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Abstract: Research Highlights: genetic diversity in populations were compared among related shrub
species with different reproductive systems. Background and Objectives: Lindera species are dioecious
trees or shrubs that produce seeds by mating of males and females. To evaluate the importance
of genetic diversity for the persistence of natural populations, we compared genetic information
among four Lindera species in Japan. Three are dioecious shrubs (Lindera praecox, Lindera umbellata,
and Lindera obtusiloba) that produce seeds by sexual reproduction. The remaining species, Lindera
glauca, reproduces by apomixis; only female plants are found in Japan. Materials and Methods: all
four species were sampled across a wide geographic area, from Tohoku to Kyushu, Japan. Single
nucleotide polymorphisms (SNPs) were detected by multiplexed ISSR genotyping by sequencing
(MIG-seq) and the resulting genetic diversity parameters were compared among populations. Results:
in all sexually reproducing species, the values of observed heterozygosity were close to the expected
ones and the inbreeding coefficients were nearly 0. These results were supposed to be caused by their
obligate outcrossing. The genetic difference increased, in ascending order, between a mother plant
and its seeds, within populations, and across geographic space. We observed a substantial geographic
component in the genetic structure of these species. For L. glauca, the genetic difference between a
mother and its seeds, within populations, and across space were not significantly different from what
would be expected from PCR errors. Genetic diversity within and among populations of L. glauca
was extremely low. Conclusions: apomixis has the advantage of being able to found populations
from a single individual, without mating, which may outweigh the disadvantages associated with
the extremely low genetic diversity of L. glauca. This may explain why this species is so widely
distributed in Japan. Provided that the current genotypes remain suited to environmental conditions,
L. glauca may not be constrained by its limited genetic diversity.

Keywords: apomixis; clone; dioecy; geographic scale; MIG-seq; shrub; SNP

1. Introduction

Genetic diversity allows for environmental adaptation [1,2]. In plants, genetic diversity
depends in part on the reproductive system of a given species; outcrossing species tend to
be more genetically diverse [3]. Genetic diversity has been found to be higher in dioecious
species, which are obligate outcrossers, compared to related cosexual species [4]. However,
dioecious plants may have two reproductive disadvantages: pollination limitation because
two individuals of opposite sexes are required to reproduce sexually and low colonization
ability, because only half of the population contributes to seed dispersal. The seed-shadow
handicap, related to reduced dispersal around female plants, typically results in a clumped
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distribution at the local scale [5], and potentially also at greater geographic scales. These
advantages and disadvantages are reversed in apomictic plants.

Apomixis, the asexual formation of seeds, occurs in over 400 angiosperm genera [6].
Apomixis is considered to be advantageous for population growth and expansion, be-
cause populations can be founded by a single individual and there are no pollination
limitations [7]. However, because apomictic seeds are produced without meiosis or fer-
tilization, each seed is a genetic replica of the maternal plant unless somatic mutation
occurs. Therefore, apomictic plants may have reduced disease resistance and adaptability
to environmental changes.

Lindera species (Lauraceae) are dioecious trees or shrubs that produce seeds by mating
of males and females. There are over 100 species of Lindera in the world, seven of which
are native to Japan [8]. Of Japanese Lindera species, Lindera glauca Bl. occurs in Japan as
strictly female plants that reproduce by apomixis. There are remaining questions as to how
populations of this species are maintained in Japan. If genetic diversity is exceptionally
low, this may support the commonly accepted theory that apomixis is advantageous in
the short term due to enhanced colonization ability. However, if L. glauca has a similar
level of genetic diversity to sexually reproducing species, this would suggest that the
trade-off for enhanced colonization is too high, and that there is high pressure to maintain
genetic diversity even in apomictic species. Previous research on Taraxacum officinale [9]
and Miconia albicans [7] suggested that different genotypes were maintained in apomictic
populations through somatic mutation or meiosis.

The purpose of this study was to evaluate the importance of genetic diversity for the
persistence of wild plant populations. For the purpose, we compared the genetic diversity
and geographic genetic structure of L. glauca to three sexually reproducing congeners,
Lindera praecox Bl., Lindera umbellata Thunb., and Lindera obtusiloba Bl., to determine the
extent of variation in terms of genotype coincidence between mother plants and seeds,
within populations and across geographic space.

2. Materials and Methods
2.1. Focal Species

All four species are dioecious, deciduous forest understory shrubs. Lindera praecox
is endemic to Japan, while the remaining three species are found on the Asian Continent
and the Japanese Archipelago. Pliocene fossils of L. praecox, L. umbellata, and L. obtusiloba
have been found in Japan [10], and Pleistocene fossils of L. glauca have been found [11].
The species flower in spring, from late February to early May, with each species flowering
for 2–4 weeks [8,12]. The flowers, which are borne in pseudo-umbel-shaped inflorescences,
are small (4–9 mm in diameter), dish-shaped, yellow or green in color, and unisexual, with
sterile rudiments of the other sex [12].

In the past, the seeds of L. praecox were used to press oil for lanterns [13]. Lindera um-
bellata extracts had the effects of prevention of onset and progression of nephropathy [14].
Lindera obtusiloba has been widely used in a traditional medicine as the anti-allergic inflam-
matory effect [15]. The fruits of L. glauca contain some aromatic essential oils, alkaloids,
terpenoids, and flavonoids, which are widely employed in the essence, medicine, and
chemical industries [16].

The sex ratio of populations of L. praecox, L. umbellata, and L. obtusiloba is approximately
1:1 in forests in western Japan [12]. Both male and female flowers attract insect pollinators,
primarily Diptera and Coleoptera [8]. Regarding L. glauca, only female plants are found in
Japan, but both males and females are found on the Asian Continent [17,18]. The sex ratio
of L. glauca in the wild in mainland China is estimated to be predominantly female [19].
Dupont [17] conducted bagging experiments to clarify whether or not pollination was
necessary for seed set of Lindera species. She covered flower buds on branches of female
plants of L. umbellata, L. obtusiloba, and L. glauca with nylon meshes to keep pollen out.
The results for L. umbellata and L. obtusiloba showed that pollination was essential for their
seed set. On the other hand, females of L. glauca produced seeds without pollination
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or male flowers, indicating apomixis. For some woody plants, clonal growth arises by
wide-ranging roots that produce new shoots, termed stolon. However, the four Lindera
species do not reproduce laterally by stolons. Hence, stems derived from an individual can
easily identified.

2.2. Field Collections and DNA Extraction

We collected leaves from 105 individuals of L. glauca in natural vegetations at 29
locations, representing the entirety of its distribution in Japan (Supplementary Material
Table S1). We tried to collect up to five individuals from one location, but in some loca-
tions, we could only find one. As a result, leaves were taken from one to five individuals
per location. From six locations among the 29 locations, i.e., Takaragaike, Kasugayama,
Myokensan, Shigisan, Okayama-shi, and Umamiyama, five seeds from each selected ma-
ture individual were taken (Supplementary Material Table S2). For L. praecox, we collected
leaves from 45 individuals (one to five individuals per location) in natural vegetations at
11 locations (Table S1). From two locations, among the 11 locations, i.e., Mitarai Valley
and Tsuno, six to twelve seeds were collected from each of six mature individuals (Table
S2). For L. umbellata, we collected leaves from 27 individuals at six locations on Honshu
Island (two–five individuals per location) (Table S1). From a mature individual among
six locations, i.e., Mitarai Valley, five seeds were collected (Table S2). For L. obtusiloba, we
collected leaves from 39 individuals at eight locations on Honshu, Shikoku, and Tsushima
Islands (four–five individuals per location) (Table S1). From two individuals at Mitarai
Valley, 11 and 12 seeds were collected (Table S2). We recorded the geographic location,
i.e., latitude and longitude, and diameter at breast height (DBH; 1.3 m) of each sampled
individual (Table S1).

DNA was extracted from leaves and seed cotyledons for each species using a DNA
extraction kit (DNeasy Plant Mini Kit; QIAGEN, Tokyo, Japan) or a DNA extraction buffer
(UniversAll™ Extraction Buffer II; Yeastern Biotech, New Taipei City, Taiwan).

2.3. Multiplexed ISSR Genotyping by Sequencing (MIG-Seq) Analysis

DNA sequences were subjected to MIG-seq analysis [20] and single nucleotide poly-
morphisms (SNPs) were identified. In MIG-seq analysis, the region between single se-
quence repeats (SSRs), i.e., the inter-SSR (ISSR), is amplified by polymerase chain reaction
(PCR). Approximately 1.5 ng/µL of DNA was used for the first PCR, as template DNA.
The concentration of the DNA solution was measured using a QuantusTM Fluorometer
(Promega, Madison, WI, USA), and the concentration of the template DNA solution was
adjusted by adding sterile water.

For the first PCR, a mixture of primers was prepared from eight types of forward
and reverse primers intended to amplify the ISSR region. The fragments were amplified
with a Multiplex PCR Assay Kit Ver. 2 (TaKaRa Bio Inc., Shiga, Japan) using 7 µL reaction
volumes containing 1.0 µL of template DNA, 1.4 µL of PCR primers (mix of primers, each
at a concentration of 2.0 µM), 3.5 µL of 2 × Multiplex PCR Buffer, 0.035 µL of Multiplex
PCR Enzyme Mix and 1.065 µL of water. The PCR cycling conditions used for the Verti
96-Well Thermal Cycler (Applied Biosystems, Foster City, CA, USA) were as follows: 94 ◦C
for 1 min followed by 27 cycles of 94 ◦C for 30 s, 38 ◦C for 1 min, 72 ◦C for 1 min, and
finally 72 ◦C for 10 min.

The second PCR used the products of the first PCR diluted to a concentration of 1:50
by adding sterile water. The second PCR was performed to add complementary sequences
as an index to both ends of the first PCR products to identify individuals. The fragments
were amplified with PrimeSTAR GXL DNA polymerase (TaKaRa Bio Inc., Shiga, Japan)
using 12 µL reaction volumes containing 2.5 µL of diluted first PCR products as template
DNA, 2.4 µL of second PCR primers (mix of primers, each at a concentration of 2.0 µM),
2.4 µL of 5 × PrimeSTAR Buffer, 0.96 µL of dNTP mixture, 0.24 µL of PrimeSTAR GXL
polymerase, and 3.5 µL of water. The PCR cycling conditions were as follows: 12 cycles
of 98 ◦C for 10 s, 54 ◦C for 15 s, and 68 ◦C for 1 min. After purification of the second
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PCR products with AMPure XP magnetic beads, only 300–800 bp fragments with a size
suitable for sequencing were selected by the Blue Pippin DNA Size Selection System (Sage
Science, Beverly, MA, USA). Tape Station 4200 (Agilent Technologies, Santa Clara, CA,
USA) and Qubit fluorometer (Life Technology, Carlsbad, CA, USA) were used to measure
the frequency distribution of fragment lengths and the amount of fragments. Prepared
to a concentration of 12 pM, the DNA library was used for sequencing on an Illumina
MiSeq sequencing platform using a MiSeq Reagent Kit v3 (Illumina, San Diego, CA, USA).
The sequencing results were input into Stacks v.1.47 [21] to identify loci and detect SNPs.
Following Catchen et al. [22], we used “ustacks” for building loci, “cstacks” for creating
the loci catalogue for all samples, and “sstacks” for checking against the catalog. Finally,
the “population” module was used to estimate a “population genetics statistic” from a
population of individual samples.

2.4. Data Analyses

Only loci with more than 50% of the population and less than 60% heterozygosity
were extracted. For each species, the number of alleles (Na), number of effective alleles
(Ne), observed heterozygosity (Ho), expected heterozygosity (He), and an inbreeding
coefficient (FIS) were estimated using GenAlEx v.6.5 [23]. Genotypes, including those
from seed samples, were compared to identify clones and to assess genotype diversity for
each species.

We calculated the proportion of different alleles on each SNP loci as follows: if
individuals shared an identical genotype (e.g., A/T and A/T), the proportion of different
alleles was 0; if one allele differed between individuals (e.g., A/T and A/G), it was 0.5;
and if the genotypes differed completely (e.g., A/T and G/C), it was 1. Once all loci
had been assessed, the mean proportion of different alleles was defined as the genetic
difference between individuals. To investigate the extent to which genetic variation occurs
in apomictic seed production relative to sexual reproduction, the genetic difference between
mother plants and their seeds was determined. We then determined the genetic difference
between grown-up individuals to assess genotype diversity within a population by pairings
limited to individuals growing in the same location. For the assessment the genotype
diversity across the entire study area, the genetic difference was calculated for all pairs of
grown-up individuals after combining all individuals sampled from all locations into a
single pool. We estimated the possibility that pseudo-variant loci occurred originating from
PCR errors using the genotype data from pairs of replicates of the same individual. We
performed PCR amplification and genotyping twice for seven individuals of L. glauca and
six individuals of L. praecox, L. umbellata, and L. obtusiloba. We defined the pseudo-variant
rate as the genetic difference between replicates of the same individual.

To examine the distribution of genetic variation within and among studied locations
and to explore genetic relationships among individuals and geographic genetic structure,
pairwise individual-by-individual genetic distance matrixes were calculated for codom-
inant data [24] using GenAlEx v.6.5. To deal with missing data, we selected the option
"interpolate missing". Based on the matrixes, we conducted analysis of molecular variance
(AMOVA) using the R package “pegas” v.0.14 [25] and a principal coordinate analysis
(PCoA) to understand the genetic relationships among individuals and among locations
in detail using the R package “vegan” v.2.5 [26]. To evaluate the relationship between
geographic distance and genetic divergence, we calculated a fixation index (FST) value
between populations, and assessed the correlation between FST and the geographic distance
between populations using the R package “ape” v.5.4 [27].

3. Results
3.1. Genetic Diversity Parameters

For L. glauca, we obtained 246 SNP loci from 147 samples, including 105 individuals,
replicates of seven individuals and 35 seeds, taken from 29 populations. The mean Na and
Ne were 0.903 and 0.894, respectively. He varied from 0.000 to 0.018, whereas Ho varied
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from 0.000 to 0.027. FIS was negative excluding Hagi (HG) (range: −0.760 to 0.429; mean =
−0.441) (Table 1).

Table 1. Genetic diversity parameters of the 29 populations of Lindera glauca (Lauraceae) in Japan
based on 246 single nucleotide polymorphism (SNP) loci. Letters in parentheses are abbreviations of
sampling location.

Sampling Location N Na Ne He Ho FIS

Sendai, Miyagi (SD) 1 0.687 0.687 0.004 0.008 -
Hachioji, Tokyo (HT) 2 0.796 0.792 0.012 0.021 −0.760

Sagamihara, Kanagawa (SH) 2 0.936 0.927 0.012 0.019 −0.538
Kawasaki, Kanagawa (KW) 3 0.909 0.896 0.01 0.014 −0.401

Nagano, Nagano (NG) 5 1.023 1.005 0.014 0.021 −0.504
Kasugai, Aichi (I) 5 1.023 1.009 0.012 0.018 −0.461

Aioiyama, Aichi (A) 5 1.034 1.021 0.014 0.02 −0.381
Hino, Shiga (HN) 3 0.002 0.003 0.01 0.018 −0.749

Takaragaike, Kyoto (T) 5 1.023 1.017 0.013 0.018 −0.328
Kasugayama, Nara (K) 5 1.019 1.008 0.011 0.018 −0.598
Myokensan, Osaka (M) 5 1.038 1.029 0.018 0.027 −0.499

Shigisan, Osaka (S) 5 1.026 1.020 0.011 0.016 −0.434
Takedao, Hyogo (TK) 4 0.996 0.981 0.014 0.02 −0.496

Okayamashi, Okayama (O) 5 1.000 0.995 0.008 0.012 −0.578
Hiroshimashi, Hiroshima (H) 4 0.909 0.900 0.01 0.016 −0.665

Masuda, Shimane (MS) 5 1.038 1.022 0.016 0.019 −0.222
Tsuwano, Shimane (TW) 2 0.977 0.972 0.006 0.009 −0.527

Izumo, Shimane (IZ) 5 1.038 1.023 0.013 0.017 −0.263
Yamaguchishi, Yamaguchi (YG) 5 1.023 1.012 0.007 0.01 −0.360

Hagi, Yamaguchi (HG) 2 0.962 0.961 0.003 0.002 0.429
Bizan, Tokushima (B) 3 1.019 1.015 0.012 0.019 −0.565

Iinoyama, Kagawa (IN) 5 0.985 0.961 0.014 0.019 −0.391
Shiunzan, Kagawa (SU) 5 1.049 1.021 0.018 0.024 −0.306

Tsuno, Kochi (TN) 3 0.887 0.881 0.009 0.015 −0.618
Sameura, Kochi (SM) 5 1.038 1.018 0.011 0.016 −0.377

Tsushima, Nagasaki (TS) 1 0.596 0.596 0.008 0.015 -
Umamiyama, Fukuoka (UM) 3 0.898 0.886 0.011 0.016 −0.435

Sasga, Saga (SA) 1 0.811 0.811 0.008 0.015 -
Sannotake, Kumamoto (SN) 1 0.457 0.457 0 0 -

Regional mean 0.903 0.894 0.011 0.016 −0.441
N, number of individuals; Na, number of observed alleles; Ne, effective number of alleles; He, expected heterozy-
gosity; Ho, observed heterozygosity; FIS: inbreeding coefficient.

For L. praecox, we obtained 355 SNP loci from 114 samples, including 45 individuals,
replicates of six individuals and 63 seeds, taken from 11 populations. The mean Na and Ne
were 1.025 and 0.968, respectively. He ranged from 0.008 to 0.075, whereas Ho ranged from
0.016 to 0.070. FIS was positive in all populations excluding Hiroshima (H) (range: −0.223
to 0.151; mean = 0.057) (Table 2).

For L. umbellata, we obtained 280 SNP loci from 38 samples, including 27 individuals,
replicates of six individuals and five seeds, taken from six populations. The mean Na
and Ne were 1.210 and 1.115, respectively. He ranged from 0.056 to 0.096, whereas Ho
ranged from 0.075 to 0.114. FIS was negative in all populations excluding Hino (HN) and
Myokensan (M) (range: −0.356 to 0.020; mean = −0.142) (Table 3).
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Table 2. Genetic diversity parameters of the 11 populations of Lindera praecox (Lauraceae) in Japan
based on 355 SNP loci. Letters in parentheses are abbreviations of sampling location.

Sampling Location N Na Ne He Ho FIS

Sendai, Miyagi (SD) 1 0.402 0.402 0.008 0.016 -
Tsukubasan, Ibaraki (TB) 5 1.136 1.064 0.063 0.056 0.108

Hachioji, Tokyo (HT) 1 0.786 0.786 0.022 0.043 -
Nagano, Nagano (NG) 5 1.125 1.059 0.059 0.054 0.094

Hino, Shiga (HN) 5 1.146 1.073 0.070 0.070 0.010
Mitarai, Nara (MT) 5 1.164 1.083 0.061 0.057 0.072

Kongosan, Osaka (KG) 5 1.195 1.114 0.075 0.068 0.094
Takedao, Hyogo (TK) 5 1.160 1.072 0.062 0.052 0.151

Hiroshimashi, Hiroshima (H) 3 0.996 0.960 0.043 0.052 −0.223
Tsuno, Kochi (TN) 5 1.094 1.031 0.055 0.047 0.140

Umamiyama, Fukuoka (UM) 5 1.070 1.009 0.054 0.050 0.071
Regional mean 1.025 0.968 0.052 0.051 0.057

N, number of individuals; Na, number of observed alleles; Ne, effective number of alleles; He, expected heterozy-
gosity; Ho, observed heterozygosity; FIS: inbreeding coefficient.

Table 3. Genetic diversity parameters of the six populations of Lindera umbellata (Lauraceae) in Japan
based on 280 SNP loci. Letters in parentheses are abbreviations of sampling location.

Sampling Location N Na Ne He Ho FIS

Sendai, Miyagi (SD) 5 1.120 1.102 0.071 0.089 −0.252
Tsukubasan, Ibaraki (TB) 5 1.234 1.142 0.096 0.114 −0.183

Hino, Shiga (HN) 5 1.268 1.133 0.090 0.088 0.020
Mitarai, Nara (MT) 5 1.204 1.109 0.080 0.087 −0.089

Myokensan, Osaka (M) 5 1.257 1.138 0.084 0.084 0.006
Takedao, Hyogo (TK) 2 1.102 1.069 0.056 0.075 −0.356

Regional mean 1.210 1.115 0.079 0.089 −0.142
N, number of individuals; Na, number of observed alleles; Ne, effective number of alleles; He, expected heterozy-
gosity; Ho, observed heterozygosity; FIS: inbreeding coefficient.

For L. obtusiloba, 688 SNP loci were obtained from 68 samples, including 39 individuals,
replicates of six individuals and 23 seeds, taken from eight populations. The mean Na and
Ne were 1.227 and 1.124, respectively. He ranged from 0.071 to 0.097, whereas Ho ranged
from 0.073 to 0.084. FIS was close to zero in all population (range: −0.087 to 0.149; mean =
0.022) (Table 4).

Table 4. Genetic diversity parameters of the eight populations of Lindera obtusiloba (Lauraceae) in
Japan based on 688 SNP loci. Letters in parentheses are abbreviations of sampling location.

Sampling Location N Na Ne He Ho FIS

Nagano, Nagano (NG) 5 1.268 1.14 0.097 0.083 0.149
Hino, Shiga (HN) 5 1.233 1.133 0.085 0.083 0.027

Mitarai, Nara (MT) 5 1.203 1.108 0.078 0.084 −0.078
Myokensan, Osaka (M) 5 1.248 1.134 0.084 0.073 0.133
Kongosan, Osaka (KG) 5 1.264 1.145 0.093 0.084 0.095
Takedao, Hyogo (TK) 5 1.249 1.138 0.085 0.084 0.008

Iinoyama, Kagawa (IN) 4 1.177 1.103 0.072 0.079 −0.087
Tsushima, Nagasaki (TS) 5 1.172 1.095 0.071 0.076 −0.070

Regional mean 1.227 1.124 0.083 0.081 0.022
N, number of individuals; Na, number of observed alleles; Ne, effective number of alleles; He, expected heterozy-
gosity; Ho, observed heterozygosity; FIS: inbreeding coefficient.

3.2. Clone Identification and Genotype Diversity

For L. praecox, L. umbellata, and L. obtusiloba, pseudo-variant rates ranged from 0.005 to
0.013, 0.005−0.012, and 0.004−0.070, respectively (Figure 1a–c). Pseudo-variant rates in the
seven pairs of replicated L. glauca samples ranged from 0.004 to 0.017 (Figure 1d).
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by parings individuals growing in the same location, and ES; the genetic difference calculated for all pairs of grown-up
individuals after combining all individuals sampled from all locations into a single pool.

For L. praecox, L. umbellata, and L. obtusiloba, the genetic difference between a mother
plant and its seeds, the genetic difference within populations, and the genetic difference
across the entire study area were significantly greater than would be expected from pseudo-
variant rate (p < 0.05; Kruskal–Wallis test and Wilcoxon test with sequential Bonferroni
correction; Figure 1). Additionally, the genetic differences were significantly different
among these three scales (p < 0.05; Wilcoxon test with sequential Bonferroni correction;
Figure 1a–c). For L. glauca, the genetic difference at these three scales was not significantly
different than what would be expected from pseudo-variant rates (p > 0.05, Kruskal–
Wallis test and Wilcoxon test with sequential Bonferroni correction; Figure 1d). However,
the genetic difference among the three scales was significantly different from each other
(p < 0.05; Wilcoxon test with sequential Bonferroni correction; Figure 1d).

3.3. Genetic Structure

Results of AMOVA indicated that genetic variation within populations was greater
than among populations for L. praecox, at 56% and 44%, respectively (Table 5). For L. umbel-
lata, genetic variation was greater within populations (53%), followed by among population
(47%). Genetic variation among populations of L. obtusiloba (76%) was substantially larger
than within populations (24%). For L. glauca, geographic differences contributed to only
9% of the genetic variation within this species.
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Table 5. Analysis of Molecular Variance (AMOVA) results for the studied four Lindera populations.

Source of Variation df Sum of Squares Variance Components %

(A) L. praecox
Among population 10 427,635.500 8034.000 44
Within population 34 352,842.900 10,378.000 56

Total 44 780,478.400 18,412.000
(B) L. umbellata

Among population 5 57,977.820 2084.700 47
Within population 21 48,930.350 2330.000 53

Total 26 106,908.170 4414.700
(C) L. obtusiloba

Among population 7 477,950.100 9319.100 76
Within population 31 709,215.400 2877.900 24

Total 38 1,187,165.500 12,197.000
(D) L. glauca

Among population 28 1005.172 2.706 9
Within population 76 2007.043 26.066 91

Total 104 3012.215 28.772

Pairwise Mantel tests for L. praecox (Figure 2a), FST and distance were positively
correlated (p = 0.025). For L. umbellata (Figure 2b) indicated no statistically significant
correlation between FST and the geographic distance between populations (p = 0.897).
Lindera obtusiloba and L. glauca (Figure 2c,d) also showed FST and distance were positively
correlated (p = 0.023 and 0.010, respectively).
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The PCoA of L. praecox and L. obtusiloba appears to have genetically distinct variation
within their range from east to west (Figure 3a,c), and geographic genetic differentiation of
L. umbellata was clear but its pattern was complex (Figure 3b). The PCoA plot of L. glauca
showed no clear differentiation in genetic composition throughout its geographic range in
Japan (Figure 3d).
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4. Discussion

A key advantage of MIG-seq is that it can provide putative neutral loci [28], which are
useful for analyses of genetic structure. Therefore, this approach has been used recently in
population genetics (e.g., [29,30]).

Obligate outcrossing species is expected to have the values of Ho close to those of
He as reported by Ye et al. [31] for L. obtusiloba. For the genetic diversity of the dioecious
tree species Phoebe zhennan (Lauraceae), Ho was higher than He (Ho = 0.243, He = 0.145),
indicating low inbreeding [32]. Our results are similar to those of previous studies. This may
be an advantage of dioecy, which avoids inbreeding. Our study results also suggest that
dioecious plants have greater heterozygosity than cosexual plants, based on a comparison
of our FIS values with previously published estimates based on the genome-wide SNPs
data (Tables 2–4), 0.035–0.091 (Rhododendron japonoheptamerum) [29]; 0.05–0.19 (Platycladus
orientalis) [33]; 0.05 (Thuja koraiensis) [33]; 0.051–0.754 (Tectona grandis) [30]). However, the
level of heterozygosity is influenced not only by reproductive system of the focal species,
but also other factors, e.g., population size [34], age of individuals [35]. Thus, careful
verification is needed.

The all-female populations of L. glauca assessed here showed higher heterozygosity
than the other three Lindera species, on average, and exhibited negative FIS values at all
sites except for one site. These results are similar to a previous study that employed nuclear
microsatellite analyses [18]. Zhu et al. [18] suggested that seven Japanese populations of
L. glauca exhibited greater heterozygosity than what was observed across a large range of
populations in China. For an apomictic lineage, the high and well-preserved heterozygosity
in L. glauca populations in Japan may attribute to asexual (apomictic) reproduction as
reported for Prunus avium [36], due to the absence of sexual recombination and/or the lack
of accumulation of somatic mutations over time.

We found evidence of genetic differentiation among populations of L. praecox, L. um-
bellata, and L. obtusiloba as has often been reported for other plant species [37–39]. First,
AMOVA results indicated that regional variation explained a large proportion of the total
variation (Table 5). Second, the PCoA results indicated geographic divisions in popu-
lations. Finally, we found that populations that were further apart in space were more
genetically different in L. praecox and L. obtusiloba (Figure 2a,c). Collectively, these results
reflect geographically limited gene flow, a varied history of population expansion, or strong
adaptation to local environmental conditions.

By contrast, populations of L. glauca had substantially lower genetic variation than
these three species. Even in apomictic plants, genetic diversity can occur in the process of
seed production by incomplete meiosis and/or recombination [40]. In the case of L. glauca
in Japan, the comparison of multi-level genetic distance and PCR error rates indicated no
significant differences for any level, which suggests that seeds were exact copies of their
mothers, as the genetic difference between mothers and seeds were within the range of
PCR errors (Figure 1d). A seed production process that does not produce mutations would
lead genetically uniform populations in Japan.

Here, we compare our own results in Japan with available results from China. Lindera
obtusiloba produces seeds by sexual mating both in China and Japan. Genetically distinct
populations in different regions were observed in China [31]. Our results are similar to
those of the previous study. On the other hand, the situation is different for L. glauca. Both
females and males of Lindera glauca exist in China, and they reproduce sexually. A variety
of genotypes existed in different regions and geographic genetic structure was observed in
China [18]. While in Japan, seed production by apomixis resulted in an extremely uniform
genetic structure. These results of comparisons suggest that reproductive system has a
strong influence on genetic structure of plant populations.

We were surprised that virtually no genetic variation was observed in L. glauca across
its entire geographic range in Japan. The genetic difference between individuals in the
whole range of Japan was not significantly different from PCR errors (Figure 1d). In
addition, we found significant but weak correlation between genetic and geographic
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distance (Figure 2d), and the PCoA results indicated unclear geographic distinctions
among populations (Figure 3d). These are contrast to the previous studies which detected
a clear geographic genetic structure of apomictic plants, Miconia albicans [7] and Taraxacum
officinale [9]. These results suggested that a population of L. glauca in Japan might be a
huge clone. Bricker et al. [41] reported that a dioecious aquatic plant, Thalassia testudinum,
formed a “mega-clone” that spread over nearly 50 km by vegetative fragments. The
European populations of Gagea spathacea (Liliaceae) were dominated by a single “mega-
clone” spreading all over Central Europe [42]. Similarly, the L. glauca population in Japan
could also be considered as a “mega-clone” that spread out over at least 1100 km in distance
from Sendai to Kumamoto. There are two possible reasons for the formation of genetically
uniform populations. First, Japanese populations of L. glauca might be founded by one
asexually reproducing female as suggested by Dupont [17]. Second, population of L. glauca
in Japan may still be young on the geological time scale. The population of L. glauca
has been in Japan since prehistoric times because Pleistocene fossils of L. glauca have
been found [11]. Genetic diversification via accumulated mutations has not yet occurred,
although it may occur in the future. However, there were significant dissimilarities in the
degree of the genetic difference between a mother plant and its seeds, between individuals
in a population, and between individuals in the entire study area (Figure 1d). The result
suggested that slight mutations may have occurred and accumulated.

Although L. glauca has been present in Japan since the Pleistocene (0.01–2.58 million
years ago (Ma)) [11], the genetic diversity of this species has remained at a fairly low
level until now. According to Xiong et al. [19], wild L. glauca in mainland China have a
highly skewed sex ratio with females predominating, and their genetic diversity is thought
to be maintained by sexual reproduction with a small number of male plants. It is not
clear whether Japanese L. glauca can cross with the Chinese males. However, if they can,
immigration of males may increase genetic diversity as well as the Chinese L. glauca.

Finally, the loss of genetic diversity relates to an increase in extinction risk [43]. Despite
this, populations with extremely low genetic diversity have been reported worldwide [42,44].
In the apomictic L. glauca, the advantages of population establishment or expansion by a single
individual, without mating, may outweigh the disadvantages associated with the extremely
low genetic diversity. If environmental conditions remain suitable for the extant genotype,
genetic diversity may not be required to maintain these populations, at least in the short term.

5. Conclusions

The three species that produce seeds by sexual reproduction, Lindera praecox, L. umbel-
lata, and L. obtusiloba had lower values for inbreeding coefficient, indicating that there is
indeed an effect of dioecy. Genetic variations were also found both at the local scale and the
geographic scale. It is possible that they have higher genetic diversity than cosexual plants,
and the effect of inbreeding depression may be suppressed. On the other hand, in L. glauca,
the advantage of being able to found populations from single individual, without mating,
may outweigh the disadvantages associated with extremely low genetic diversity. This
may explain why this species is so widely distributed in Japan. Provided that the current
genotypes remain suited to environmental conditions, L. glauca may not be constrained by
its limited genetic diversity.
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