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Abstract: Aiming to develop a new tree biomass estimation model that is adaptable to airborne
observations of forest canopies by unmanned aerial vehicles (UAVs), we applied two theories of
plant form; the pipe model theory (PMT) and the statical model of plant form as an extension of the
PMT for tall trees. Based on these theories, tree biomass was formulated using an individual tree
canopy height model derived from a UAV. The advantage of this model is that it does not depend
on diameter at breast height which is difficult to observe using remote-sensing techniques. We
also proposed a treetop detection method based on the fractal geometry of the crown and stand.
Comparing surveys in plantations of Japanese cedar (Cryptomeria japonica D. Don) and Japanese
cypress (Chamaecyparis obtusa Endl.) in Japan, the root mean square error (RMSE) of the estimated
stem volume was 0.26 m? and was smaller than or comparative to that of models using different
methodologies. The significance of this model is that it contains only one empirical parameter to be
adjusted which was found to be rather stable among different species and sites, suggesting the wide
adaptability of the model. Finally, we demonstrated the potential applicability of the model to light
detection and ranging (LiDAR) data which can provide vertical leaf density distribution.

Keywords: the statical model of plant form; Japanese cedar; Japanese cypress; treetop detection;
fractal geometry

1. Introduction

Forests are essential for the conservation of biodiversity and soil and water resources
as well as for providing forest products [1]. They can make significant contributions to the
economy, livelihoods, and environment [2]. To promote the implementation of sustainable
management of all types of forest has been stated as a target in Goal 15 (life on land) of the
United Nations’ Sustainable Development Goals (UN SDGs) [3], and the multiple functions
and benefits of forests are directly and indirectly linked to various goals such as water and
sanitation, sustainable energy, and climate change action [4]. Therefore, sustainable forest
management has a significant impact on human and wildlife welfare.

Forest monitoring and inventory are fundamental activities for sustainable forest man-
agement that are indispensable for planning and validating management practices. Remote
sensing is used in a large variety of forest monitoring, inventorying, and mapping [5] in
both research and management applications. In recent years, unmanned aerial vehicles
(UAVs) have been increasingly used owing to their low material and operational costs, and
high-intensity data collection [5]. They are suitable for monitoring relatively small areas of
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forest stands at high resolution and in short intervals. Generic commercial UAV systems
carry a digital camera and are often utilized for observing 3D forest canopy structures by
using the structure from motion (5fM) technique which generates surface points of objects
from multiple photos [6-9]. Innovations in miniaturizing light detection and ranging
(LiDAR) devices boarded on UAVs [10-12] have enabled more accurate observations of
forest canopy structure than those using the SfM technique [13].

Tree biomass and its growth are fundamental indicators in forest management, and
the allometric relationship among tree size metrics and tree mass or volume is widely used
in surveys on the ground that utilize destructive observation methods. Stem volume is
proportional to D?H, that is, the squared diameter at breast height (DBH) multiplied by tree
height, which is a standard formula in forestry practices. To estimate tree biomass using
UAV-5fM or -LiDAR techniques, tree height is easily measurable but DBH has rarely been
directly derived from the air, except in a few studies in open stands [14-16]. There are three
alternative approaches free tree biomass estimation using airborne observations: estimating
DBH and applying D?H or similar allometric relationships, estimating biomass from a
non-linear multivariate regression of measurable crown metrics, and estimating biomass
directly from LiDAR metrics with machine learning algorithms. In the first approach,
crown width, crown area and tree height are used as predictors of DBH [17-19]; however,
the accuracy of biomass or stem volume using estimated DBH has not been reported. In
the second approach, crown diameter, crown area, crown surface area, and tree height are
used as predictors of above ground biomass or stem volume [19-21]. The third approach
utilizes a variety of LIDAR metrics such as height and density of return signals, as well
as secondary metrics produced from signal statistics together with k-nearest neighbors
and random forest algorithms [11,22]. These approaches for direct tree biomass estimation
from remotely sensed data can potentially achieve high accuracy; however, overfitting,
that is, the generalization inability of the optimized models and parameters to forests with
varied species, ages, and growing environments, should be considered.

Shinozaki et al. found a general law of plant form and called it the pipe model theory
(PMT) [23,24], in which, the amount of leaves existing above a certain level in a plant
community is always proportional to the sum of the cross-sectional area of the stems and
branches found at that level. For tall trees, this law is effective only in tree crowns; however,
Oohata and Shinozaki later extended it to trunks below crowns and named it the statical
model of plant form [25]. Although the validity of the PMT assessed by modern knowledge
of biology is limited, especially from the perspective of the hydraulic properties of plants,
it can still be a portfolio of a unified framework of plant function and structure [26].
We excavated this old theory because it is capable of calculating aboveground biomass
from cumulative leaf mass from the treetop; therefore, it does not require an allometric
relationship between stem volume and DBH. This is a significant benefit of the theory for
tree biomass estimation from UAVs. Details of the formulization of theory to adapt it to
UAV observations will be presented in the next section.

Based on the background and idea shown above, this study aimed to develop a new
tree biomass estimation model applying the PMT, and to assess its validity in two coniferous
plantations in Japan. We also improved the methodology of processing UAV-derived
point clouds developed in our previous study [6], which included canopy height model
(CHM) generation from point clouds, individual treetop detection and CHM correction for
individual tree crowns.

2. New Tree Biomass Estimation Model Applying the Pipe Model Theory (PMT)

According to the PMT [23,24], cumulative leaf mass above any level in a crown is
proportional to the total cross section of stems and branches that support the leaves at
the same level. In the statical model of plant form [25] as an extension of the PMT to tall
trees, an individual tree consists of crown and below-crown (trunk) parts (Figure 1), and
similarly to inside a crown, the cumulative total (leaf and woody) mass above any level in
a trunk is proportional to the cross section of the stem at the same level.
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Figure 1. Concept of the statical model of plant form as an extension of the pipe model theory (PMT) to tall trees (Oohata and
Shinozaki, 1979) [25] (Figure 2). (a) Vertical profiles of leaf and woody mass per length. (b) Vertical profiles of cumulative
total (leaf and woody) mass from the top and woody mass per length. (c) Relationship between cumulative leaf/total mass
from the top and woody mass per length. I and C are the leaf and woody mass per length at distance z from the treetop,
respectively; F and T are the cumulative leaf and total mass from the treetop, respectively; and z; is the crown length at

which the crown and trunk are divided.
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Figure 2. Location of the study sites per Fujimoto et al. [6] (Figure 1). (a) Gifu prefecture is located in the middle of Japan.
(b) Red plots represent the locations of two study sites. (c¢,d) Orthographic photos of Sites 1 and 2. Red lines show the

boundaries of the study sites.
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Assuming that the density of woody organs (stems and branches) is constant, the cross
section of stems and branches is equivalent to the woody mass per unit vertical length, and
the PMT can be formulated using Equation (1) from [23] (Equation (2)).

Cz) ="F (0<z<z), M

where z is the vertical distance from the treetop, C is the woody mass (stem and branches)
per unit length, F is the cumulative leaf mass from the treetop, L is a parameter named
“specific pipe length” with the dimension of length, and zy denotes the crown height at
which an individual tree is divided into an upper (crown) and lower (trunk) part. L is the
gradient of the C ~ F relationship and is related to the mechanical strength of the woody
organs to support the leaves. From Equation (1), C at crown height zj is proportional to
F(zp), that is, total leaf mass as Equation (2).

F(zo)
o

C(z0) = @

Conversely in a trunk, the total mass (leaves, stems and branches) above any level z is
linearly correlated to C at the level. By solving this relationship, Oohata and Shinozaki [25]
obtained Equation (3):

C(z) = C(z@exp(%) = @exp(%) (zo<z<H), (3)

where H is the tree height and a is a parameter named “specific stress length” with the
dimension of length. The aboveground (crown and trunk) woody mass of an individual
tree M can be calculated by integrating Equations (1) and (3) from the treetop to the ground
as follows:

M = fOH C(z)dz = [,° C(z)dz + lej C(z)dz

B R O )

Z a

(4)

To utilize a gridded CHM derived by a UAV and segmented into individual tree
crowns, leaf mass in a crown was discriminated using CHM cells in an individual tree
crown. By assuming that each CHM cell contains an equal amount (area or weight)
of leaves, the cumulative leaf mass from the treetop to a certain height is represented
as follows:

F(zi):Almi (i:1NN, OSZiSZN)r (5)

where z; is the vertical distance of the i-th CHM cell from the treetop, N is the number of
CHM cells in a tree crown, A is the area of a CHM cell, [ is the leaf area index (LAI; leaf
area per CHM cell area) and m is the leaf mass per area (LMA). zy is the crown height and
is identical to zg in Equations (1) through (4). Using Equation (5), woody mass within a
tree crown can be approximated as Equation (6) by applying the trapezoidal rule.

2 N-1
/ ! F(z)dz =~ Alm Y _ (i40.5)(zj41 — z;) = Alm
0 i=1

N-1
(N—-05)zy — ) zi] ) (6)

i=1

From Equations (4) through (6), the aboveground woody mass M can be calculated
using Equation (7).

Im
M=A—
L

(N—O.S)ZN—Iflzi+aN{exp<H;ZN) _1}], )

i=1

where tree height H can be determined as the highest CHM cell in a crown. Oohata and
Shinozaki [25] found that the values of specific stress length a are approximately trunk



Forests 2021, 12, 258

50f16

height, that is, H — zyy for various forest stands and species. By replacing a with H — zy;,
Equation (7) can be simplified as follows.

N-1
M =Alm {(N —05)zy — ¥ zi+ (H —zn)N{exp(1) — 1}]
= (8)
= Alm [(N —05)zy — ¥ z; +1.718N(H — zN)} :
i=1
The stem volume is proportional to the aboveground woody mass, and we obtained

a stem volume estimation model from a UAV-derived crown CHM applying the PMT in
Equations (9) and (10).

V=M_ pglm (N —05)z N 178N (H -
= de = AL D)zn ,gzﬁ- (H—zn)

TN-1 )
= bA [(N —05)zy — ¥ z +1.718N(H — zN)],
i—1
Im
b= K (10)

where V is the stem volume, d is the volumetric density of wood and e is the biomass
expansion factor (BEF) which is the ratio of aboveground mass to stem mass. b is a
composition of parameters unique to species and stands, and is the only parameter to be
empirically determined in the model.

3. Materials and Methods
3.1. Study Sites and Field Survey

We used UAV-observed aerial photos and on-site survey results in two forest stands
to examine the performance of the stem biomass estimation model. Both sites were mature
coniferous tree plantations in Gifu Prefecture, located in the center of Japan Mail Island. Site
1(36.01° N, 137.37° E and 1000 m a.s.l.) was a 103-year-old Japanese cypress (Chamaecyparis
obtusa Endl.) plantation covering 0.81 ha. Site 2 (35.64° N, 137.48° E and 680 m a.s.1.) was a
47-year-old Japanese cedar (Cryptomeria japonica D. Don) plantation covering 0.96 ha. The
two sites partially contained non-dominant species of Japanese cedar and Japanese cypress.
Figure 2 shows the locations of the study stands.

The diameter at breast height (DBH), tree height, geographic coordinates, and species
were measured for selected individual trees with a DBH > 0.05 m or more on 1 November
2016 at site 1, and 31 October and 1 November 2017 at site 2. Diameters (Atsuta Shizai Co.,
Ltd, Nagoya, Japan) were used to measure the DBH (at 1.3 m above the ground), and tree
height poles (SK reverse scale inspection pole, AT-15, Senshin Industry Co., Ltd., Osaka,
Japan) and a laser ranging equipment (Laser 550AS, Nikon Imaging Japan Inc., Tokyo,
Japan) were used for measurement of the tree height [6].

In the forest survey, we measured the geographic coordinates of 159 and 228 trees at
sites 1 and 2, respectively. Of these, we measured the DBH and tree height of 27 Japanese
cypress and 5 Japanese cedar trees at site 1, and 15 Japanese cypress and 68 Japanese cedar
trees at site 2. The mean height, mean DBH, and tree density of site 1 were 23.8 m, 0.310 m,
and 169 ha™!, respectively. Those of site 2 were 21.1 m, 0.276 m, and 218 ha’l, respectively.
All measured trees were used to evaluate the performance of treetop detection and the
trees for which DBH and height were measured were used to evaluate the performance of
the tree biomass estimation model.

3.2. Aerial Photography and Structure from Motion (SfM) Processing

Aerial photography using a UAV was conducted on 21 September 2016 and 31 August
2017 at sites 1 and 2, respectively. A DJI Phantom 3 Professional camera with 12 M pixels
and a lens with a focal length of 20 mm (35 mm format equivalent) were used on the UAV
for the survey of Site 1, and a DJI Phantom 4 Pro camera with 20 M pixels and a lens with a
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focal length of 24 mm (35 mm format equivalent) was used for the survey of Site 2 [6]. The
photos were processed using the SfM technique with Photoscan Professional 1.2.6 software
(Agisoft LLC, St. Petersburg, Russia) [27], and a 3D point cloud was generated for each site.
At site 1, a 3D point cloud containing approximately 44 million points was generated from
129 aerial photos using the SfM technique. At site2, approximately 16 million points were
generated from 152 aerial photos.

3.3. Canopy Height Model (CHM) Generation, Treetop Detection and Crown Segmentation

The new tree biomass model utilizes the CHM of an individual tree crown. The process
of generating individual CHMs from a 3D point cloud observed by a UAV consists of stand
CHM generation, individual treetop detection and individual tree crown segmentation.
The workflow of this process was the same as that in a previous study [6]; however, the
methods in each step were reformed to improve the quality of the derived individual
CHMSs. All processes were performed using R statistics (Version 4.0.3, Vienna, Austria) [28].

In the first step, stand CHMs with a horizontal resolution of 0.1 m x 0.1 m were
generated from 3D point clouds. In our previous work, we determined the value of a
CHM cell from the highest point in each cell, and such a point was sometimes located
at the tips of small twigs. As defined in Equation (5), the new biomass model assumes
that CHM cells are filled with leaves; therefore, the height around which the points are
concentrated is more suitable as the representative value of a CHM cell. In this work,
we defined a CHM value as the height at which the maximum point density is reached.
The grid_metrics function provided in the lidR package 3.0.4 [29,30] was used to generate
CHMs in R statistics, where the point density distribution in a cell was calculated by a
Gaussian kernel density function with a window size of 0.1 m.

In the next step, treetops were detected on the stand CHMs using the local maxima
filter (LMF) algorithm in a moving window. The number of detected treetops varies
depending on the shape and size of the moving window; therefore, their selection rule is
crucial for its accuracy. We previously proposed a practical rule to determine the optimum
window size as the tipping point of bilinear regression lines on the window size-detection
number plot. In our previous work, we used a square moving window and a semi-
logarithmic plot (normal scale for window size and logarithmic scale for detection number).
In this work, we used a circular moving window considering the isotropic arrangement
of treetop locations, and used a double logarithmic plot considering the fractal geometric
characters of tree crowns and a forest stand (this theory is discussed in Appendix A). We
used the find_trees function with the LMF function in the lidR package of R statistics in
this step.

In the last step, we generated the CHMs of individual tree crowns by segmenting the
stand CHMs. We used the watershed method to classify stand CHM cells into individual
trees similar to a previous study [6]. The only improvement from the previous work was to
introduce two criteria to reduce unclassified cells and to prevent misdetection of objects
on the ground: the upper distance limit from fragmented cells to crowns to join (set to
2-cell-size), and the lower limit of target cell height defined by the fraction to tree height
(set to 0.3).

3.4. Tree Biomass Calculation and Model Validation

The stem volume of individual trees in the two sites was calculated using Equation (9)
with the segmented crown CHMSs, where, cell size A was 0.01 m? and tree height H was
determined from the treetop height on the CHMs. To validate the biomass estimation model,
the estimated stem volume was compared with the reference stem volume calculated from
the measured DBH and height in the survey using a stem volume model for coniferous

species [31]:
1.06
_ D’H {2(1 - Hb)] , a1

where V is stem volume, D is DBH, H is tree height and Hj, is breast height (1.3 m).
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4. Results and Discussion
4.1. Treetop Detection Accuracy

The number of detections monotonously decreases with the size of the moving win-
dow when using the LMF to detect treetops. As shown in our previous study, this relation-
ship could be approximated using bilinear regression lines and the tipping point between
lines is assumed to be the optimal window size. The improvement in this study was the
use of a double logarithmic plot instead of the semi-logarithmic plot in the previous study,
and the fitness of the regression lines was improved, as shown in Figure 3. The optimal
window diameter to detect treetops was then determined from the tipping points to be
2.4 and 2.0 m in sites 1 and 2, respectively. The area of the circular window was the same
as that of the square window in the previous work (2.1 m square) at site 1; however, the
area of the circular window was larger than that of the square window (1.5 m square) at
site 2. The slopes of the regression lines in the smaller window diameters was —1.93 and
-1.52, whereas, that in the larger window diameters was —0.77 and —0.61 in sites 1 and 2,
respectively.

. (b)
- Site 1 - Site 1
- Site2 1000 - Site 2
o ) Q
e
g
j=]
=
= 500-
S
=
(]
8
5
a
® 300
i 2 3 i 2 3
Window diameter (m) Window diameter (m)

Figure 3. Number of detected treetops against the diameter of the moving window at sites 1 and 2. The tipping points
between the bilinear regression lines are the optimal widow size. (a) is in a semi-logarithmic scale (normal scale for window
diameter), and (b) is in a double logarithmic scale.

A total of 223 and 259 treetops were detected in sites 1 and 2, respectively. The
coverage of the survey was not complete and numerous trees were left unmeasured be-
cause of access difficulty as well as the screening of small trees (DBH less than 0.05 m).
In our previous study, only true positives (TPs) and false negatives (FNs) were assessed
because false positives (FPs) were unknown; however, reducing FNs by using a smaller
window size always involves a tradeoff against increasing FPs. By assuming that the
measured trees in the survey were perfect at site 2 where the coverage of the survey was
rather high, precision (TP /(TP + FP)), recall (TP /(TP + FN)) and F score (2 x precision x
recall/ (precision + recall)) were calculated as shown in Figure 4 against the moving win-
dow diameter. Precision clearly increased with window diameter, whereas recall displayed
an opposite trend. The F score showed a broad inversed U shape and peeked at 0.78 with
the window diameter of 2.0 m. This window size was the same as that determined by the
tipping point of the bilinear regression on a double logarithmic plot, which was a larger
F score than that at the optimal window size in our previous work (0.76 at a diameter of
1.7 m). Thus, the window size selection method in this study provides an improved overall
accuracy compared with that with the previous method even though recall was lower (0.83
and 0.92 at the window sizes in this and previous studies, respectively). If the coverage of
the survey is perfect, less FPs are expected (precision must be higher), so the actual overall
accuracy for treetop detection would be improved compared to that of the above results.
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Figure 4. Accuracy of treetop detection with different moving window diameters of the local
maxima filter (LMF) in site 2. Precision is TP/ (TP + FP), recall is TP/ (TP + EN) and F score is
2 x precision x recall/ (precision + recall), where, TP, FP and FN denote true positive, false positive

and false negative, respectively.

Many studies have employed the LMF algorithm for treetop detection in CHMs [32-35];
among them, some selected the optimal window size by trial and error and others were
“empirically” determined or did not state the method. The reported treetop detection
accuracy of these previous studies was 0.91-0.96 for recall [32], 0.94 for recall [33]; 0.86 for
F score [34]; 0.82 for F score [35]. The recall and F scores in this study were lower than
those reported; however, considering that the coverage of the survey was not perfect, the
accuracy of the treetop detection in this study can be considered acceptable. Therefore, if
surveys of reference trees are not available, the proposed method to determine the optimal
window size of LMF using only CHMs is useful and reasonable.

Finally, the CHMs segmented into individual tree crowns were derived as shown in
Figure 5. Small trees with a crown size less than 1 m?2 were eliminated. As a result, the
number of individual CHMSs was 216 and 238 in sites 1 and 2, respectively. Among them,
30 and 76 trees with DBH and tree height measurements from the survey were used to
validate the biomass model, respectively.

@

(b)

Height (m)
30

Figure 5. Canopy height models segmented to individual tree crowns at sites (a) 1 and (b) 2.
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4.2. Trimming Individual Tree CHMs Using the PMT

It was found that individual tree CHMs after segmentation by the watershed method
were occasionally deformed from the general shape of the crown of coniferous species. An
example is shown in Figure 6a, where extra leaves are distributed at the lower positions
of a crown separately from the main leaves at the higher position. The lower leaves in
Figure 6a were from a neighboring short tree whose treetop had not been detected. Possible
reasons of these extra leaves are that objects on the ground and dead branches at the lower
position were observed in the aerial photography, that points could have been mis-located
in the SfM process because of the low visibility at the lower positions, and that the leaves of
neighboring tree crowns could have been mis-segmented. These extra leaves at the lower
positions should be trimmed from individual CHMs before being used in the tree biomass
estimation model.

@ o (b) s
20 20+
g 15 g 15+
z z _
c 8
= 10 = 10-
5 5
| . | 0
0 5.0 2.5 0.0 2.5 0 25 50 753 X
x (m) Scaled stem volume ¥ /b (10°m’)

Figure 6. (a) Example of a tree shape segmented from a canopy height model by the watershed method. (b) Scaled stem
volume V' /b change by height of the individual in (a) calculated by Equation (9). The red arrows represent the height at
which V /b reaches its maximum, and red leaves on (a) are the leaves below the height of the arrows.

The canopy structure theory of Monsi and Saeki [36], which serves as the methodolog-
ical base of the PMT, analytically showed the vertical mass distribution of assimilating and
non-assimilating organs in a plant canopy, and suggested that the optimal leaf area index
is autonomously determined to maximize the net production of the whole plant canopy.
From an analogy to the canopy structure theory, the PMT can be used to distinguish the
extra leaves in a CHM by searching for the optimum zy to maximize woody biomass. Let
V /b be a scaled stem volume from Equation (9), which is plotted against z; in Figure 6b.
V /b increased from the treetop as z;, reached its maximum at z; = 13.18 m (12.96 m above
ground), and then decreased up to zy, which indicated that the leaves below the optimal
z; do not contribute to biomass growth and can be eliminated. Thus, the optimal z; and
corresponding cell order from the treetop i could be new zy and N, respectively, and the
cells below the new zp were trimmed out from individual tree CHMs. The new crown
height z)y was shorter than that before trimming by an average of 7.70 m and a maximum
of 17.05 m, and the new canopy area AN was smaller by an average of 1.44 m? and a
maximum of 11.06 m?.

4.3. Implementing the Density Effect in the Tree Biomass Model Applying the PMT

The tree biomass estimation model applying the PMT has only one parameter to be
determined empirically (parameter b in Equations (9) and (10)). The average b calculated
from Equation (9) and the reference stem volume using Equation (11) with measured
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DBH and tree height 0.28 x 10~ for all species and sites and which widely varied from
0.09 x 10~ to 2.27 x 107%; therefore, it was not possible to obtain a constant parameter. The
variation in b could not be explained by the species and sites according to the analysis of
variance. As shown in Equation (10), parameter b is the composed one of five parameters,
and was assumed to be species- and site-specific. However, some of the component
parameters may vary according to the individual trees. The most likely effect of changing
parameters is canopy crowdedness, which is well known as the density effect. Generally,
in a dense tree canopy, the crown is small and stems are thin [37]. The sensitivity of
each component parameter to canopy crowdedness is unknown, but the smaller biomass
expansion factor e and specific pipe length L in a dense canopy are reasonable.

Following the discussion above, we examined a variety of indicators representing
canopy crowdedness, and selected the aspect ratio of a tree crown (ratio of crown height to
crown projected area) as the key factor determining the variety of b. Finally, we revised the
tree biomass estimation model by applying the PMT as follows:

N-1
vV o= b/if)gA[(N—O.S)zN - X zi+1.718N(H—zN)]

N (12)
= b3y {(N —05)zy — ¥ z;+1.718N(H — zN)} ,
=1
bl = NA , (13)
ZN

where b/ is a new integrated parameter to be determined empirically with the dimension
of length.

4.4. Stem Volume Estimation by the Tree Biomass Model Applying the PMT and Its Validation

Prior to validating the model, the accuracy of tree height estimated using UAV-5{M
was assessed. The maximum error, mean error and root mean square error (RMSE) of
tree height were 4.17 m, -0.50 m and 1.21 m, respectively. The RMSE was larger than
that of successful results, for example, 0.479 m reported in a comparative study in which
the UAV-SfM technique was used [38]. A part of the under estimation in tree height
was due to the cell height determination of a CHM in which the height at the maximum
point density in a cell was selected instead of the highest point, and this rule reduced
CHM height by an average of 0.3 m. However, a considerable gap remained between
the estimated and measured tree heights. The other possible causes are the quality of the
aerial photos (lighting conditions affect the point generation performance), precision of the
optical devices, the performances of the SfM software and hardware (precision depends on
the amount of computation), accuracy of the field survey that measured tree height using a
laser ranging equipment and a tree height pole. The accuracy of the tree height is critical in
tree biomass estimation in any model scheme using remote-sensing techniques and should
be improved.

The estimated and reference stem volumes are shown in Figure 7, and estimation
accuracy metrics and parameter b/ are summarized in Table 1, where the results of the
subsets classified by species and sites are also shown. The stem volume RMSE was 0.26 m?
for all samples and it was equivalent to a relative error of 32% for the average stem volume.
The RMSE of the subsets by species and sites ranged from 0.24 m? to 0.29 m® and did not
vary greatly among species and sites. The value of b7 was 1.28 x 1073 m for all samples,
and varied from 1.22 x 107 m to 1.33 x 10~ m by species and sites, of which the range
was within 5% and was not large. The b/ of Japanese cypress was smaller than that of
Japanese cedar, which is consistent with the fact that the volumetric density of wood 4 of
Japanese cypress is larger than that of Japanese cedar (see Equation (10)).
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Figure 7. Comparison between the reference tree volume and those estimated using the tree biomass estimation model

applying the pipe model theory. (a) and (b) are Japanese cedar and Japanese cypress in all sites, respectively. (c) and (d) are
all species in sites 1 and 2, respectively. (e) is all species in all sites.

Table 1. Accuracy of tree stem volume estimation using the tree biomass estimation model applying

the pipe model theory.
RMSE 2 b
Dataset Samples (m®) R (10 m)
Japanese cedar in all sites 69 0.27 0.37 1.33 £0.05
Japanese cypress in all sites 37 0.24 0.59 1.22 £0.05
All species in site 1 30 0.29 0.17 1.26 £ 0.06
All species in site 2 76 0.25 0.46 1.30 + 0.05

All species in all sites 106 0.26 0.45 1.28 +0.04
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The accuracy of the new tree biomass estimation model applying the PMT was com-
pared with that of other methods. One method used the DBH estimation model [19]
combined with Equation (11), which was presented in our previous study [6]. The DBH
model equation is as follows:

2
D = f x 0.557(H x CD)O'809 exp (0'056 ),

5 (14)

where D is DBH (cm), H is tree height (m), CD is crown diameter (m), and f is a correction
factor for the study sites introduced only in this study. As a result, DBH was estimated with
an RMSE of 0.05 m; nevertheless, the estimated stem volume considerably underestimated
(see Figure 8a) with an RMSE of 0.34 m3 and an R? of 0.66. This comparison suggests the
high sensitivity of tree biomass estimation to DBH accuracy and the advantage of the new
model which does not require DBH as an intermediate parameter for tree biomass.
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Figure 8. Comparison between the reference tree volume and those estimated using the two comparative models: (a) the
DBH estimation model [19] and (b) the non-linear multiple regression model [21].

Another comparative stem volume estimation method is an empirical model by Itoh
et al. [21] that examines a variety of formulas and tree canopy metrics to estimate stem
volume from LiDAR measurements, and proposes the following equation as the best model
for Japanese cedar.

V =10"HP As7, (15)

where a, B and 1y are empirical parameters, H is tree height and As is crown surface area,
which was calculated from the horizontal area and inclination of CHM cells in this study.
The RMSE of stem volume was 0.23 m3 and the R? was 0.60, and was slightly improved
compared to that of the new model (see Figure 8b). As mentioned in Section 1, multivariate
non-linear empirical models can potentially achieve high accuracy; however, attention
should be paid to overfitting and parameter generalization. In this sense, the tree biomass
estimation model applying the PMT has the advantage of generalization to other types of
forest because it contains only one adjustable parameter and its variability was shown to
be rather small among species and sites.

4.5. Future Perspectives on the Tree Biomass Estimation Model and Processes

Although the tree biomass model applying the PMT proposed in this study achieved
a comparative performance to that of previous models in the study sites and for two
species, several perspectives should be studied to improve the model usage as well as the
processing method. Regarding the model usage, first, the stability of model parameter
b is not clear. b’ was shown to be less variable in this study; however, its stability to
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various species including deciduous or mixed species and site characteristics such as age,
stem density, and complex terrain are still unknown. Second, this study only considered
the density effect of the canopy to correct parameter b; however, the variability of other
parameters composing b has not yet been assessed. Examples are the variabilities of LAI ]
by species and site condition, LMA m by species and leaf position (sunlit or shaded), and
specific pipe length L by species, site, and age (because it reflects wood strength).

Regarding the data-processing method to generate individual tree CHMs for use in
the model, first, the treetop detection algorithm should be improved to achieve higher
accuracy. The optimal size of the moving window used with the LMF for treetop detection
was determined based on fractal dimensions in this study, and it was fixed at each site. The
crown size of individual trees varies within one stand; therefore, the optimal window size
for treetop detection must differ according to the location within a stand. Previous studies
examined a variable window size of LMF according to height [39]; however, in crowded
stands, crown size is also sensitive to stem density [37]. More effective algorithms with
variable window sizes need to be developed to improve the treetop detection performance.
Second, a simple watershed method to segment a stand CHM into individual trees may
not be effective for dense deciduous forests whose canopy is continuous and the crowns of
individuals overlap. In such stands, segmentation by only surface height would be difficult
and inaccurate; therefore, the use of additional information such as colors and brightness
is worth examining.

The proposed tree biomass estimation model in this study used individual tree CHMSs
as input data and assumed that the cells of CHMs contain equal amounts of leaves and that
there were no leaves beneath the cells, which was similar to a shelter. This assumption is
reasonable for species whose leaves are concentrated on the crown surface, such as Japanese
cedar, but may not be suitable for species whose leaves are partially distributed inside
crowns, such as Japanese cypress and deciduous species. The points in a CHM cell from a
point cloud generated using the UAV-S5fM technique are also distributed beneath the height
of the cell surface, but they cannot be used as an indicator of leaf density because of the low
positioning accuracy and uneven point generation rate at the lower positions. Recently,
UAV-borne LiDAR systems have been developed and utilized in both research and forest
management practices. The advantages of LIDAR compared with aerial photography are
high vertical distance accuracy and the ability to provide a vertical profile of leaf density.
The tree biomass estimation model is potentially capable of using vertically distributed
leaf density instead of the canopy surface height of CHMs by transforming the constant
LAIl x LMA m in Equations (5) through (10) to a variable that changes with the distance
from treetop z;.

5. Conclusions

To develop a new tree biomass estimation model adaptable to airborne observations
of the forest canopy by unmanned aerial vehicles (UAVs), we excavated old allometric
theories of plant form, the pipe model theory (PMT), and the statical model of plant form
as an extension of the PMT for tall trees. The achievements and findings of this study are
summarized below.

e The PMT is adaptable to the tree biomass estimation using UAV-derived CHMs
because it can provide the tree form without using DBH.

e  The optimal moving window size used in the local maxima filter (LMF) algorithm
can be determined as the tipping point of the bilinear regression lines on a double
logarithmic plot between window size and detection number.

e The PMT is also applicable to distinguish the misclassified extra leaves at lower
positions in an individual tree CHM.

e  The stem volume estimation accuracy of the new model was greater than that of a DBH
estimation model and was comparable to that of a three-parameter empirical model.

e Anadvantage of the new model in generalization is that it contains only one parameter
to be empirically adjusted. This parameter is rather stable in different species and sites.
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e  The new model is applicable to the vertical profile data of leaf density observed by
airborne LiDARs.

Further applicability and accuracy assessment as well as characterization of the em-
pirical parameter are needed to confirm and improve the validity of this new model to a
variety of forest stands.
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Appendix A Fractal Geometry of Tree Crowns and Forest Stands

Treetops were detected in canopy height models by using the local maxima filter
(LMF) algorithm with a moving window. As shown in Section 3.2., the number of detected
treetops varies depending on the size of the moving window, and its selection is crucially
important for accuracy. This study proposed the optimal window size as the tipping
point of the bi-linear regression lines on a double logarithmic plot of window size and
detection number, and its performance is shown in Section 4.2. This appendix discusses
the theoretical rationality of the proposed method.

Since the introduction of fractal geometry [40], it has had a major impact on modeling
and analysis in the natural and physical sciences [41]. Many studies have reported the
fractal-like structures of tree crowns and forest canopies. The fractal dimension is a key
indicator of the structural characteristics of natural objects. For example, a volume-filling
foliage has an Euclidian dimension of 3; however, the fractal dimension of tree crowns is
actually less than 3 because foliage concentrates near the crown surface due to the shading
effect [42]. At the stand level, the scaling exponents between tree size and number or canopy
topography have been discussed in relation to self-thinning and local site quality. [43—45].
Examples of fractal dimensions (including the scaling exponent) of tree crowns in previous
studies were 2.64 [42], 2.2 [46], and 2.24-2.45 [47], and those of stands were 1.71 [48],
1.78-1.94 [49], and 1.92-1.95 [50], showing that the fractal dimension of crowns is between
2 and 3 and that of stands is between 1 and 2.

The box-counting analysis is an appropriate method of fractal dimension estimation
for images [51], in which, the fractal dimension D f can be determined as the slope of the
number of boxes containing objects in an image N(s) versus box size s on a logarithmic
scale as follows:

logN(s) = —Dflogs + K, (A1)

where K is the intercept. This relationship is essentially equivalent to that between the
treetop detection number and window size of the LMF on a double logarithmic plot, as
shown in Figure 3. The slope in Figure 3 was —1.93 and —1.52 in the smaller window
diameters, and was —-0.77 and —0.61 in the larger window diameters in sites 1 and 2,
respectively. Therefore, these slopes can be said to represent the fractal dimensions of
crowns and stands, respectively. Note that the fractal dimension examples shown above
were from 3D observations, and they would be reduced by 1 if using the projected objects
on a horizontal plane, similar to the treetop point raster images. Therefore, it can be said
that the tipping point between the bilinear regression lines on a double logarithmic plot
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of window size and detection number indicates the threshold scale between crowns and
stands. Thus, it is optimal for treetop detection using the LMF algorithm.
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