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Abstract: Climate change poses a disproportionate risk to alpine ecosystems. Effective monitoring
of forest phenological responses to climate change is critical for predicting and managing threats
to alpine populations. Remote sensing can be used to monitor forest communities in dynamic
landscapes for responses to climate change at the species level. Spatiotemporal fusion technology
using remote sensing images is an effective way of detecting gradual phenological changes over
time and seasonal responses to climate change. The spatial and temporal adaptive reflectance fusion
model (STARFM) is a widely used data fusion algorithm for Landsat and MODIS imagery. This study
aims to identify forest phenological characteristics and changes at the species–community level by
fusing spatiotemporal data from Landsat and MODIS imagery. We fused 18 images from March to
November for 2000, 2010, and 2019. (The resulting STARFM-fused images exhibited accuracies of
RMSE = 0.0402 and R2 = 0.795. We found that the normalized difference vegetation index (NDVI)
value increased with time, which suggests that increasing temperature due to climate change has
affected the start of the growth season in the study region. From this study, we found that increasing
temperature affects the phenology of these regions, and forest management strategies like monitoring
phenology using remote sensing technique should evaluate the effects of climate change.

Keywords: phenological analysis; spatiotemporal data fusion; Landsat; MODIS; Jeju Island; NDVI;
climate change

1. Introduction

Rising global temperatures and atmospheric carbon dioxide levels, changes in pre-
cipitation frequency, and increasing severity of extreme climatic events are some of the
impacts of climate change. The resultant effects on the ecosystems due to these changes
will intensify in a negative direction. These effects include changes in the distribution of
forest organisms and populations as well as ecosystem function and composition [1–4].
In particular, forest biodiversity adjusting to new environmental conditions will lead to
species migration. Due to their vertical dimensions, mountains have unique climatic and
biogeographical features and create gradients of temperature, precipitation, and insolation.
Species compositions in forests are therefore highly susceptible to climate change, and as a
result vulnerable species and populations may become extinct.

Thus, climate change poses a disproportionate risk to alpine ecosystems because
they are determined by relatively strict climatic parameters [5–9]. Forests and trees play a
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critical role in supporting basic human life by performing many critical ecosystem services,
such as soil stabilization and erosion control, air quality control, climate regulation, carbon
sequestration, biodiversity, and recreation and tourism [10]. Therefore, changes in climatic
parameters have a substantial impact on both the physical environment and biosphere in a
sub-alpine ecosystem.

Effective monitoring of forest phenological responses to climate change in forested
regions is critical to predicting and managing threats to populations [11]. However, identify-
ing community-level phenological responses of forests through field surveys is a large-scale
and time-consuming task [12–14]. Because ecosystems exhibit spatiotemporal variation,
phenological characteristics should be analyzed for spatiotemporal variability in forest
type at the species level [15,16].

Remote sensing can be used in the forest of a dynamic landscape to monitor phe-
nological responses to climate change at the species level [17–19]. Several studies have
conducted forest phenological monitoring, with a focus on the type of land cover, using
multi-temporal data (LandSat ETM+) [20,21]. These studies were limited to daily monitor-
ing due to the poor temporal resolution of the data acquired by these sensors (Quickbird,
Ikonos, Landsat, and SPOT5) [22,23]. An example of this study examined forests in the
community and their species [24].

Spatiotemporal data fusion is an effective way to solve the trade-off problem between
spatial and temporal resolution. Data fusion is used to create synthetic reflectance data with
high spatial and temporal resolutions [25]. This method combines the spatial information
from images with a high spatial resolution with the temporal information from satellite im-
ages with a coarse spatial resolution but a short revisit period to generate images with high
spatial and temporal resolution. This method is particularly useful for detecting phenologi-
cal changes and seasonal responses to climate change [26,27]. The spatial and temporal
adaptive reflectance fusion model (STARFM) [26] is perhaps the most widely used data
fusion algorithm for combining Landsat and MODIS (Medium Resolution Imaging Spec-
troradiometer) imagery [28,29], showing high estimation accuracy at a local scale [30,31].
Moreover, it is one of the few data fusion methods that result in synthetic Landsat-like
surface reflectance [32]. Previous studies have been focused on large-scale [33,34] and
single time-series [35,36] analysis to identify phenology changes at a forest vegetation
community or species because of the time-consume and data processing. Thus, the purpose
of this research is to use spatiotemporally fused Landsat and MODIS imagery to identify
forest phenological characteristics and change at the species-community level. In this study,
the normalized difference vegetation index (NDVI), most widely used for phenological
analysis [37,38], was used for analyzing the changes of phenology in the sub-alpine ecosys-
tem. The employment of data fusion using Google data processing could help overcome
the shortcomings of the previous approaches.

2. Materials and Methods
2.1. Study Area

The study site (Figure 1) is Mount Halla on Jeju Island (33◦13′–33◦36′ N, 126◦12′–
126◦57′ E), Republic of Korea. This site was chosen because it exhibits a high biodiversity
and latitudinal gradients in species diversity throughout its elevation (300–1950 m) and
contains many endemic and endangered species and habitats, typical of a densely pop-
ulated area. In 2019 (1 January–31 December), the average temperature of Jeju Island
was 17.1 ◦C which is 0.9 ◦C higher than the average temperature (16.2 ◦C), the second
highest (after a record high of 17.3 ◦C in 1998) since 1961 [39]. These temperatures led to
changes in the composition of habitat, species, forest type, and flora in the sub-alpine area
of Mount Halla, South Korea (Figure 1). The lowest altitude within this study site is 1218 m,
the highest is 1945 m, and the average is 1544 m. Based on data from the past 20 years,
this area has an annual average temperature of 9.4 ◦C, and an annual average cumulative
monthly precipitation of 288 mm.
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Figure 1. Location of the study site on Jeju Island, Republic of Korea.

The conservation area on Jeju Island is characterized by high biodiversity and forms
the primary ecological axis of Jeju Island. Within the study area, deciduous broad-leaved
trees and Abies koreana are the dominant tree species and formed the target species for this
study; they occupy 20.7% and 18.3% of the study area, respectively. However, the forest
ecosystems have undergone intensive disturbances from climate change and reclamation
for urban development. Even the recent climate change has affected forest types and flora.
In particular, Abies koreana is a rare endemic species on Jeju Island that is at threat from and
being killed by other species as well as recent climate change [40–42].

2.2. Research Workflow

In this study, the identification of forest phenological characteristics and creation of a
time-series of phenological changes at the species–community level was conducted in three
main stages (Figure 2): (1) medium-spatial and high-temporal resolution products (Landsat
OLI, Thematic Mapper (TM), MODIS MOD09GQ, and MOD13Q1) were obtained from
the Google Earth Engine (GEE, https://developers.google.com/earth-engine/datasets,
accessed on 2 March 2021); (2) the Landsat 30-m images were fused with the MODIS
500-m images using STARFM, to produce synthetic imagery, and an accuracy assessment
through the R-square and RMSE was conducted to set the optimal parameters for STARFM;
(3) NDVI images, predicted through STARFM, were then classified by referencing the forest
community distribution map of the current Mount Halla Absolute Conservation Area,
and the time-series was analyzed for phenological changes in growth characteristics.
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2.3. Data Collection

The method used in this study relies on high-temporal and multispectral resolution
images for creating a time-series of phenological changes at the species–community level.
For this, remote sensing data were obtained from the GEE platform, as it would be too time-
consuming to collect sufficient data through field surveys. GEE is a cloud-based platform
that enables the online processing of satellite exploration data [43]. Fast processing and
results can be obtained by linking Google supercomputers with Java or Python code.
Additionally, GEE reduces the data processing time and the need for advanced computers
as the processing of existing satellite image data is performed online through coding.

For this study, Landsat OLI and TM products, as well as MODIS MOD09GQ and
MOD13Q1 products, were obtained from GEE. Landsat 30-m resolution observations pro-
vide sufficient spatial detail for surface and change monitoring [44]. However, cloud cover
and the 16-day revisit cycle of this product make it less useful for studying rapidly evolving
global biophysical processes during the growing season [45]. Therefore, data fusion was at-
tempted between Landsat and MODIS products. MODIS products are the most commonly
used daily satellite imagery for observing the seasonal phenology of vegetation [46].

The Landsat TM sensor has seven bands with a spatial resolution of 30 m. MOD09GQ
is a MODIS product that has undergone all atmospheric corrections and provides two
surface spectrum reflectances (bands 1 and 2) with a spatial resolution of 250 m. MOD13Q1,
a vegetation indices product, provides two bands: the NDVI and enhanced vegetation
index, each with a spatial resolution of 250 m. NDVI is a vegetation index used to estimate
vegetation vitality, productivity, and green cover rate [47]. It has been widely used for
phenological detection of terrestrial ecosystems.

We obtained Landsat images with less than 10% cloud cover to minimize the influence
of clouds [48,49] during 2000, 2010, and 2019, a period covering the entire growing period,
and paired them with corresponding MODIS data, as shown in Table 1. Three NDVI
products were constructed using bands 5 and 4 of the Landsat OLI products, bands 4 and
3 of Landsat TM products, and bands 2 and 1 of MOD09GQ. Using NDVI instead of bands
allows for high-accuracy phenological analysis [31]. Both the Landsat and MODIS satellite
survey data were geometrically corrected with the same coordinates (EPSG Geodetic
Parameter Dataset: 32,652). Due to the characteristics of MODIS, the constructed NDVI
was multiplied by 10,000, and the result was derived after downscaling to a 30-m likelihood
resolution. The entire processing process was carried out on the GEE platform.

Table 1. Data list.

Product Sensor Days Resolution Year Month

Landsat
TM 5 TOA 16 days 30 m 2000, 2010

March–
November
(excluding:

June–August)

8 OLI 16 days 30 m 2019

MODIS
MOD09GQ 1 day 250 m 2000, 2010,

and 2019

MOD13Q1 16-day
composite 250 m 2000, 2010,

and 2019

2.4. Auxiliary Data

A map of forest type in the study area was acquired from the Korean Ministry of
Environment. The map depicts vegetation classes (Abies koreana derived from multi-season
2015–2017 aerial imagery mapped at 20 cm resolution). The phenology was then analyzed
based on the forest type map. Also, the average monthly temperatures of 2000, 2010,
and 2019 were obtained from the automatic weather stations (AWS) provided by the
Korean Meteorological Administration (KMA) to find the relationship between NDVI and
temperature increase.
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2.5. Data Fusion

Using STARFM, we fused the Landsat 30 m data with the MODIS 500 m data to
generate time-series data with a high spatial resolution [31]. STARFM was chosen as the
data fusion algorithm because it is the basis of other fusions and has few restrictions [38].

To increase the fusing accuracy, we minimized the influence of clouds by using 16-
day composites of the MODIS data covering the prediction period [48]. Images for the
same period were fused and predicted using only clean Landsat and MODIS images
without clouds. For the 3 years of 2000, 2010, and 2019, a total of 54 images were fused via
this method.

Using STARFM to estimate the reflectance over the fusion period assumes that the
time-series change in MODIS data is the same as that in the Landsat data. Weighted
combining was performed, considering the temporal, spectral, and spatial similarities of
MODIS and Landsat data per pixel. We used STARFM to directly blend vegetation indices
(VIs) derived from SPOT5 and MOD09Q. Several studies have found that the STARFM
method performs better when directly fusing VIs than when the reflectance is fused before
the VIs are calculated [50]. The value of the prediction timing for each pixel was calculated
using the following equation:

L(xw/2, yw/2, tk) =
w

∑
i=1

w

∑
j=1

K

∑
k=1

Wijk ×
[
M
(

xi, yj, tk
)
+ L

(
xi, yj, t0

)
−M

(
xi, yj, t0

)]
(1)

where w is the size of the search window and is a parameter that determines the spatial
similarity at the predicted position; W is a weight, determined according to the temporal,
spectral, and spatial similarity between MODIS and Landsat data. Time similarity at the
fused time is calculated using the time difference between the MODIS data and Landsat
data. Spatial similarity is given a higher weight as it is closer in terms of the distance
between the predicted position (the center of the search window) and the surrounding
pixels. Spectral similarity is calculated by assigning a high weight to the pixels having
similar spectral difference between surface reflectance of MODIS-Landsat. In this study,
we used the Python code of STARFM from [51].

2.6. Parameters of STARFM

The image fusion accuracy and the time required for STARFM depend on two pa-
rameter values: the size of the search window and the number of classes classifying
spectral differences between the surface reflectance of MODIS-Landsat. To improve the
accuracy, it is important to determine the ideal size of the search window and the number
of classes [29]. The size of the search window, which sets the areas searching for simi-
lar pixels, was set to an appropriate value through pilot prediction because, otherwise,
the result may be less accurate than a certain value, depending on the target location [25].
In most studies, the size of the search window has a more direct influence on the prediction
accuracy rather than the number of classes; therefore, the size of the search window will
be set first, followed by the number of classes [27]. For the pilot prediction, the size of the
search window and the number of classes were set by referring to the results of previous
studies, and the optimal value such as window size and the number of classes was chosen
in consideration of the fusion accuracy and the time required.

Two statistical criteria, the coefficient of determination (R2) and the root mean square
error (RMSE), were selected to set the optimizing value of window size and the number
of classes. These criteria are widely used to evaluate phenology extraction results [29,52].
They are calculated as follows:

R2 = (Mi − Fi)
2/(Mi − Ai)

2 (2)

RMSE =

√
n

∑
i=1

(Mi − Ei)
2 (3)
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where Mi is the measured value, Fi is the linear fitting value, Ai is the average value of the
measured data, and Ei is the estimated value.

2.7. Phenological Analysis Based on Forest Types

NDVI is very effective for monitoring vegetation changes over large areas [53], and is
easily calculated from satellite imagery with the following equation:

NDVI = (NIR− Red)/(NIR + Red) (4)

Here, NIR refers to the value of the near-infrared band, and Red refers to the value of
the red-light band. NDVI ranges from −1 to 1, and values closer to 1 generally indicate
higher vegetation vitality. The seasonality of local plants can be analyzed through changes
in NDVI values throughout the year. NDVI image data predicted through STARFM were
classified according to forest type to analyze changes in growth characteristics. The im-
age data were classified into forest types using the ArcGIS program and based on the
community distribution map of the current Mount Halla Absolute Conservation Area.

3. Results and Discussion
3.1. Results of STARFM

The two parameter values, namely the size of the search window and the number
of classes, were set through pilot prediction. In accordance with previous studies [27],
the pilot prediction was conducted by setting the size of the search window to 5, 10, 25,
50, 100, 150, 200, 250, and 300 [27]. As a result of the pilot prediction, when the window
size was set to 50, the R2 (0.795) and RMSE (0.0402) values indicated a sufficient accuracy
of the model (Figure 3a). The number of classes was set to 10, 20, 40, and 80, and the
pilot prediction was carried out. The RMSEs for the different number of classes were
similar, but the highest accuracy (R2 = 0.795) was obtained when the number of classes
was set to 10 (Figure 3b). These STARFM accuracy evaluation results were similar to those
(R2: 0.69–0.86, RMSE: 0.06–0.11) of [38] and were acceptable results. Based on the pilot
prediction results, image fusion and prediction were performed with a search window of
50 and a number of classes of 10. Even though the images from the prediction period were
used as 16-day composites, there was one case where a cloud existed in the prediction result.
Because clouds were found mainly in the images from the summer period, the images of
the summer period were excluded from later seasonality analysis.
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the numbers of classes.

Figure 4 shows an example of image fusion using the STARFM technique with Landsat
and MODIS products. In the figure, the picture at the top left is the original MODIS product
(MODIS 1 June 2000), the top right is the Landsat product (Landsat 1 June 2000) on the
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same date, and the bottom left is the MODIS product (MODIS 27 July 2000) on the date to
be predicted by fusion. As described above, the amount of change in MODIS (1 June 2000)
and MODIS (27 July 2000) was calculated, the weight of each pixel of MODIS (1 June 2000)
and Landsat (1 June 2000) was calculated, and the resulting Landsat (27 July 2000) (in the
lower right corner) was derived as a combination of the two.
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3.2. Phenological Analysis

After applying STARFM to the sub-alpine area of Mount Halla, the predicted images
were classified using the ArcGIS program and a community distribution map of the abso-
lute conservation area of Mount Halla. The classification was made for eight communities,
and a total of 54 × 8 = 432 fused imagery were created. Out of the eight communities,
the Abies koreana and the deciduous broad-leaved forest were compared because they are
the dominant types in this study area.

The results (Figure 5) showed that the time-series phenology pattern of Abies koreana
had opposite characteristics to the deciduous broad-leaved forest. In the case of deciduous
broad-leaved forests, the NDVI value showed a tendency to increase gradually over each
season (Figure 5b). Similar to deciduous broad-leaved forests, the NDVI of Abies koreana
showed a tendency to increase with each season (Figure 5a). In particular, in March and
April, the average value of the total NDVI showed that the number of regions with high
NDVI values gradually increased, as indicated by the average total NDVI. These results
could serve as evidence to support the results of the previous study [52] that spring has
higher productivity effects than fall.

Deciduous broad-leaved forests generally have higher NDVI values than Abies koreana
since the latter is a coniferous tree. Abies koreana showed the highest NDVI value in
September due to its growth characteristics. In contrast, in 2000, the NDVI value of Abies
koreana was low, and the start of the season was later than that of deciduous broad-leaved
forests. Considering that Abies koreana is a coniferous tree, such an increase in NDVI is a
peculiar phenomenon. These results are similar to those of previous studies [17,54] and are
likely due to climate change creating a longer growing season. Therefore, for rare species
like Abieas koreana, sensitive to climate change, continuous NDVI monitoring is needed to
observe climate change phenomena and preserve ecosystems.
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3.3. Phenology and Temperature

To examine the relationship between NDVI and temperature increase due to climate
change, the average monthly temperatures in 2000, 2010, and 2019 were obtained from
the AWS provided by the KMA (Figure 6). Considering the observation points in five
different AWS locations around the study area, temperature data were obtained from the
observatory being able to include the temporal range of this study (Figure 6a).
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Figure 6. (a) Locations of automatic weather stations in study area, (b) time-series graph of monthly average temperature
data (data source: Korea Meteorological Administration).

The average monthly temperature increases slightly over time, except in May, where
the NDVI value is relatively high. In particular, from the monthly average temperature
change, the increase in average temperature occurred at the start of the season rather
than at the end of the season (Figure 6b). These changes could be used as evidence to
show the rise in NDVI during March and April (Figure 5). Previous studies have shown
similar results [17,54], and it can be speculated that a temperature increase due to climate
change can affect sensitive forest communities. In contrast, the target area also receives
snow falls as much as the alpine region from late November to February. As in previous
studies [55,56], phenomena and sub-alpine ecosystems are affected by the amount of snow
cover and the period of cover. Furthermore, a temperature rise due to climate change
affects the duration and accumulation of snow and must be observed carefully.
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Through analyzing phenology by forest type in the target region (Figures 5 and 6),
the seasonal growing characteristics of species sensitive to climate change were confirmed,
as in previous studies. In particular, the use of the STARFM technique in target sites with
rainy climates sufficiently complements the qualitative limitations of Landsat data, which
are heavily influenced by the weather, to increase the analytical possibilities. In addition,
surface-based in situ phenological analysis provides detailed leaf development information,
however, it has limitations of data availability spatially and temporally [57]. To monitor
the seasonal dynamics of vegetation greenness, it is necessary to collect phenological data
using remote sensing.

4. Conclusions

This study uses fusion technology to build on previous studies that have focused on
time-series phenological change at a species–community level to identify phenological
changes in the sub-alpine area. Our study constructed NDVI on the GEE platform using
Landsat OLI and TM products with MODIS MOD09GQ and MOD13Q1 products and
variables such as the coordinate system and window size. These approaches significantly
reduced the time required to collect large amounts of satellite data and the uncertainty of
the preprocessing method for each step. In fact, this process took only a day which included
the work of coding JavaScript in the GEE platform. This process would have taken over a
month if Landsat and MODIS data were downloaded from the United States Geological
Survey (USGS) EarthExplorer (https://earthexplorer.usgs.gov/, accessed on 2 March 2021)
to calculate NDVI. We used STARFM, which is the most widely used spatiotemporal data
fusion model and shows high prediction accuracy at local scale, to fuse Landsat images
for dates not covered by data, using fusion of Landsat and MODIS images. For the fusion,
Landsat and MODIS data from the same period, in the form of clean images without clouds,
and the forecast period data were preprocessed by reducing the effect of clouds (as much
as possible) through 16-day composites. Eighteen images were predicted for each of the
three years (2000, 2010, and 2019, from March to November).

Through phenological analysis in 2000, 2010, and 2019 using estimated NDVI values
obtained from STARFM, we obtained three major results. First, by examining the phenology
of forest types, we confirmed that NDVI values increase with time. In particular, in March
and April, the average total NDVI showed that the number of regions with high NDVI
values gradually increased, which indirectly confirmed that the start of season was shifting
earlier. It also suggests that increasing temperature due to climate change have affected
the start of season in the study regions. Second, we compared the average monthly
temperatures of 2000, 2010, and 2019 to find a link to the temperature rise caused by climate
change. We found that the increase in average temperature generally occurred at the start
of season, rather than the end. Lastly, the STARFM technique is particularly useful for
target sites with rainy climates, where the applications of Landsat data are limited by the
weather. Although the climatic characteristics of the site were factored into the STARFM
process, and the resulting accuracy (RMSE: 0.0402, R2: 0.795) was sufficient, it was not as
high as that of other studies [58]. The phenology analysis using remote sensing techniques
like STARFM is more useful to monitor the seasonal dynamics of vegetation greenness than
surface-based situ phenological analysis in the perspective of data availability spatially
and temporally. Additionally, the more clean, cloudless data were used, the better the
results were.

In the future, this method can be supplemented by improving the image fusion
process using a high-performance machine capable of processing more images. In addition,
this study’s phenological analysis was only performed for specific years. It seems that
it is necessary to determine the trends over multiple years to improve the accuracy and
reliability of the method. Furthermore, the average value before and after the relevant year
should be used, rather than just selecting a specific year. By improving the disadvantages
of the mentioned data period and increasing the level of mechanical defects capable of
processing large images, a phenology analysis of a wider area could be attempted as the

https://earthexplorer.usgs.gov/
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next step in the study. Additionally, as forests respond to climate change, it would help
manage the ecosystem phenology of these regions using this remote sensing technique.
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