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Abstract: Deforestation shows the constant environmental degradation that occurs worldwide as
a result of the growth of economic activity and the increase in population. This research examines
the causal link between renewable energy consumption, GDP, GDP2, non-renewable energy price,
population growth and forest area in high, middle- and low-income countries. Based on data obtained
from World Development Indicators, the autoregressive distributed lag model, with a time series, is
used to examine the long-term cointegration relationship between the variables. The results justify
the existence of a joint long-term relationship between the variables analysed for the middle-income
countries and low-income countries. When the forest area is not at its equilibrium level, the speed
of adjustment is slow (0.44% and 8.7%), which is typical of the nature of this natural resource. An
increase in the consumption of renewable energy is associated with an increase between 0.04 and
0.02 square kilometres of forest cover, respectively. The research does not show evidence about the
equilibrium relationship in the short term. Growth in renewable energy consumption is one of the
main drivers for preserving the forest area. Therefore, those responsible for making economic policies
must aim their measures towards the use of clean energy.

Keywords: forest area; autoregressive distributed lag model; ECT; renewable energy consumption;
time series

1. Introduction

Global demand for goods and services is directly related to the demand for natural
resources [1]. The role that forests play in the environment is fundamental, since they
contribute to the oxygen balance and help protect hydrographic basins (areas where water
for human consumption comes from [2]).

Some of these highly-demanded resources are non-renewable resources from forests.
According to the World Economic Forum (WEF) [3], in 2019, 3.8 million hectares of forest
cover were lost from primary forests, humid tropical forests, areas of mature tropical
forest, which constitute essential elements for biodiversity and air purification. This loss of
primary forest is related to the emission of 1.8 megatons of CO2 emissions. Compared to
previous years, 2019 registered an increase of 2.8% compared to 2018. However, this value
is lower than in 2016 and 2017.

In addition, the WEF [3] mentions that deforestation is affected differently depending
on the income level of countries. In developed countries, such as Spain, Greece, or Italy,
the forest area has registered increases of 9%, 6% and 6%, respectively, since 1990, which
is due to government subsidies. In contrast, in countries like Brazil, the Congo or Bolivia,
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deforestation is advancing at alarming rates, due to commercial logging of trees and the
use of land for agriculture. In response to this problem, world organisations generated
projects to mitigate environmental degradation. According to the Food and Agriculture
Organisation of the United Nations (FAO) [4], in 2008, the project called “United Nations
Programme UNO-REDD, UNJP/ECU/083/ UNJ” was launched, which emerges as a
need to reduce deforestation and forest degradation (REDD) in developing countries. In
addition, it has the support and experience of the United Nations Environment Programme
(UNEP) and the United Nations Development Programme (UNDP). On the other hand, the
increase in the consumption of renewable energy is constituted as one of the main elements
to achieve environmental sustainability and conservation of ecosystems [5–9].

In this regard, from the 1970s on, the study of the determinants of deforestation takes
on great relevance. Thus, Molion [10] and Lettau et al. [11] establish that economic activity
expansion is one of the main factors associated with deforestation. Since then, an endless
number of studies have examined the determinants of deforestation worldwide. For
example, Ahmed et al. [12] examine the effect of economic growth, energy consumption,
trade openness and population density on deforestation in Pakistan. As for Tanner and
Johnston [13], they examine the effect of renewable energy on deforestation in 158 countries.
However, according to the detailed review of the literature on the subject, there are few
studies that consider the role of renewable energy consumption, and even fewer, the non-
renewable energy price on the forest area, in countries with different income levels, by
using an Autoregressive Distributed Lag (ARDL) model approach, so this constitutes one
of the main novelties of the study.

In this context, this research aims to determine the relationship between renewable
energy consumption, the gross domestic product (GDP), GDP2, non-renewable energy
price, population growth and the forest area in three groups of countries during the period
1990–2018. Annual aggregated data are used at the level of three large groups of countries:
High-income countries (HIC), middle-income countries (MIC) and low-income countries
(LIC), to make a comparison of the factors that determine the forest area. Thus, the
dependent variable is represented by per capita forest area measured in square kilometres.
As explanatory variables, the following are used: renewable energy consumption and it is
measured as the percentage of total energy consumption, GDP at constant 2010 prices, the
square of the Gross Domestic Product (GDP2), the non-renewable energy price, measured
as the price of a barrel of oil at constant 2018 prices and annual population growth (%). The
study supports the hypotheses raised in Section 2.

The structure of this work is as follows. Section 2 describes the literature review, and
Section 3 describes the data and the econometric strategy used. In Section 4, the results
and discussion of the research are presented. Finally, the conclusions of the research are
discussed in Section 5. See Appendix A Table A1.

2. Literature Review

Preserving forest area or reducing deforestation is a global concern, due to the constant
demand for forest services [14] and the increasing rates of environmental degradation.
In some countries, governments established incentives to avoid deforestation, given that
there is competition for the use of forest area [15]. However, in others, the measures
taken were incipient. In this regard, deforestation was widely studied to learn more
about its determinants and to be able to design measures to mitigate its spread. Over
the last few years, various studies have been carried out on the subject, evidencing a
long-term relationship between deforestation and energy consumption [12]. Molion [10] is
one of the pioneers in relating deforestation with energy consumption, mentioning that
renewable energy can reduce CO2 emissions from greenhouse gases, caused by energy
from the consumption of fossil fuels. Another of the highly cited authors who examine the
same relationship, deforestation and energy consumption, is Lettau et al. [11], who use the
hydrological cycle and atmospheric recycling to study deforestation. These authors indicate
that the construction of dams, urbanisation, an increase in the capacity of the irrigation
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system, increasing energy demands and unsustainable economic growth are determinants
of a decrease in the forest area. In this regard, several studies have examined the factors
that cause deforestation, and this study focuses on the consumption of renewable energy,
economic growth and the non-renewable energy price as determinants of forest area. Thus,
there is evidence that argues that deforestation shows a long-term equilibrium relationship
with its determinants [12], for which the following hypothesis is established:

Hypothesis 1. (H1) There is a long-term equilibrium relationship between forest area, GDP,
renewable energy consumption and the price of non-renewable energy.

Therefore, the empirical evidence is divided into three groups. The first group includes
those studies that examine the effect of renewable energy consumption on deforestation,
their contributions being very significant. Thus, Tanner and Johnston [13] found that the
government can reduce deforestation rates by applying an ecological policy that expands
access to renewable energy to the rural population, so that the consumption of biomass is
left for their daily needs. Nazir et al. [16] study the development of the wind energy atlas as
a proposal for a partial solution to the problem, which made it possible to confirm a strong
relationship between the use of clean energy and deforestation. On the contrary, in North-
ern Europe, Enevoldsen [17] highlights that the development of wind projects in forest
areas has a negative effect on deforestation, which is carried out by installing wind turbines
to achieve performance enhancement of renewable energy and reduce the cost of energy,
which allows access at a low cost and to give up the consumption of polluting energy.

Brazil, launched the Clean Development Mechanism (CDM), taking into account that
60% of its energy comes from sustainable energy sources. Following this line, Moutinho
et al. [18] conduct research, where they show that deforestation rates are related to the
energy crisis caused by drought. Stigka et al. [19] confirm the need to replace fossil fuels
with clean or renewable energies when producing electricity.

In the same vein, in China, Bhattacharyya and Ohiare [20] found a very close long-term
relationship between access to electricity and deforestation. This fact leads them to conclude
that ensuring access to electricity to the rural population by the State will help reduce
deforestation rates significantly. In the north of Angola, Temudo, Cabral, Talhinhas [21],
by using interviews with the heads of households with the observation of the change in
vegetation cover, found that deforestation in rural Zaire is comparatively small. Taking
into account that the use of biomass for the population’s basic needs has been reduced,
the government has intervened by boosting the production of renewable energy.

On the Asian continent, Ahmed et al. [12] conducted a study in Pakistan, the fifth most
populated country in the world. By using time series data from 1980–2013, these authors
find the existence of cointegration, both in the short and long term, between deforestation
and renewable energy consumption. Undoubtedly, this is one of the studies that enables
to reinforce the hypothesis raised in this research on the strong links that exist between
deforestation, economic growth and energy consumption. For this reason, Houghton and
Nassikas [22] recommend that good forest management could stabilise CO2 emissions and
would serve to make a successful transition from the use of fossil fuels to the use of energy
from renewable resources.

In Colombia, when using General Circulation Models (CGM), Poveda and Mesa [23]
mention that a decrease in renewable energy consumption caused by a decrease in river
flows leads to an increase in the consumption of forest resources. This in turn, increases
deforestation, and consequently, leads to an increase in surface temperature, an increase
in atmospheric pressure and mainly a decrease in rainfall in the medium and long term,
which generated a decrease in river flows, which in turn, is reflected in severe failures in
hydroelectric power systems. The aforementioned circular phenomenon is corroborated
by Rojas [24], who confirms that in Colombia, deforestation causes 2.5% of losses in
hydroelectric plants. In this sense, the evidence shows that the consumption of renewable
energy is positively related to the forest area [13,16], and when there is greater access to
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clean energy, there is less demand for forest products to use as fuel. Therefore, the following
hypothesis of this relationship is proposed:

Hypothesis 2. (H2) The increase in the consumption of renewable energy is related to the increase
in forest cover.

The second group comprises of studies that examine the relationship between the
non-renewable energy price and deforestation. For example, in Eisner et al. [25], a positive
relationship was found between the rate of global forest loss and the resulting biodiversity
loss related to inelastic supplies from oil after 2005. These authors state that while it is
true that changes in oil supply and price cause changes in forest cover, this relationship
is very challenging, since there are more factors that also influence the change in forest
cover, and this is more evident in Southeast Asia and Central America. The authors
recommend examining other clean energy options with more elastic prices that do not
cause a decrease in forest cover. These recommendations are similar to those made by
Scheidel and Sorman [26]. In the same way, studies, such as the one by Abbaspour and
Ghazi [27], carry out a pilot model in two rural communities in Iran, Yakhkesh and Pechet,
in which the authors find that one of the main reasons for deforestation is an increase
in the consumption of fossil fuels as the main source of energy. For this reason, they
recommend that this scenario should be considered within the Kyoto protocol, which
encourages reducing environmental pollution and deforestation. Furthermore, Czúcz
et al. [28] mention that worldwide oil reserves will be depleted, and their price will
increase, resulting in consequences for forest conservation, since some non-renewable
resources from nature will be used as oil substitutes. Based on the aforementioned, the
price of non-renewable energy is a determinant of the forest area [25,27]; consequently, the
following hypothesis is proposed:

Hypothesis 3. (H3) The increase in the price of non-renewable energy is positively related to the
decrease in forest cover.

The third group includes all the studies that relate economic growth with deforestation.
Research on climate change also generated strong links between economic growth and
trade, positioning them as the main drivers of deforestation. This fact has played a great
role in the scientific world since the last years of the previous century. In the 1990s, the
environmental Kuznets curve was proposed, which establishes the relationship between
environmental degradation and economic growth. Since then, some economists, such as
Grossman and Krueger [29], Panayotou [30], Selden and Song [31] and Vincent [32], used
this hypothesis to verify the existence of an inverted U relationship between economic
activity and various forms of environmental degradation. The study by Cropper and
Griffiths [33] is one of the pioneers in examining the Kuznets hypothesis, taking into
account the relationship between deforestation and economic growth. However, despite
the various investigations carried out between deforestation and economic boom, there is
no definite consensus on the form that this relationship has [34].

The antecedents presented by the FAO in 1954 and a growing concern about environ-
mental degradation led the academic community to consider deforestation as one of the
key indicators of environmental degradation. Some authors, such as Andrée et al. [1], have
studied this relationship—finding inverted U-shaped relationships specifically between per
capita income and environmental degradation indicators, and concluding that the develop-
ment and economic growth of a country encourages the consumption of non-renewable
resources, which is directly related to deforestation.

It is important to highlight that deforestation is advancing extremely quickly, mainly
in South America. However, there is no awareness of the environmental problem generated
by economic activity. This is the case of Brazil, which represents most of the worldwide
flora and fauna biodiversity, but despite this knowledge, humans and the economy are
replacing this biodiversity with commercial land use. By using a linear fixed effects model
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with a balanced panel of 3168 observations, Santiago and Couto [35] found a long-term
relationship between deforestation and the socioeconomic situation between the years
2000 and 2010 in Brazil. The results of this research suggest that investment in agricultural
research should be improved to achieve sustainable economic growth and thus, reduce
deforestation rates, especially in the Amazon region of Brazil.

In the same country, the authors Arima et al. [14] mention that economic growth
continues to advance as investments continue to be made in hydroelectric energy and
road paving, which are associated with a high deforestation rate. By 2020, Brazil will
have achieved an 80% reduction in deforestation, especially in the Amazon. The authors
Carvalho et al. [36] investigated the compensation between environmental conservation
and economic growth, using an equilibrium model for 30 Amazonian regions and found
that the most affected population would be family farms, but to compensate for this loss,
it is estimated that to obtain profits each year, they would have to produce 1.4% of the
land. In the same country, Tritsch and Arvor [37] conducted a sub-municipal analysis
between socioeconomic development and deforestation in the Brazilian Amazon in their
research. Their results confirm a positive relationship between deforestation and economic
development, following an environmental Kuznets curve.

In Chile, Apablaza [38] shows the relationship between economic growth and pol-
lution by using linear regressions. In addition, a dummy variable is also used, which
identifies the effectiveness of the environmental policies that follow the conceptual be-
haviour of the Kuznets [39] environmental curve. These results coincide with those by
Turner [40]. In Ecuador, Sierra [41] performs a spatial model, where he manages to deter-
mine that an increase in economic activity accelerates deforestation growth, reaching very
high rates, and in the same way, when growth decreases, deforestation rates also decrease.

Caravaggio [42] studied 114 countries, and found that in high-income and middle-
income countries, the boom in economic activity is reflected in the conservation of forest
cover. Cuaresma and Heger [43] found that sub-Saharan Africa and low-income group
countries have a higher development and deforestation elasticity. Similar results are found
in a study carried out by Bhattarai and Hammig [44], whereby using a panel of 66 countries
from Asia, Africa and Latin America, quasi-experimental and difference in differences
approaches were applied to assess the changes in deforestation produced by economic
activity. On the other hand, Tritsch et al. [45] propose that it is mandatory to have a Forest
Management Plan (FMP) with logging concessions. The results suggest that applying an
FMP will help counteract deforestation significantly, enabling logging companies to carry
out extraction cycles to avoid overexploitation. Afawubo and Noglo [46], mention that to
reduce deforestation rates, economic development should not be the only focus, but also
the institutional quality of countries. This is confirmed by Miyamoto [47], who reveals that
poverty has a strong relationship with the change in the forest area. For this reason, it is
considered that economic growth generates a greater demand for land [27,36] for other
economic and human activities, with which the forest area decreases. Thus, the following
hypothesis is established:

Hypothesis 4. (H4) The increase in economic activity is negatively related to the forest area.

3. Methodology
3.1. Data Sources

This research examines the relationship between renewable energy consumption, GDP,
GDP2, the non-renewable energy price, population growth and the forest area during the
period 1990–2018. The period of examined time has been defined based on the availability
of information, especially by the forest cover variable, which has been available in the
World Bank [48] since 2018. For this, the aggregate series of countries are used according to
their income level: High-income countries (HIC), middle-income countries (MIC) and low-
income countries (LIC). Data from the World Bank Development Indicators [48] are used for
this study, in which the forest area represents the dependent variable and renewable energy
consumption, and the GDP are independent variables. The variable GDP2 is included to
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evaluate the environmental Kuznets curve [39]. The non-renewable energy price is used as
an explanatory variable—which refers to the international price of a barrel of oil, which
plays an important role in the economic activity, taken from the BP Statistical Review of
World Energy [49]. Additionally, population growth is used as an explanatory variable to
measure the variation in annual population growth. According to the World Bank [48], the
classification of countries is based on Gross National Income (GNI) per capita in United
States dollars. HIC have a GNI per capita greater than $12,055, MIC between $996–12,055
and LIC $995 or less.

Appendix A Table A2 describes the countries examined according to their income level.
The description of the variables used in the model is shown in Table 1. All the variables are
expressed in their logarithmic form to reduce their measurement scale, with the exception
of the dependent variable, which has relatively low values and population growth.

Table 1. Description of variables used in the study.

Variables Symbol Unit of Measurement Data Sources

Forest area FAP Square kilometres per capita World Bank [50]
Renewable energy consumption REC Log % of total final energy consumption World Bank [50]

Gross domestic product GDP Log US $ constant 2010 prices per capita World Bank [50]
Square of the Gross domestic product GDP2 Log of the square of GDP per capita World Bank [50]

Non-renewable energy price EP Log US $ constant prices of 2018 BP Statistical Review of World
Energy [51]

Population growth POP Percentage of annual population growth (%) World Bank [50]

The descriptive statistics and the correlation matrix are shown in Table 2. At 5%
significance, it can be seen that there is a strong negative relationship between renewable
energy consumption, the GDP, GDP2, the non-renewable energy price and the forest area,
except for MIC countries in which a positive relationship between REC and FAP is seen. In
addition, POP shows a positive and significant relationship with the forest area.

Table 2. Descriptive statistics and correlation matrix.

Groups Variable Observations Mean Std. Dev. Min Max Correlation

HIC

FAP 29 0.0091 0.0004 0.0084 0.0099 -
REC 29 2.1055 0.2203 1.8609 2.5194 −0.9388 *
GDP 29 10.4993 0.1256 10.2798 10.6823 −0.9789 *
GDP2 29 20.99866 0.2512614 20.5597 21.36461 −0.9789 *

EP 29 3.9444 0.5393 2.9749 4.8218 −0.7365 *
POP 29 0.6470451 0.0998829 0.447717 0.8397276 0.5938 *

MIC

FAP 29 0.0055396 0.0006618 0.0046022 0.0068432 -
REC 29 3.411611 0.1040366 3.245336 3.538147 0.8779 *
GDP 29 8.037406 0.334049 7.630042 8.594371 −0.9541 *
GDP2 29 16.07481 0.6680981 15.26008 17.18874 −0.9541 *

EP 29 3.944403 0.5393446 2.974963 4.82188 −0.7006 *
POP 29 1.346662 0.2254831 1.077227 1.907097 0.9741

LIC

FAP 29 0.0077 0.0019 0.0049 0.0113 -
REC 29 4.2846 0.0570 4.1402 4.3919 −0.8462 *
GDP 29 6.3448 0.1530 6.1508 6.6151 −0.8717 *
GDP2 29 12.6896 0.3061791 12.30172 13.23003 −0.8717 *

EP 29 3.9444 0.5393 2.9749 4.8218 −0.7334 *
POP 29 2.768654 0.1385192 2.543851 2.993388 0.7579 *

Note: * indicates significance level at 5%. HIC, high-income countries; MIC, middle-income countries; LIC, low-income countries.

Figure 1 shows the annual evolution of per capita forest area measured in square
kilometres for each of the groups of countries. In addition, it is observed that in 2018 the
per capita forest area in HIC is approximately double of that in MIC and LIC.
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Figure 1. Evolution of per capita forest area (sq. Km) (a) HIC; (b) MIC; (c) LIC. Source: Own elaboration.

3.2. Econometric Model

The main objective of this document is to find the relationship between renewable
energy consumption, the GDP, GDP2, the non-renewable energy price, population growth
and the forest area in different groups of countries classified according to their income
level. Thus, the model specification can be written as:

FAPt = β0 + β1RECt + β2GDPt + β3GDP2
t + β4EPt + β5POPt + εt (1)

In Equation (1), FAPt represents the forest area at time t = 1990, 1991, 1992, . . . 2018;
RECt represents renewable energy consumption; GDPt is the domestic product; GDP2

t is
the square of GDP; EPt is the price of non-renewable energy; POPt represents population
growth; βi denotes the coefficients of the explanatory variables and εt is the error term.

Next, various econometric strategies are applied, according to what is described in
the following sections.
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3.2.1. Stationary Tests

To fulfil the objective of the study, the stationarity of the series must be examined.
One of the most widely used formal methods to assess stationarity is the Augmented
Dickey-Fuller [50] unit root test. The null hypothesis (H0 : ρ = 0) assumes that the variable
contains a unit root, while the alternative hypothesis (H1 : ρ = 1) states that it does not
contain a unit root. To examine the long-term relationship, the variables examined may
have a different order of integration, I (0), I (1) or a mixture of the two, so the ARDL
approach becomes suitable for performing the cointegration analysis [51–53]. However, a
limitation of the ARDL approach is that it cannot be used with variables with integration
order I (2), the maximum order is I (1). In addition, the unit root test of Kwiatkowski is
performed [54]. Equation (2) formalises this relationship, where t represents the year and i
the number of lags of the variable:

∆yt = c + ρyt−1 +
p

∑
i=1

∅i∆yt−(i−1) + εt (2)

3.2.2. Cointegration Method

The time series cointegration method is used to examine the long-term relationship
between the variables. Consequently, Pesaran, Shin and Smith [55] are followed to apply the
Autoregressive Distributed Lag (ARDL) Model, since it analyses the cointegration between
variables with different degrees of cointegration, and also controls endogeneity [7,56] and
allows use for short periods—even with observations less than 30 [57,58]. An indispensable
requirement is that the stationarity order must be at most I (1), otherwise the analysis is
invalid [59–62]. The relationship is formalised in the following equation:

∆FAPt = α1 + α2FAPt−1 + α3RECt−1 + α4GDPt−1 + α5GDP2
t−1 + α5EPt−1

+α6POPt−1 +
n
∑

k=1
β1kFAPt−k +

n
∑

k=1
β2kRECt−k

+
n
∑

k=1
β3kGDPt−k +

n
∑

k=1
β4kGDP2

t−k +
n
∑

k=1
β5kEPt−k

+
n
∑

k=1
β6kPOPt−k + εt

(3)

In Equation (3), ∆ is the difference operator. α1 is the constant term, α2, α3, α4, α5 are
the long-term coefficients. β1, β2, β3, β4, β5, β6 represent error correction dynamics. εt
is the error term k represents the number of lags for each variable. The ARDL model
uses the Wald test (F-Statistic) to determine long-term existence. The null hypothesis es-
tablishes no cointegration between the variables (H0 : β1 = β2 = β3 = β4 = β5 = β6 = 0)
against the alternative hypothesis that establishes cointegration between the variables
(H0 : β1 6= β2 6= β3 6= β4 6= β5 6= β6 6= 0). In the cointegration analysis, Pesaran, Shin and
Smith [55] establish the critical values of F-statistics and two types of limits: Lower and
upper. If F-statistics is less than the lower limit, the null hypothesis of no cointegration is
accepted. In contrast, if F-statistics is greater than the upper limit, the null hypothesis is
rejected—that is, there is long-term cointegration between the variables. In the case that
the value is between the lower and upper limit, the results are inconclusive. Finally, the
Akaike [63] criterion is used to determine the optimal lag of the variables.
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3.2.3. Error Correction Term

Once long-term cointegration has been verified, Error Correction Term (ECT) is exam-
ined. The model specification is described below:

∆FAPt = β0 +
n
∑

k=1
β1k∆FAPt−k +

n
∑

k=1
β2k∆RECt−k +

n
∑

k=1
β3k∆GDPt−k

+
n
∑

k=1
β4k∆GDP2

t−k +
n
∑

k=1
β5k∆EPt−k +

n
∑

k=1
β6k∆POPt−k

+γECTt−1 + εt

(4)

In Equation (4), ECTt−1 represents the calculated error term of the cointegration equa-
tion that reflects the non-equilibrium error that deviates from the long-term equilibrium
relationship. γ describes the adjustment parameters and the speed at which the variables
return to the long-term equilibrium relationship.

Finally, the stability of the model is checked using the diagnostic test, which checks
if the model is free of serial autocorrelation and heteroscedasticity. Likewise, the correct
specification, normality (JB) and stability are verified, using the Ramsey, Jarque-Bera
and the cumulative sum of squares of recursive residuals proposed by Brown et al. [64],
respectively. Figure 2 summarises the methodology used in this investigation.

Forests 2021, 12, x FOR PEER REVIEW  10 of 21 
 

 

 

Figure 2. Flow diagram of the methodology. 

4. Discussion of Results 

Prior to the long‐term analysis, the stationarity of the variables was examined by us‐

ing the Augmented Dickey‐Fuller unit root test (ADF) [50]. The results of Table 3 rejects 

the null hypothesis that assumes the existence of a unit root—that is, the series are station‐

ary. One of the main advantages is that the ARDL approach can use variables with inte‐

gration order I (0), I (1) or a mixture of both [65]. Complementarily, it is carried out on 

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) [54]. Thus, the forest area and population 

growth variable for all groups is stationary at levels I (0) and the rest of the independent 

variables at I (1). 

Table 3. Unit root test. 

Groups  HIC  MIC  LIC 

  ADF  KPSS  ADF  KPSS  ADF  KPSS 

  WT  WOT  WT  WOT  WT  WOT  WT  WOT  WT  WOT  WT  WOT 

Levels 

FAP  −4.481 *** −5.23 ***  0.473 *** 0.45 ***  −15.253 ***  −18.11 *** 0.685 *** 0.34 *** −3.758 *** −4.52 *** 0.686 *** 0.67 *** 

Figure 2. Flow diagram of the methodology.



Forests 2021, 12, 255 10 of 21

4. Discussion of Results

Prior to the long-term analysis, the stationarity of the variables was examined by using
the Augmented Dickey-Fuller unit root test (ADF) [50]. The results of Table 3 rejects the
null hypothesis that assumes the existence of a unit root—that is, the series are stationary.
One of the main advantages is that the ARDL approach can use variables with integration
order I (0), I (1) or a mixture of both [65]. Complementarily, it is carried out on Kwiatkowski,
Phillips, Schmidt and Shin (KPSS) [54]. Thus, the forest area and population growth variable
for all groups is stationary at levels I (0) and the rest of the independent variables at I (1).

After checking the stationarity of the series, Table 4 presents the results of the ARDL
cointegration test. To properly determine the optimal lag length of each variable, the
Akaike information criteria (AIC) is used. In MIC and LIC, the calculated F–statistics
are higher than the value of the upper limit proposed by Pesaran, Shin and Smith [55].
Consequently, at the 1% significance level, the alternative hypothesis that establishes a
long-term cointegration relationship between the study variables is accepted, which means
that the variables move jointly over time. On the contrary, for HIC, the results show no
equilibrium relationship in the model studied.

The findings of the cointegration test evaluate the long-term relationship between the
forest area, GDP, GDP2, renewable energy consumption, non-renewable energy price and
population growth. Thus, the ARDL approach is used to estimate the long-term coefficients
between the variables. Table 5 shows the results obtained, FAPt−1 represents the error
correction term (ECT), in MIC and LIC is negative and statistically significant as expected.
However, in the HIC, its value is positive and not significant, which shows the long-term
non-cointegration mentioned above. The values of FAPt−1 range from 0 (no adjustment) to
−1 (immediate adjustment) as expected. Its values are small, which is reasonable, since
increasing forest cover is a time-consuming process inherent in its nature. That is, when
the forest cover area is far from its equilibrium level, it is adjusted by 0.44% and 8.7%,
respectively, within the first year. The speed of reaching the equilibrium level is slow and
significant. In MIC and LIC, an increase of 1% in renewable energy consumption represents
an increase of 0.041512 km2 and 0.027512 km2 of forest area, respectively. That is, energy
consumption from renewable sources contributes to reducing deforestation. The increase
in the consumption of renewable energy represents an alternative for access to clean energy,
instead of wood from forests, which is used as energy sources. These results are consistent
with those reported by Tanner and Johnston [13], Nazir et al. [16] and Bhattacharyya and
Ohiare [20], who affirm that the State can generate policies so that the rural population can
have access to electricity and give up the consumption of products from forests.

Regarding an increase in economic activity in MIC and LIC, measured by GDP, it
decreases the forest area. The increase in economic activity brings with it some externalities,
such as increased urbanisation, expansion of crops to provide food, among others, which
generally is related to a greater demand for land and to achieve this, spaces that are
destined for forests are occupied. These findings are also based on the fact that the increase
in economic activity demands resources that are found in the forests, which leads to a
process of deforestation [43,66].
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Table 3. Unit root test.

Groups HIC MIC LIC

ADF KPSS ADF KPSS ADF KPSS

WT WOT WT WOT WT WOT WT WOT WT WOT WT WOT

Levels

FAP −4.481 *** −5.23 *** 0.473 *** 0.45 *** −15.253 *** −18.11 *** 0.685 *** 0.34 *** −3.758 *** −4.52 *** 0.686 *** 0.67 ***
GDP −1.171 −1.45 0.594 *** 0.64 *** 2.309 1.32 0.533 *** 0.67 *** 1.658 1.56 0.528 *** 0.45 ***
GDP2 −1.171 −1.45 0.594 *** 0.64 *** 2.309 1.32 0.533 *** 0.67 *** 1.658 1.56 0.528 *** 0.45 ***
REC −3.617 ** −5.23 *** 0.665 *** 0.67 *** 1.297 1.67 0.481 *** 0.56 *** −1.991 −1.867 0.305 *** 0.75 ***
EP −1.176 −1.53 0.284 *** 0.56 *** −1.176 −1.53 0.284 *** 0.56 *** −1.176 −1.53 0.284 *** 0.56 ***

POP −6.23 *** −8.24 *** 0.647 *** 0.23 *** −7.23 *** −8.23 *** 0.23 *** 0.36 *** −6.81 *** −7.19 *** 0.56 *** 0.76 ***

First difference

FAP −1.864 −3.345 *** 0.259 *** 0.34 *** −1.952 −2.72 ** 0.419 *** 0.56 *** −4.280 *** −3.56 *** 0.435 *** 0.72 ***
GDP −4.021 *** −5.67 *** 0.562 *** 0.45 *** −2.873 ** −3.45 *** 0.364 *** 0.12 ** −2.941 * −6.24 *** 0.371 *** 0.45 ***
GDP2 −4.021 *** −5.67 *** 0.562 *** 0.45 *** −2.873 ** −3.45 *** 0.364 *** 0.12 ** −2.941 * −6.24 *** 0.371 *** 0.45 ***
REC −3.780 *** −5.93 *** 0.456 *** 0.35 *** −2.715 ** −4.67 *** 0.372 *** 0.37 *** −4.305 *** −7.56 *** 0.303 *** 0.34 ***
EP −4.372 *** −5.67 *** 0.118 * 0.45 *** −4.372 *** −5.67 *** 0.118 * 0.45 *** −4.372 *** −5.67 *** 0.118 * 0.45 ***

POP −7.23 *** −7.35 *** 0.46 *** 0.45 *** −6.78 *** −8.34 *** 0.67 *** 0.56 *** −9.61 *** −9.89 *** 0.23 *** 0.67 ***

Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively. WT = with trend and WOT = Without trend.
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Table 4. ARDL cointegration test.

Group F Optimal Lags

F–Statistics

10% 5% 1%

LB UB LB UB LB UB

HIC 1.445 (2 2 2 3 2 1) 2.45 3.52 2.86 4.01 3.74 5.06
MIC 18.57 *** (1 2 2 1 1 1) 2.45 3.52 2.86 4.01 3.74 5.06
LIC 12.037 *** (2 2 1 2 1 1) 2.45 3.52 2.86 4.01 3.74 5.06

Note: *** indicates the 1% level of significance. The values in parenthesis indicate the optimal lag of each variable (FAP, GDP, GDP2, REC,
EP, POP). LB = Lower bound. UB = Upper bound.

Table 5. Long–run estimations.

HIC MIC LIC

Dependent Variable: FAP Coefficient p-Value Coefficient p-Value Coefficient p-Value

FAPt−1 0.0014501 0.473 −0.0044839 *** 0.0015 −0.0876817 *** 0.000
REC −0.0452131 0.356 0.041512 ** 0.047 0.027512 * 0.081
GDP 0.0130313 0.745 −0.0623161 * 0.063 −0.0532092 *** 0.004
GDP2 0.0000328 0.263 0.0000238 0.362 0.0000048 0.762

EP 0.0002703 0.924 0.0011696 0.841 0.0011509 0.197
POP 0.0088715 0.603 −0.0234771 ** 0.035 −0.0024849 * 0.085

Note: ***, **, * indicates the significance level at 1%, 5% and 10%, respectively.

On the other hand, population growth is negatively related to forest area coverage in
both groups of countries (Table 5). That is, as the population increases, a change in land
use is generated in which the forest area is used for another type of human activity, such as
growing food, spaces for housing, resources (wood) for the construction of houses, among
others. These results coincide with those found by Ahmed, Shahbaz, Qasim and Long [12],
who mention that the increase in the population density demands more forest resources for
the construction of housing in the rural sector. Moreover, Tritsch and Le Tourneau [67] find
that one third of deforestation in the Amazon region of Brazil is associated with 1.5% of the
population. The findings described in this section provide sufficient information to verify
the fulfilment of hypotheses H1, H2 and H4 raised in Section 2. Additionally, it is observed
that the price of non-renewable energy is not significant, thus ruling out hypothesis H3.
Similarly, GDP2 is not significant—that is, non-compliance with the environmental Kuznets
curve is corroborated [39].

Following the long-term analysis, the short-term test between the model variables
is evaluated. Table 6 shows that the variation in renewable energy consumption, GDP,
GDP2, the non-renewable energy price, population growth are not related to the immediate
changes in the forest area in the short term in all three models.

Table 6. Short–run estimations.

HIC MIC LIC

Dependent
Variable: FAP Coefficient p-Value Coefficient p-Value Coefficient p-Value

REC −0.0000154 0.325 0.0000447 0.833 −0.0023418 0.141
GDP 0.0000431 0.217 −0.0002613 0.542 0.0010047 0.431
EP 9.88 × 10−7 0.630 −8.40 × 10−7 0.924 −0.0000574 0.251

POP −0.000094 0.488 0.0002623 0.942 −0.0006314 0.599

Subsequently, the error-correction term (ECT) of the Granger causality test is used to
detect the direction of long-term causality between the study variables. Table 7 shows that
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in the long term, renewable energy consumption, GDP, GDP2, the non-renewable energy
price and population growth causes the forest area in MIC and LIC.

Table 7. ECT Granger causality.

Direction of Granger Causality Long-Run

ECTt−1

REC, GDP, GDP2, EP, POP→ FAP
HIC 0.0014501
MIC −0.0044839 ***
LIC −0.0876817 ***

Note: *** indicates the significance level at 1%.

Additionally, Table 8 shows the diagnostic tests to validate the model fit [12,52,53,56]
for all groups of countries. The p-value greater than 0.05 of the Ramsey test confirms that
the models are correctly specified. The p-value greater than 0.05 rules out the presence of
serial correlation in the estimated models. The p-value of the heteroscedasticity test, which
is greater than 0.05, confirms that the models are homoscedastic. Moreover, the Jarque-Bera
normality test with a probability of 0.8204, 0.5734 and 0.7683, confirms that the residuals
are normally distributed. Finally, the coefficient of determination of 77.45, 83.87 and 84.89,
respectively, indicate the good fit of the model.

Table 8. ARDL model long-run diagnostic test.

Diagnostic Test HIC MIC LIC

p-Value p-Value p-Value

Model Specified 0.3456 0.4944 0.4982
Serial correlation 0.2678 0.4043 0.3256

Heteroscedasticity 0.4576 0.4076 0.5835
Normality 0.8204 0.5734 0.7683

R2 77.45 83.87 84.89

To conclude the study, following Brown et al. [64], the stability of the parameters is
evaluated. The cumulative sum (CUSUM) and cumulative sum of squares (CUSUMQ) are
observed in Figures 3–5 for all groups of countries. In all three models, the graph shows
that the lines are at the critical limit of 95%, which indicates the stability of the coefficients.
Diagnostic tests confirm that the ARDL model is reliable for defining policies at the linking
point of forest area, renewable energy consumption, GDP, GDP2, non-renewable energy
price and population growth.

Forests 2021, 12, x FOR PEER REVIEW  13 of 21 
 

 

Table 7. ECT Granger causality. 

Direction of Granger Causality 
Long‐Run 

ECT୲ିଵ 

REC, GDP, GDP2, EP, POP  →  FAP 

HIC  0.0014501 

MIC  −0.0044839 *** 

LIC  −0.0876817 *** 

Note: *** indicates the significance level at 1%. 

Additionally, Table 8 shows the diagnostic tests to validate the model fit [12,52,53,56] 

for all groups of countries. The p‐value greater than 0.05 of the Ramsey test confirms that 

the models are correctly specified. The p‐value greater than 0.05 rules out the presence of 

serial correlation in the estimated models. The p‐value of the heteroscedasticity test, which 

is greater than 0.05, confirms that the models are homoscedastic. Moreover, the Jarque‐

Bera normality test with a probability of 0.8204, 0.5734 and 0.7683, confirms that the resid‐

uals are normally distributed. Finally, the coefficient of determination of 77.45, 83.87 and 

84.89, respectively, indicate the good fit of the model. 

Table 8. ARDL model long‐run diagnostic test. 

Diagnostic Test 
HIC  MIC  LIC 

p‐value  p‐value  p‐value 

Model Specified  0.3456  0.4944  0.4982 

Serial correlation  0.2678  0.4043  0.3256 

Heteroscedasticity  0.4576  0.4076  0.5835 

Normality  0.8204  0.5734  0.7683 

R2  77.45  83.87  84.89 

To conclude the study, following Brown et al. [64], the stability of the parameters is 

evaluated. The cumulative sum (CUSUM) and cumulative sum of squares (CUSUMQ) are 

observed in Figures 3–5 for all groups of countries. In all three models, the graph shows 

that the lines are at the critical limit of 95%, which indicates the stability of the coefficients. 

Diagnostic tests confirm that the ARDL model is reliable for defining policies at the link‐

ing point of forest area, renewable energy consumption, GDP, GDP2, non‐renewable en‐

ergy price and population growth. 

 

-15

-10

-5

0

5

10

15

1995 2000 2005 2010 2015

CUSUM 5% Significance

Figure 3. Cont.



Forests 2021, 12, 255 14 of 21Forests 2021, 12, x FOR PEER REVIEW  14 of 21 
 

 

 

Figure 3. Graph of CUSUM and CUSUMSQ–HIC. Note: The straight lines represent critical 

bounds at a 5% significance level. 

 

 

Figure 4. Graph of CUSUM and CUSUMSQ–MIC. Note: The straight lines represent critical 

bounds at a 5% significance level. 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1995 2000 2005 2010 2015

CUSUM of Squares 5% Significance

-16

-12

-8

-4

0

4

8

12

16

1995 2000 2005 2010 2015

CUSUM 5% Significance

 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1995 2000 2005 2010 2015

CUSUM of Squares 5% Significance

Figure 3. Graph of CUSUM and CUSUMSQ–HIC. Note: The straight lines represent critical bounds
at a 5% significance level.

Forests 2021, 12, x FOR PEER REVIEW  14 of 21 
 

 

 

Figure 3. Graph of CUSUM and CUSUMSQ–HIC. Note: The straight lines represent critical 

bounds at a 5% significance level. 

 

 

Figure 4. Graph of CUSUM and CUSUMSQ–MIC. Note: The straight lines represent critical 

bounds at a 5% significance level. 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1995 2000 2005 2010 2015

CUSUM of Squares 5% Significance

-16

-12

-8

-4

0

4

8

12

16

1995 2000 2005 2010 2015

CUSUM 5% Significance

 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1995 2000 2005 2010 2015

CUSUM of Squares 5% Significance

Figure 4. Graph of CUSUM and CUSUMSQ–MIC. Note: The straight lines represent critical bounds
at a 5% significance level.



Forests 2021, 12, 255 15 of 21
Forests 2021, 12, x FOR PEER REVIEW  15 of 21 
 

 

 

 

Figure 5. Graph of CUSUM and CUSUMSQ–LIC. Note: The straight lines represent critical bounds 

at a 5% significance level. 

5. Conclusions and Policy Implications 

Deforestation is a global economic and environmental problem, so trying to under‐

stand its determinants is essential to mitigate its accelerated pace. This research examined 

the  long‐term equilibrium  relationship between  renewable energy  consumption, GDP, 

GDP2, renewable energy price, population growth and forest area in high‐, middle‐ and 

low‐income countries, using the ARDL econometric approach. 

The results confirm a long‐term equilibrium relationship between the mentioned var‐

iables for MIC and LIC. The ECT  indicates that the speed of forest cover adjustment  is 

slow when it is not at its equilibrium point, approximately it adjusts by 0.44% and 8.7%, 

respectively, within the first year. Furthermore, the consumption of renewable energy is 

positively related to the forest area. In contrast, population growth maintains a negative 

relationship with  the  forest area. The results obtained provide valuable  information  to 

confirm the fulfilment of the hypotheses of this investigation, H1, H2 and H4. On the con‐

trary, the H4 is not fulfilled. 

Those responsible for establishing public and environmental policy measures must 

consider that encouraging the consumption of renewable energy allows for an alternative 

to the use of forest products and services. In MIC and LIC, the boom in economic activity 

must take place in scenarios in which environmental sustainability and the care of forests 

-15

-10

-5

0

5

10

15

1995 2000 2005 2010 2015

CUSUM 5% Significance

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1995 2000 2005 2010 2015

CUSUM of Squares 5% Significance

Figure 5. Graph of CUSUM and CUSUMSQ–LIC. Note: The straight lines represent critical bounds
at a 5% significance level.

5. Conclusions and Policy Implications

Deforestation is a global economic and environmental problem, so trying to under-
stand its determinants is essential to mitigate its accelerated pace. This research examined
the long-term equilibrium relationship between renewable energy consumption, GDP,
GDP2, renewable energy price, population growth and forest area in high-, middle- and
low-income countries, using the ARDL econometric approach.

The results confirm a long-term equilibrium relationship between the mentioned
variables for MIC and LIC. The ECT indicates that the speed of forest cover adjustment is
slow when it is not at its equilibrium point, approximately it adjusts by 0.44% and 8.7%,
respectively, within the first year. Furthermore, the consumption of renewable energy is
positively related to the forest area. In contrast, population growth maintains a negative
relationship with the forest area. The results obtained provide valuable information to
confirm the fulfilment of the hypotheses of this investigation, H1, H2 and H4. On the
contrary, the H4 is not fulfilled.

Those responsible for establishing public and environmental policy measures must
consider that encouraging the consumption of renewable energy allows for an alternative
to the use of forest products and services. In MIC and LIC, the boom in economic activity
must take place in scenarios in which environmental sustainability and the care of forests
are on the horizon. Population growth must be associated with sustainable measures on
land use, thereby ensuring that deforestation does not increase.

One of the main limitations of this research is the lack of information on the price
elasticity of demand for agricultural products throughout the period analysed, to include
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them as an explanatory variable and evaluate how it is correlated with deforestation.
Likewise, the period of time examined is a function of the availability of the information.
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Appendix A

Table A1. Abbreviation.

Abbreviation Description

AIC Akaike information criteria
ARDL Autoregressive distributed lag
CDM Clean development mechanism
CGM General circulation models
CO2 Carbon dioxide
CUSUM Cumulative sum
CUSUMQ Cumulative sum of squares
ECT Error correction term
EP Non-renewable energy price
FAO Food and Agriculture Organisation of the United Nations
FAP Forest area
FMP Forest management plan
GDP Gross domestic product
GDP2 Square of the gross domestic product
GNI Gross national income
H1 Hypothesis 1
H2 Hypothesis 2
H3 Hypothesis 3
HIC High-income countries
LIC Low-income countries
LU Lower bound
MIC Middle-income countries
POP Population growth
REC Renewable energy consumption
REDD Reduce deforestation and forest degradation
UB Upper bound
UNDP United Nations Development Programme
UNEP United Nations Environment Programme
WEF World Economic Forum
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Table A2. Countries according to income group.

HIC MIC LIC

1 Andorra 1 Albania 1 Afghanistan
2 Antigua And Barbuda 2 Algeria 2 Burkina Faso
3 Aruba 3 American Samoa 3 Burundi
4 Australia 4 Angola 4 Central African Republic
5 Austria 5 Argentina 5 Chad
6 Bahamas, The 6 Armenia 6 Congo, Dem. Rep.
7 Bahrain 7 Azerbaijan 7 Eritrea
8 Barbados 8 Bangladesh 8 Ethiopia
9 Belgium 9 Belarus 9 Gambia, The
10 Bermuda 10 Belize 10 Guinea
11 British Virgin Islands 11 Benin 11 Guinea-Bissau
12 Brunei Darussalam 12 Bhutan 12 Haiti
13 Canada 13 Bolivia 13 Korea, Dem. People’s Rep.
14 Cayman Islands 14 Bosnia And Herzegovina 14 Liberia
15 Channel Islands 15 Botswana 15 Madagascar
16 Chile 16 Brazil 16 Malawi
17 Croatia 17 Bulgaria 17 Mali
18 Curacao 18 Cabo Verde 18 Mozambique
19 Cyprus 19 Cambodia 19 Niger
20 Czech Republic 20 Cameroon 20 Rwanda
21 Denmark 21 China 21 Sierra Leone
22 Estonia 22 Colombia 22 Somalia
23 Faroe Islands 23 Comoros 23 South Sudan
24 Finland 24 Congo, Rep. 24 Sudan
25 France 25 Costa Rica 25 Syrian Arab Republic
26 French Polynesia 26 Cote D’ivoire 26 Tajikistan
27 Germany 27 Cuba 27 Togo
28 Gibraltar 28 Djibouti 28 Uganda
29 Greece 29 Dominica 29 Yemen, Rep.
30 Greenland 30 Dominican Republic
31 Guam 31 Ecuador
32 Hong Kong Sar, China 32 Egypt, Arab Rep.
33 Hungary 33 El Salvador
34 Iceland 34 Equatorial Guinea
35 Ireland 35 Eswatini
36 Isle Of Man 36 Fiji
37 Israel 37 Gabon
38 Italy 38 Georgia
39 Japan 39 Ghana
40 Korea, Rep. 40 Grenada
41 Kuwait 41 Guatemala
42 Latvia 42 Guyana
43 Liechtenstein 43 Honduras
44 Lithuania 44 India
45 Luxembourg 45 Indonesia
46 Macao Sar, China 46 Iran, Islamic Rep.
47 Malta 47 Iraq
48 Mauritius 48 Jamaica
49 Monaco 49 Jordan
50 Nauru 50 Kazakhstan
51 Netherlands 51 Kenya
52 New Caledonia 52 Kiribati
53 New Zealand 53 Kosovo
54 Northern Mariana Islands 54 Kyrgyz Republic
55 Norway 55 Lao Pdr
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Table A2. Cont.

HIC MIC LIC

56 Oman 56 Lebanon
57 Palau 57 Lesotho
58 Panama 58 Libya
59 Poland 59 Malaysia
60 Portugal 60 Maldives
61 Puerto Rico 61 Marshall Islands
62 Qatar 62 Mauritania
63 Romania 63 Mexico
64 San Marino 64 Micronesia, Fed. Sts.
65 Saudi Arabia 65 Moldova
66 Seychelles 66 Mongolia
67 Singapore 67 Montenegro
68 Sint Maarten (Dutch Part) 68 Morocco
69 Slovak Republic 69 Myanmar
70 Slovenia 70 Namibia
71 Spain 71 Nepal
72 St. Kitts And Nevis 72 Nicaragua
73 St. Martin (French Part) 73 Nigeria
74 Sweden 74 North Macedonia
75 Switzerland 75 Pakistan
76 Trinidad And Tobago 76 Papua New Guinea
77 Turks And Caicos Islands 77 Paraguay
78 United Arab Emirates 78 Peru
79 United Kingdom 79 Philippines
80 United States 80 Russian Federation
81 Uruguay 81 Samoa
82 Virgin Islands (U.S.) 82 Sao Tome And Principe

83 Senegal
84 Serbia
85 Solomon Islands
86 South Africa
87 Sri Lanka
88 St. Lucia

89 St. Vincent And The
Grenadines

90 Suriname
91 Tanzania
92 Thailand
93 Timor-Leste
94 Tonga
95 Tunisia
96 Turkey
97 Turkmenistan
98 Tuvalu
99 Ukraine
100 Uzbekistan
101 Vanuatu
102 Venezuela, Rb
103 Vietnam
104 West Bank And Gaza
105 Zambia
106 Zimbabwe

Source: According to the world bank data [48].
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