated measurement. Normality of distribution and homogeneity of
variance were verified using the Shapiro–Wilk W test and Levene’s test, respectively [26].

Sensitivity analysis was performed for wood and phloem growth rings and their early
and late parts to determine the contribution of duration and growth rates to cell production
in the specific parts of wood, and phloem increments [3]. First, the total number of wood
(nXC) and phloem (nPC) increments and the number of cells in the early (nEXC, nEPC) and
late (nLXC, nLPC) parts were modeled as a function of growth rate (rm) and duration of cell
production (dE). Secondly, the impact of relative variation of the input variables, according
to their standard deviations, on the results of the model was evaluated.

3. Results
3.1. Transition Dates of Earlywood to Latewood and Early Phloem to Late Phloem

In a previous study, we found that the duration of cambial cell production period
was the longest at PAN and the most variable at RAJ (PAN: 138.4 ± 14.3 days; MEN:
109.9 ± 16.3 days; RAJ: 122.5 ± 20.1 days) [17]. In terms of increment widths, the phloem
rings followed the elevational gradient, i.e., widths were widest at the lowest and narrowest
at the highest elevation, whereas this pattern was not so clear in the xylem rings (Figure 1).
At PAN, the xylem widths were in all cases the widest, while at MEN and RAJ the difference
in xylem widths depended on the year. In 2009, the xylem-ring widths were 44.8 % wider
at RAJ than at MEN. In 2010 and 2011, it was just the opposite, the xylem increments were
20% and 21.4%, respectively, wider at MEN than at RAJ.
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Figure 1. Inter-annual dynamics of wood and phloem growth ring formation represented by generalized additive models
(GAMs) fitted to weekly wood and phloem increments in Norway spruce at MEN, PAN, and RAJ. Horizontal and vertical
dashed lines indicate the number of cells and the average date of the transition from earlywood to latewood and early to
late phloem in particular year.

The transition from earlywood to latewood occurred in the first week of July at PAN
and MEN and more than two weeks later at RAJ (i.e., second half of July) (Tables 2 and 3).
At all sites, the differences in the transition dates were not significant between growth
seasons, although at RAJ the transition occurred almost three weeks later in 2009 than in
2011. In all cases, the duration of earlywood formation was longer than that of latewood
formation; from 31.4 days at PAN to 61.3 days at RAJ. It also resulted in a higher share of
earlywood; from 65.7% at PAN to 77.3% at MEN. In addition, the period of maximum cell
production occurred at all sites during the period of earlywood formation.

The transition date from early phloem to late phloem, as determined by the presence
of the first axial parenchyma cells, differed between the three sites; it occurred earliest at
PAN (end of April/beginning of May) and latest at RAJ (mid or end June) (Tables 2 and 3).
In addition, differences in the transition date existed between growth seasons at each site;
from 2.5 weeks at PAN to 4 weeks at RAJ. Compared to the transition from earlywood to
latewood the transition from early phloem to late phloem occurred 25–64 days earlier. The
highest year-to-year variations in the transition date from early phloem to late phloem
were found at RAJ (mean: 42.57 ± 19.69 days). At the Slovenian sites, MEN and PAN,
the duration of early phloem formation was 57–94 days shorter compared to late phloem
formation. The duration of early and late phloem formation was positively correlated to
the duration of cambial activity (early phloem r = 0.66; late phloem r = 0.95). At MEN and
PAN, late phloem was on average 56.0% and 66.3% wider than early phloem. At RAJ, the
phloem increment was narrowest and composed, on average, of less than eight cell layers
in total, with fewer than four late phloem cell layers. In this case, the duration of early and
late phloem formation was comparable. In some years, such as in 2010, the period of early
phloem production was on average 27 days longer, while in 2009 it was 24 days shorter
than that of late phloem. Consequently, early phloem was narrower in 2009 (by 20%) and
wider in 2010 and 2011 (by 42%) compared to late phloem. The peak of phloem formation
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preceded wood formation by 3–30 days; it occurred in the second half of May (Figure 1).
Generally, the peak was related to the ring widths; in phloem rings that contained fewer
than 10 cell layers, it occurred in the period of early phloem formation and in the rings
wider than 10 cells it occurred in the period of late phloem formation.

Table 2. Days of transition from earlywood to latewood and early phloem to late phloem for Norway spruce at MEN, PAN,
and RAJ in 2009–2011. DOY—day of the year.

Study site Year

Transition from Earlywood to Latewood
(DOY)

Transition from Early Phloem to Late Phloem
(DOY)

Mean ± Standard
Deviation

Relative Variability
(%)

Mean ± Standard
Deviation

Relative Variability
(%)

MEN 2009 187.7 ± 19.6 10.4 141.3 ± 4.5 3.2
2010 197.9 ± 9.3 4.7 153.4 ± 3.6 2.3
2011 190.8 ± 19.0 10.0 131.8 ± 5.3 4.0

PAN 2009 194.0 ± 23.5 12.1 129.8 ± 2.9 2.2
2010 175.7 ± 16.9 9.6 111.7 ± 5.4 4.8
2011 190.0 ± 25.0 13.2 126.0 ± 3.3 2.6

RAJ 2009 217.5 ± 13.4 6.2 155.0 ± 16.9 10.9
2010 209.3 ± 13.1 6.3 182.0 ± 8.6 4.7
2011 193.7 ± 26.1 8.3 154.2 ± 10.3 6.7

Table 3. Differences in timings of the transition from earlywood to latewood and early phloem to
late phloem as evaluated using mixed linear models in which ‘year’ was the repeated factor and ‘site’
was the fixed factor. Bold values are significant at a 0.05 level.

Transition from Earlywood to
Latewood

Transition from Early Phloem to
Late Phloem

F p F p

Site (S) 4.499 0.0294 75.159 0.000
Year (Y) 1.693 0.2127 6.578 0.021

S × Y 1.559 0.2424 1.904 0.183

3.2. Sensitivity Analysis for Xylem Increment

Sensitivity analysis was used to evaluate the individual contributions dE and rm to the
total number of xylem (nXC), earlywood (nEXC), and latewood (nLXC) cells formed during
the growing season. When the mean value of rm was kept constant and dE could vary
within a range of two standard deviations of its mean, the resulting nXC varied from 27
to 59 cells, with a range of variation of 32 cells (Figure 2, Table 4). In contrast, when dE
was kept constant to its mean value and rm could vary within two standard deviations
of its mean, nXC varied from 10 to 77 cells, with a range of variation of 67 cells. The
sensitivity analysis therefore estimated the average effects of rm and dE as 68% and 32%,
respectively. The analysis showed that nXC was substantially more sensitive to rm and only
marginally sensitive to dE. The duration of earlywood formation was on average 35 days
longer compared to latewood formation. Sensitivity analysis showed that dE and rm had
different contributions to the widths of earlywood and latewood. While in earlywood, rm
contributed 55% to the total cell number, the contribution of dE was higher in latewood
(57%) (Table 4).
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Figure 2. Simple physical model of the total number of xylem cells (nXC), number of earlywood cells (nEXC), number of
latewood cells (nLXC), and the average rate (rm) and duration (dE) of production of these cell types in Norway spruce. The
dashed line represents the regression. Sensitivity analysis of the physical model for the widths of xylem ring, earlywood,
and latewood. The dashed lines represent the means, and the frame delimits the area of the mean ± standard deviation.

Table 4. Results of sensitivity analysis for the widths of xylem ring, earlywood and latewood
expressed in number of cells. dE—duration of cell production; rm—rate of cell production; SD—
standard deviation; nXC—number of xylem cells; nEXC—number of earlywood cells; nLXC—number
of latewood cells.

Mean ± SD Contribution to nXC

Xylem ring dE (days) 116.2 ± 23.5 32%
rm (cells/day) 0.35 ± 0.15 68%

Earlywood dE (days) 74.1 ± 23.3 45%
rm (cells/day) 0.39 ± 0.15 55%

Latewood
dE (days) 38.9 ± 17.7 57%

rm (cells/day) 0.30 ± 0.18 43%

3.3. Sensitivity Analysis for Phloem Increment

The duration of phloem growth ring formation was estimated to be 24.6 days longer
than that of xylem formation (Tables 4 and 5) due to the onset of early phloem development
prior to cambium reactivation. Sensitivity analysis showed that rm contributed 59% and
68% of the changes in the total number of phloem and xylem cells, respectively (Figure 3,
Table 5). The duration of early phloem formation was much shorter (48 days) than that
of late phloem formation. At all sites, the number of cells in early phloem (nEPC) varied
between three and five layers, while the number of late phloem cells (nEPC) varied between
2 and 12 layers. For the total number of phloem cells (nPC) and for the number of late
phloem cells (nLPC), the model showed a significant relationship with rm*dE, while for early
phloem the relationship was not significant. Sensitivity analysis for late phloem showed
similar results as in the case of total phloem cell number; dE contributed 53% and rm 47%
to the number of late phloem cells.

Table 5. Results of sensitivity analysis for the widths of phloem ring, early phloem and late phloem
expressed in number of cells. dE—duration of cell production; rm—rate of cell production; SD—
standard deviation; nPC—number of phloem cells; nLPC—number of late phloem cells.

Mean ± SD Contribution to nPC

Phloem ring dE (days) 140.8 ± 24.6 41%
rm (cells/day) 0.06 ± 0.01 59%

Late phloem dE (days) 95.9 ± 26.6 47%
rm (cells/day) 0.06 ± 0.02 53%
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Figure 3. Simple physical model of the total number of phloem cells (nPC) number of early phloem cells (nEPC) number of
late phloem cells (nLPC), and the average rate (rm) and duration (dE) of production of these type of cells in Norway spruce.
There was no significant relationship between number of early phloem cells (nEPC) and rm*dE. The dashed line represents
the regression. Sensitivity analysis of the physical model for the widths of phloem ring and late phloem. The dashed lines
represent the means, and the frame delimits the area of the mean ± standard deviation.

4. Discussion

In the present study, we only partially confirmed our first hypothesis (H1), that the
transition dates are fairly site-specific and less variable between growth seasons, especially
in phloem. We found significant differences in the transition dates from earlywood to
latewood between the selected sites but not between the growth seasons in trees from the
same site. Contrary to our expectations, we also found differences in the transition date
from early phloem to late phloem between the analysed growth seasons. The findings are in
line with previously observed site-specific patterns of cambial phenology, which is reflected
in various wood and phloem anatomies [17,18]. The second hypothesis (H2), on a close
link between the onset of cambial cell production and the transition dates was rejected.

4.1. Transition from Earlywood to Latewood

The relationship between tree-ring width and earlywood/latewood portions depends
on site, age, and species specifics. A negative relationship between ring width and latewood
proportion is typically found in wood of conifers [27]. A higher proportion of earlywood
is thus found in wider rings; this negatively affects wood density and, ultimately, wood
properties [7]. However, these relations are quite complex and non-linear because of the
nonhomogeneous structure of earlywood and latewood, which may change in response to
various internal (genes, hormones) and external (abiotic, biotic) stimuli [5,28,29].

In this study, the transition date from earlywood-to-latewood was similar at the two
Slovenian sites, at the beginning of July, while at RAJ it occurred two weeks later. Although
xylem increments were the widest at low elevation site PAN, the earlywood proportion was
the highest at MEN, which contradicts the above-mentioned relationship between xylem
ring width and earlywood proportion. Interestingly the transition date did not necessarily
affect the proportion of earlywood and latewood, neither at the same site nor between
the sites. No trend between the transition date and elevation was also recently reported
by [30]. It was suggested that photoperiod also has a major impact on cell characteristics,
in particular on latewood [23].

We found that the duration of earlywood formation was generally longer than that
of latewood formation. The number of earlywood and latewood cells was comparable
at PAN and RAJ, while at MEN the share of earlywood cells was higher [18]. Sensitivity
analysis showed that in the case of earlywood, the rate of cell production contributed 55%
to the total cell number, while in the case of latewood, the contribution of duration was
higher (57%). The final annual xylem increment is thus the result of the duration and rate
of cambial cell production [17], whereas the xylem structure—i.e., tracheid features along
the ring, depends on kinetics and the interaction of wood formation processes (expansion
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and wall formation). Cuny et al. [14] reported that the duration of cell enlargement was
the main driver of cell size and wall thickness, contributing 56% of wood density variation
along the rings in three temperate conifer species. Their new approach and developed
mechanistic model of wood formation kinetics, which determines the wood structure in
conifers, is an important step towards better understanding the climate–growth relationship
in tree species from contrasting environments, including extreme events, which may give
rise to peculiar patterns of xylogenesis, often triggering altered wood structure, such as
intra-annual density fluctuations [31].

Differences in tracheid characteristics found in our previous study mainly occurred
in latewood and were partly related to local climatic characteristics [18]. Similar findings
were shown by some other research groups and were ascribed to the hydraulic adaptation
mechanisms of trees to specific site conditions [11]. However, other research groups have
found strong climatic control and latitudinal effects on earlywood production in various
conifer species in colder and boreal regions [7,32], which could be ascribed to the above-
mentioned site and tree differences. In addition to climatic conditions, tree and crown
size are important determinants of cell characteristics [33], and the plasticity of secondary
growth has been shown to allow trees to adapt the structure of vascular tissues to function
optimally under local environmental conditions [34].

Weather conditions prior to, and especially during, radial growth affect cambial
activity and cell development patterns, such as cell expansion and secondary cell wall
synthesis [35]. They also determine the amount and properties of wood [36]. In terms
of conductivity, they influence the hydraulic efficiency and cavitation vulnerability of
tracheids. Wood formation and anatomy data are very valuable because they allow a
detailed assessment of xylem structure and the dependence of radial growth on local
conditions. Since xylogenesis data are usually available only over a limited period and only
few laboratories have records covering more than 10 years, long-term and high-resolution
analysis of xylem anatomy has proved to be a promising approach in extending wood
formation data [9]. This information will improve our mechanistic understanding of
environmental impacts on radial growth of trees and, ultimately, future tree performance.

Site, species, and age-specific radial growth sensitivity to climatic conditions have
already been previously reported [37]. Norway spruce from temperate forests, for example,
is known to respond less intensely to moderate climatic variations than trees from more
extreme environments, where temperature or water availability are the primary limiting
factors of growth processes [38,39]. Tree competition, tree vitality, and forest management
practices at optimal forest sites may have a major impact on radial growth [39]. The growth
specifics of trees from various environments may thus be governed by different factors,
which should be considered in comparative studies.

The variation of tracheid lumen size and wall thickness across the annual ring defines
wood properties [10]. For an assessment of the hydraulic properties of a tree in relation to
its performance, the annual width of xylem increment and detailed cell characteristics—
including their length and pit structure—should be considered [40]. In addition, an annual
xylem increment should be adjusted to its relative hydraulic contribution to the whole
sapwood area [41]. Finally, it should be noted that local site conditions—such as fine-scale
topography, soil properties, and rock type—may also affect tree growth patterns and wood
structure [39].

4.2. Transition from Early Phloem to Late Phloem

The transition date from early phloem to late phloem differed between the study sites
and growth seasons. Previously, we found that phloem increment width was not associated
with elevation; it was widest at PAN and narrowest at RAJ [18]. However, transition dates
were negatively related to phloem width; they occurred earliest at PAN and latest at RAJ.
This finding is interesting because the structure of early phloem is generally stable and
usually consists of 3–4(5) layers of early phloem sieve cells. In addition, the transition
dates were not related to the onset of cambial productivity; they occurred 2–3.5 weeks and
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5.5–3.5 after the onset of cell division at PAN and RAJ, respectively. It can be concluded
that the dynamics of sieve cell formation differed between the sites, being the longest at
RAJ and the shortest at PAN. Our results suggest that there are no significant relationships
between the stable number of early phloem cells and rate and duration of their formation.
This lack of a clear link may be partly explained by the fact that the initial early phloem
part (1–2 cell layers) consist of overwintering cells. These cells are formed by the cambium
at the end of the previous growing season; they then overwinter and start to differentiate
in the following spring, prior to the onset of cambial productivity [25].

The structure and width of late phloem were much more variable and were closely
related to the ring width, which is in line with previous reports [18]. While at PAN
and MEN early phloem constituted more than 50% of the phloem increment, at RAJ the
proportion of early and late phloem was either comparable in rings of about 8 cell layers
wide (2009) or early phloem predominated in rings composed of fewer than 7 cell layers
(2010 and 2011).

With few exceptions, phloem formation has generally been much less investigated
than xylem formation. However, of all European tree species, most of the existing phloem
formation data on phloem formation has been conducted on Norway spruce [17,25,30,42].
Even less is known about the timing of transition from early phloem to late phloem. Miller
et al. [30] recently compared the transition dates in Norway spruce at different elevations
and found a significant trend along the gradient; they occurred later at higher elevations.
The study concluded that the timing of transition depends on numerous factors, such as the
onset of cambial productivity, rate of cell production, and number of cells in early phloem.

4.3. Characteristics of Early Phloem and Late Phloem

There are two main long-distance pathways in trees, the first refers to the xylem
conduits, which transport water and nutrients taken up by the roots to the leaves to
maintain evapotranspiration and photosynthesis, and the second refers to the phloem,
which delivers signaling molecules and photosynthates, necessary for respiration and
growth to developing tissues [43]. The xylem and phloem are closely linked both spatially
and functionally [16]; therefore, carbon gain and tree viability depend on the functioning
and interaction of these two vascular tissues [44].

Unlike tracheids in spruce wood, phloem sieve cells function for only one to two
growing seasons, after which the cells die and collapse [45]. Therefore, rapid development
of the initial early phloem sieve cells in spring is necessary, as the survival of a tree
depends on the annual formation of the phloem increment to maintain the above-mentioned
functions [16]. As with xylem, early phloem and late phloem structurally differ in temperate
tree species, and consequently differ their main roles in a tree. The main function of the
early phloem characterized by large sieve cells is conduction [16]. The late phloem consists
of narrow sieve cells and axial parenchyma, indicating the prevailing storage function. At
the transition from early phloem to late phloem is a tangential band of axial parenchyma,
and in wider increments, a second, discontinuous tangential band of axial parenchyma
forms in late phloem [25]. Ray and axial parenchyma network store carbohydrates, other
metabolites, and water reserves [46]. Thus, a trade-off between conducting (sieve cells) and
storing (axial parenchyma) functions is influenced by the proportions of early phloem and
late phloem. Since the structure of early phloem is more stable than that of late phloem, the
former is considered to be less affected by site conditions because of its greater importance
to tree survival [5]. However, a reduction of late phloem can significantly reduce the
amount of axial parenchyma, which, in turn, can lead to greater tree susceptibility to
drought or pathogens [47,48]. Recent studies show that parenchyma provides a metabolic
and energetic link between mature xylem and phloem [49]; thus, more detailed studies are
needed to better understand the role of parenchyma cells in the overall functioning of trees
in different environments.
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4.4. Site-Specifics

As already mentioned, local site conditions and the plasticity of secondary growth to
adapt to such conditions are key factors in explaining differences in xylem and phloem
anatomy between the three temperate sites. In addition to altitudinal and latitudinal
differences, the amount and distribution of precipitation also differ between the sites,
especially between those in Slovenia and the Czech Republic one. Even though none of the
sites was precipitation limited, 55% and 62% less rainfall was recorded at RAJ compared to
PAN and MEN, respectively, in the period 2009–2011. In addition, at RAJ, the majority of
rain falls predominantly during the growing period. Drought events at RAJ are very likely
to occur, as for instance in 2011, when 60% less precipitation was recorded in the first half
of the year than in the previous year [50]. However, this did not negatively affect radial
increments in Norway spruce [18], while in common beech, the xylem increments were
40% narrower in 2011 [50]. These differences can be ascribed to site specifics (Slovenian
and Czech sites), particularly soil properties, and to species specifics (Norway spruce
and common beech). Thus, the amount of precipitation is not a direct indicator of water
shortage in a tree; soil properties, which are not considered in this study, may also greatly
affect water availability.

4.5. Genetic Control of Radial Growth

Our results indicate a high intra-specific plasticity of the studied phenological patterns
in spruce. However, it should be emphasized that genes also have an important influence
on the phenological events, as already previously demonstrated [51,52]. In addition, seed
origin is known to influence tree growth characteristics and their response to local environ-
mental conditions [53,54]. Due to the long history of planting and provenance transfers,
spruce in Central Europe is reported to have lower genetic diversity compared to Eastern
and Northern Europe, which is reflected in less pronounced regional variation patterns [55].
As spruce was intensively sawn/planted with seeds/seedlings of unknown origin at all
our sites [56,57], it is not possible to assess the relative contribution of genetic determina-
tion, epigenetic regulation, and somatic adaptation to growth and development processes.
Established provenance experiments [58] would therefore be the most appropriate choice
for further research in this direction.

5. Conclusions

The phloem phenology and structure are generally less known; thus, this part of the
analysis substantially complements the information on radial growth of trees, consisting of
wood and phloem components. Despite the increasing interest in wood formation studies,
the timing of the transition dates from earlywood to latewood has been less investigated.
Therefore, the results of the current study are important to better understand the year-
to-year variability of this phenological event in Norway spruce from three contrasting
temperate sites, also in relation to cambial phenology. Differences in the transition dates are
reflected in wood anatomy, which can be attributed to the hydraulic adaptation of trees to
specific site conditions. The shown plasticity of secondary growth allows trees to adapt the
structure of xylem and phloem to function optimally under local environmental conditions.
Thus, long-term data on seasonal xylem and phloem formation patterns and structure will
improve our understanding of the process-based response of trees to climate-phenology-
related changes and, ultimately, on their future success and performance in different
environments. From an economic perspective, changes in wood structure will affect wood
density and consequently wood properties (timber quality), which is an important issue
for forest-based industry.
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J.G., K.Č., and P.P.; Writing—original draft preparation, J.G. and P.P.; Writing—review and editing,
all; Visualization, P.P.; Funding acquisition, all. All authors have read and agreed to the published
version of the manuscript.



Forests 2021, 12, 331 12 of 14

Funding: This research was funded by the Slovenian Research Agency, through research core
funding nos. P4–0107, P4-0015, P4-0085 and projects V4-2017, J4-2541 V4-1419, and Z4-7318. The
study was funded also by the Spanish Science and Innovation Ministry (MICINN), the ELENA
program (CGL2012-31668), by the FEDER program of the European Union and by the European
Social Fund and the state budget of the Czech Republic, Project Indicators of Trees Vitality Reg.
No. CZ.1.07/2.3.00/20.0265.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article. Additional
data are available on request from the corresponding author.

Acknowledgments: The authors gratefully acknowledge the help of Marko Beber and the Slovenian
Forest Service, Milko Detmar and Metropolitana d.o.o., as well as Luka Krže, Maks Merela, Marko
Željko, Gabriela Vichrová, Jaroslav Kratochvíl, and Tomáš Kratochvíl for their immense help in the
field and in the laboratory. We thank Martin Cregeen for language editing. The long-term climatic
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