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Abstract: Increasing numbers of explanatory variables tend to result in information redundancy and
“dimensional disaster” in the quantitative remote sensing of forest aboveground biomass (AGB).
Feature selection of model factors is an effective method for improving the accuracy of AGB estimates.
Machine learning algorithms are also widely used in AGB estimation, although little research has
addressed the use of the categorical boosting algorithm (CatBoost) for AGB estimation. Both feature
selection and regression for AGB estimation models are typically performed with the same machine
learning algorithm, but there is no evidence to suggest that this is the best method. Therefore, the
present study focuses on evaluating the performance of the CatBoost algorithm for AGB estimation
and comparing the performance of different combinations of feature selection methods and machine
learning algorithms. AGB estimation models of four forest types were developed based on Landsat
OLI data using three feature selection methods (recursive feature elimination (RFE), variable selection
using random forests (VSURF), and least absolute shrinkage and selection operator (LASSO)) and
three machine learning algorithms (random forest regression (RFR), extreme gradient boosting
(XGBoost), and categorical boosting (CatBoost)). Feature selection had a significant influence on AGB
estimation. RFE preserved the most informative features for AGB estimation and was superior to
VSURF and LASSO. In addition, CatBoost improved the accuracy of the AGB estimation models
compared with RFR and XGBoost. AGB estimation models using RFE for feature selection and
CatBoost as the regression algorithm achieved the highest accuracy, with root mean square errors
(RMSEs) of 26.54 Mg/ha for coniferous forest, 24.67 Mg/ha for broad-leaved forest, 22.62 Mg/ha
for mixed forests, and 25.77 Mg/ha for all forests. The combination of RFE and CatBoost had better
performance than the VSURF–RFR combination in which random forests were used for both feature
selection and regression, indicating that feature selection and regression performed by a single
machine learning algorithm may not always ensure optimal AGB estimation. It is promising to
extending the application of new machine learning algorithms and feature selection methods to
improve the accuracy of AGB estimates.

Keywords: feature selection; machine learning algorithms; ensemble learning; CatBoost; XGBoost;
forest type

1. Introduction

Forest aboveground biomass (AGB) is the material basis with which forest ecosystems
perform their ecological functions and is an important indicator of forest carbon sequestra-
tion capacity [1]. The accurate estimation of AGB could provide a significant insight in the
study of global carbon cycling and climate changes [2].

Traditional methods for AGB measurement, primarily field surveys, have a number of
disadvantages: high labor intensity, high costs of manpower and material resources, long
survey periods, and disturbance of the ecological environment [3]. As a result of its exten-
sive coverage and superior repeatability, remote sensing technology is increasingly used
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for AGB estimation at regional scales. Various methods have been investigated to improve
the accuracy of biomass estimation by remote sensing, including (1) larger samples [4],
(2) combinations of multi-source remote sensing data [5], (3) feature selection [6,7], and
(4) modeling algorithms. However, the high cost of field investigation limits the acquisition
of larger sample datasets [8,9]. Remote sensing data such as hyperspectral and airborne
lidar data are difficult to obtain due to high costs and regional limitations [10,11]. Previous
studies have shown that a saturation phenomenon occurs in AGB estimation when using
band reflectance or vegetation indices derived from multispectral data [12–15]. However,
multispectral data, such as Landsat OLI data, are still widely used in AGB estimation at
the regional scale and have the advantages of low cost and accessibility [14,16,17].

Feature selection methods are often used for predictive models that are based on
high dimensional data [18]. A variety of potential variables can be obtained from remote
sensing data, including multispectral reflectance, vegetation index derived from spectral
data, texture measures, and others [19–21]. However, high dimensionality tends to result in
information redundancy and “dimensional disaster” [7]. To reduce the risk of overfitting,
feature selection can be performed before constructing a model in order to extract the most
important and useful information from the original dataset [22]. Li et al. evaluated stepwise
regression and the variable importance-based method for the selection of an optimal
subset of variables for AGB estimation using multiple stepwise regression and machine
learning methods [23]. They demonstrated the potential utility of feature selection for
AGB estimation, especially for machine learning algorithms. Yu et al. focused on variable
selection and the model stability of a subtropical forest biomass estimation model [24].
They discussed key aspects of eight variable selection methods and pointed out that most
methods differed markedly in their performance on individual indices. Therefore, further
investigation of feature selection for AGB estimation is required to gather additional
evidence and reach reasonable conclusions.

The accuracy of AGB predictions is also affected by the regression algorithm [25].
The linear regression model is one of the most popular methods, including conventional
multiple linear stepwise regression and principal component linear regression, which has a
significant advantage in the prediction of forest biomass [26]. However, linear regression
cannot fully capture the complex relationships between explanatory variables and AGB,
accounting for its low prediction accuracy. Machine learning algorithms such as back prop-
agation neural network, K-nearest neighbor, support vector machine (SVM), and random
forests (RF) have been used to improve AGB estimation [27–29]. Zhao et al. investigated
four machine learning algorithms, including classification regression tree (CART), artificial
neural network (ANN), SVM, and RF, to estimate the parameters of a Robinia pseudoacacia L.
plantation on the Loess Plateau [12]. They found that RF had the highest accuracy and the
smallest error among all forest parameter estimates. Sikdar et al. evaluated two machine
learning methods (RF and SVM) for biomass estimation of Sporobolus virginicus (L.) Kunth
and found that the RF model (R2 = 0.72, RMSE = 0.166 kg/m2) outperformed the SVM
model (R2 = 0.66, RMSE = 0.200 kg/m2) [7].

Ensemble learning is a branch of machine learning in which learning tasks are com-
pleted by building and combining multiple learners [30,31]. It can integrate decision trees
and neural networks or use decision trees or neural networks alone, and it is mainly divided
into Bagging and Boosting algorithms. Bagging renders the model a high generalization by
reducing the variance. RF is a popular technique in Bagging [32]. Boosting uses a set of
machine learning algorithms to convert weak learners to strong learners to increase the
accuracy of the model. Boosting includes adaptive boosting (AdaBoost), gradient boosting
decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting ma-
chine (LightGBM), and categorical boosting (CatBoost). GBDT and AdaBoost are commonly
used algorithms in Boosting. XGBoost and CatBoost, which are improvements of GBDT,
have shown potential in fields such as biology and medicine [33–36]. Although some
studies have attempted to use these methods for modeling forest properties from remote
sensing data, the CatBoost method has been introduced very recently [13,37]. However,
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Pham et al. found that extreme gradient boosting regression-genetic algorithm (XGBR-GA)
outperformed CatBoost and RFR in estimating mangrove AGB [13]. Therefore, our study
is devoted to improving the performance of CatBoost in forest AGB estimation by the
coupling with the feature selection.

Machine learning algorithms such as RF have their own built-in feature selection
functions that can be used for simultaneous feature selection and regression [38]. However,
there is little evidence to indicate that a greater accuracy of AGB estimation is achieved
when feature selection and regression are performed with the same algorithm. Therefore,
it is worthwhile to explore the performance of AGB estimation when different feature
selection methods and machine learning algorithms are combined. This study explores the
following two questions: (1) What are the effects of combining different feature selection
methods with different regression algorithms? (2) Does the CatBoost algorithm improve
the accuracy of AGB estimation? This study focused on the estimation of AGB using the
ninth National Forest Continuous Inventory (NFCI) data from Jilin Province, China and
Landsat Operational Land Imager (Landsat OLI) data.

The goals of this study are as follows:

(1) Compare and analyze AGB prediction models of different forest types by combining
three feature selection methods (recursive feature elimination (RFE), variable selection
using random forests (VSURF) and least absolute shrinkage and selection operator
(LASSO)) and three regression algorithms (random forest regression (RFR), XGBoost,
and CatBoost);

(2) Evaluate the accuracy of the CatBoost algorithm for AGB estimation and compare it
with the RFR and XGBoost algorithms;

(3) Identify the best input variables for AGB estimation by feature selection.

2. Materials and Methods

The methodological framework of this study consists of four steps: (1) data pre-
processing, (2) feature extraction, (3) feature selection, and (4) modeling and validation
(Figure 1).

2.1. Study Area

The study was conducted across all of Jilin province (19.1 × 104 km2, 40◦52′ N–46◦18′ N,
121◦38′ E–131◦19′ E) in the central part of northeast China (Figure 2). It is characterized
by hilly topography in the east and plains in the central region, and its elevation ranges
from 279 to 2691 m [39]. Jilin has a temperate continental monsoon climate, with a more
humid climate to the southeast and a semiarid climate in the northwest. The annual mean
temperature is about 5.0 ◦C, with a maximum temperature of 23 ◦C in July and a minimum
temperature of −20 ◦C in December. The seasonal distribution of precipitation is uneven:
annual precipitation ranges from 400 to 600 mm, and 80% falls in the rainy season from
June to September [40]. Natural forests form the bulk of the AGB studied in Jilin, and
plantations are less common. The coniferous species are dominated by Pinus koraiensis
Sieb. et. Zuccarini., followed by Picea asperata Mast. and Pinus sylvestris var. mongolica
Litv. [41]. The major broadleaved species include Quercus mongolica Fischer ex Ledebour,
Betula platyphylla Suk., Juglans mandshurica Maxim., Populus ussuriensis Kom., and Tilia
amurensis Rupr [42].

2.2. Data Collection and Preprocessing
2.2.1. Field Data Collection and Preprocessing

This study made use of the ninth NFCI data of Jinlin Province collected in 2014. Square
sampling plots with an area of 0.06 hectares were arranged at 4 km× 8 km grid intersection
points along a system of vertical and horizontal coordinates. Tree heights, diameter at
breast height (DBH) of all trees greater than 5 cm, canopy density, slope, aspect, and slope
position were measured. Plot types, land types, age group, and dominant tree species were
also recorded. Plots that were not on forested land (cropland, water, urban land, and bare
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land) and those covered by clouds in the remote sensing images were excluded. The final
dataset included 2716 plots (Figure 2).
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A continuous function was used to calculate the plot AGB, which was converted to
per hectare biomass (Mg/ha) [43,44]. The regression equation is as follows:

B= aV+b (1)

where B is biomass per unit area (Mg/ha); V that is the stock volume per unit area (m3/ha),
was calculated according to the standing volume table method [45], and a and b are
parameters whose specific values are given in Table 1.

According to the technical regulations for the continuous forest inventory of China,
the plots were classified into three types (coniferous forest, broad-leaved forest, and mixed
forest) based on the standing volume of tree species (Table 2) [23]. The AGB values of all
plots (abbreviated as “All” in tables and figures) ranged from 19.20 Mg/ha to 309.58 Mg/ha
with an average of 153.8Mg/ha and a standard deviation of 49.58 Mg/ha. The average AGB
values of coniferous, broadleaf, and mixed plots were 103.32, 155.60, and 186.86 Mg/ha,
respectively (Table 3).
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Table 1. The parameters of conversion model between AGB and forest stock volume [44].

Species/Species Group a b

Betula platyphylla Suk. 1.0687 10.2370
Pinus sylvestris var. mongolica Litv., Pinus densiflora Sieb. et Zucc. 1.0945 2.0040

Pinus thunbergii Parlatore 0.5168 33.2378
Pinus koraiensis Siebold et Zuccarini 0.5185 18.2200
Larix gmelinii (Ruprecht) Kuzeneva 0.6069 33.8060

Picea asperata Mast. 0.4642 47.4990
Populus simonii var. przewalskii (Maxim.) H. L. Yang 0.4754 30.6034

Pinus tabuliformis Carriere 0.7554 5.0928
Quercus 1.1453 8.5473

Mixed coniferous broad-leaved forest 0.8136 18.4660
Mixed broad-leaved forest 0.6255 91.0013

Table 2. Classification standard of forest types [23].

Forest Type Abbreviation Standard of Division

Coniferous forest Coniferous Pure coniferous forest (single coniferous species stand volume ≥ 65%);
coniferous mixed forest (coniferous species total stand volume ≥ 65%)

Broad-leaved forest Broadleaf Pure broadleaf forest (single broad-leaved species stand volume ≥ 65%);
broadleaf mixed forest (broad-leaved species total stand volume ≥ 65%)

Mixed forest Mixed Broadleaf–coniferous mixed forest (total stand volume of coniferous or
broad-leaved species accounting for 35%–65%)

Table 3. Distribution of the plot AGB values (Mg/ha) of the different forest types.

Figure Count Minimum
(Mg/ha)

Maximum
(Mg/ha)

Mean
(Mg/ha)

Standard
Deviation

Sample Size
(Training)

Sample Size
(Validation)

Coniferous 358 20.41 286.34 103.32 52.90 269 89
Broadleaf 2111 19.20 269.80 155.60 47.14 1583 528

Mixed 247 91.67 309.58 186.86 38.15 185 62
All 2716 19.20 309.58 153.80 49.58 2037 679
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2.2.2. Remote Sensing Data Collection and Preprocessing

The remote sensing data used in this study were acquired from the Landsat OLI
satellite and included one band in the panchromatic mode and eight bands in the multi-
spectral mode. Landsat OLI images with cloud cover less than 5% were acquired on the
GEE platform (https://earthengine.google.com/, accessed on 15 May 2020) from June
to September of 2014. Data preprocessing steps were performed on the GEE platform,
including radiation correction, terrain correction, cloud removal, image splicing, and at-
mospheric apparent reflectance conversion [46]. A total of 18 Landsat OLI images were
obtained, covering the entire study area. Band 1-coastal and band 9-Cirrus were excluded,
as Band 1 and Band 9 are used as indicators of coastal zone observation and cloud detection,
respectively. Although the images were resampled to a pixel size of 25.82 m, the same
size as the inventory plot, there are certain positional offsets between the boundary of the
sample site and the remote sensing image. To reduce the impact of these positional offsets,
a buffer zone with a radius of 25.82 m was established around each plot. Then, the mean
pixels of each plot center buffer are extracted as the sample plot value.

2.3. Predictive Variables

A total of 53 predictive variables were extracted for this study (Table 4). Six spec-
tral variables were derived from the average surface reflectance of the six multispectral
bands. Eleven vegetation indices that have been widely used in previous forest studies
were calculated [47]. Texture measures were extracted using the gray level co-occurrence
matrix method (GLCM) [48], and eight GLCM measures with four different window sizes
(3 × 3, 5 × 5, 7 × 7, and 9 × 9) were calculated from the panchromatic band. Elevation,
slope, and aspect were selected as terrain factors and were derived from a digital elevation
model (DEM) with a spatial resolution of 30 m, which were downloaded from the United
States Geological Survey (USGS) Earth Explorer (http://earthexplorer.usgs.gov/, accessed
on 30 June 2019). Canopy density from field surveys was also used as a predictor variable,
that is, the ratio of canopy projection area to woodland area.

Table 4. Summary of predictor variables including Landsat OLI spectral variables, vegetation indexes, texture measures,
terrain factors, and forest factor for AGB estimation.

Variable Type Variable
Number Variable Name Description

Spectral
variables 6 Band2, Band3, Band4, Band5,

Band6, Band7 Landsat OLI Bands 2–7: Blue, Green, Red, NIR, SWIR1, SWIR2

Vegetation
indexes 11

NDVI Normalized Difference Vegetation Index
RVI Ratio Vegetation Index; RVI = NIR/RED
DVI Difference Vegetation Index

RVI54 Ratio Vegetation Index 1; VI54 = SWIR1/NIR
RVI64 Ratio Vegetation Index 2; VI64 = SWIR2/NIR
SAVI Soil Adjusted Vegetation Index

NLI Optimize soil adjustment index;
NLI = (NIRˆ2-RED)/(NIRˆ2 + RED)

ARVI Atmospherically Resistant Vegetation Index
EVI Enhanced Vegetation Index

TSAVI Transformed Soil Adjusted Vegetation Index
PVI Perpendicular vegetation Index

Texture
measures 32 TjMea, TjVar, TjHom, TjCon,

TjDis, TjEnt, TjASM, TjCor
Panchromatic band of Landsat OLI texture measurement using

gray-level co-occurrence matrix based on four window sizes

Terrain factors 3 Elevation, slope, aspect

Forest factors 1 Canopy density

Note: TjXXX represents a texture image developed in the Landsat panchromatic band using the texture measure XXX with a j × j (j = 3, 5, 7, 9)
pixel window, where XXX is Mea (Mean), Var (Variance), Hom (Homogeneity), Con (Contrast), Dis (Dissimilarity), Ent (Entropy), ASM
(Angular Second Moment), or Cor (Correlation).

https://earthengine.google.com/
http://earthexplorer.usgs.gov/
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2.4. Feature Selection Methods

Feature selection is one of the critical steps in machine learning and has two main
functions: (1) reducing the number of features and dimensions, thereby enhancing model
generalizability and reducing overfitting, and (2) enhancing the understanding between
features and eigenvalues. RFE, VSURF, and LASSO were applied to the original dataset to
determine the appropriate variable number.

2.4.1. Recursive Feature Elimination

RFE is a well-established wrapper method to find the optimal feature subset [49];
it repeatedly constructs models and finally selects the best predicted feature set. The best
or worst features are removed on the basis of coefficients, and the remaining features are
used to build the next model until all features have been used. Finally, the features are
sorted according to their order of elimination. To determine the best number of features, a
10-fold cross-validation resampling method was added to RFE. The ‘rfe ()’ function in the
‘caret’ package (version: 6.0-84) was used to implement RFE on R 3.5.3, with ‘Repeatedcv’
for method, ‘5’ for repeats, and ‘random forests (rfFuncs)’ for functions.

2.4.2. Variable Selection Using Random Forests

VSURF is a wrapper-based algorithm that uses random forests as the base classi-
fier [50]. Feature variables are first ranked based on a variable importance measure, and
low-scoring features are eliminated to reduce the number of features and improve model
accuracy [51]. In the final step, a ranked list of only the most important features is produced.

2.4.3. Least Absolute Shrinkage and Selection Operator

LASSO was introduced by Robert Tibshirani [52]. On the basis of linear regression,
the algorithm constrains the absolute value of the model regression coefficient to a specific
threshold and minimizes the sum of squares of model residuals by increasing the normal
form function. By optimizing the objective function, variables whose correlation is less
than the threshold value are compressed to 0 and eliminated, leaving only the remaining
preferred variables. The ‘cv.glmnet’ function of the ‘glmnet’ package (version: 2.0-18) of R
is used for LASSO feature selection. ‘cv.glmnet’ uses a 10-fold cross-validation method for
verification, which is more suitable for feature selection with high-dimensional data.

2.5. Machine Learning Algorithms
2.5.1. Random Forest Regression

RFR is an ensemble learning technique proposed by Breiman in 2001 [53]. This
multiple decision tree algorithm is based on classification and regression trees and is
controlled by the number of decision trees (Ntree) and the number of nodes (Mtry) [54].
The complexity of the model is directly proportional to Ntree. Therefore, if prediction
accuracy is similar, a smaller Ntree is better than a larger Ntree. Mtry controls the degree
of randomness introduction, and its value is generally one-third of the number of input
variables in the regression model [55,56]. The optimal variables are selected through
successive modeling calculations. RFR has the advantages of processing high-dimensional
data, avoiding overfitting, and ranking the importance of features.

2.5.2. Extreme Gradient Boosting

XGBoost is a boosting algorithm proposed by Chen et al. in 2016 based on the
GBDT and RF approaches [57]. Compared with GBDT, XGBoost has improvements in
multithreaded processing, the classifier, and the optimization function [58]. It also has the
following advantages [59,60]:

(1) The algorithm controls the complexity of the tree and then reduces overfitting by
adding a regularization term to the objective function.

(2) A column sampling technique is employed to prevent overfitting, similar to the
random forest algorithm.
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(3) The second-order Taylor expression of the objective function is used to make the definition
of the objective function simpler and more precise when finding the optimal solution.

2.5.3. Categorical Boosting

CatBoost was developed by Dorogush et al. in 2018 [61] and is an improved GBDT
toolkit similar to XGBoost. CatBoost solves the problems of gradient bias and prediction
shift [33]. It has several advantages [34,62]:

(1) An innovative algorithm is embedded to automatically treat categorical features as
numerical characteristics.

(2) It uses a combination of category features that take advantage of the connections
between features, greatly enriching feature dimensions.

(3) A perfectly symmetrical tree model is adopted to reduce overfitting and improve the
accuracy and generalizability of the algorithm.

RFR, XGBoost, and CatBoost modeling were performed with the R packages ‘random-
Forest’, ‘XGBoost’, and ‘CatBoost’, respectively. The ‘Caret’ package (version: 6.0-84) was
used to optimize model parameters.

2.6. Evaluation of AGB Estimation Accuracy

First, data were preprocessed before modeling. Any data point that is more than
3 standard deviations is an outlier. At the same time, we also carefully removed outliers
based on experience. To improve the convergence speed and model accuracy, the data
was min-max normalized so that the resulting values were mapped to between 0 and 1
and formula is as Equation (2). Next, 10-fold cross-validation was used to optimize the
parameters for all algorithms (RFR, XGBoost, and CatBoost) based on the training dataset
(75% of the data). Finally, the calibrated model from 10-fold cross-validation was tested
once again with the independent validation dataset (25% of the data) to estimate the root
mean square error (RMSE), coefficient of determination (R2), relative RMSE (RMSE%), and
bias of the models. The formulas for these statistical parameters are as follows:

xj =
xi − xmin

xmax − xmin
(2)

R2 = 1 ∑

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(3)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

N
(4)

RMSE% =
RMSE

y
∗ 100 (5)

Bias =

n
∑

i=1
(yi − ŷi)

N
(6)

where xi is the data before normalization, xj is the normalized data, xmin is the minimum value
of sample data, and xmax is the maximum value of sample data. ŷi is the predicted value, yi is
the observed value, y is the mean of the observed values, and N is the number of observations.

3. Results
3.1. Determining the Optimal Number of Variables

Different forest types showed different RMSE trends as the input variable number
changed in the RFE feature selection method (Figure 3). The number of selected features
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differed among the different forest types. For coniferous forest, the optimal number of
features was five, whereas 10, 21, and 25 features were selected for the broadleaf forest, the
mixed forest, and all forests.
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For VSURF, the OOB error values decreased continuously as the variable number
increased from 0 to 20 but changed only slightly as the variable number increased from 20
to 52. The variation trend for LASSO was similar to that of VSURF. After comprehensive
consideration, 20 was a suitable variable number that maintained most of the information
from the original dataset, and VSURF and LASSO selected the top 20 features with the
highest scores.

3.2. Predictive Performance Using Feature Selection
3.2.1. Variable Importance Measures

We calculated Pearson correlation coefficients between the predictor variables and
AGB and found that the T9Mea texture measure had the highest correlation coefficient
(−0.61). The correlation coefficients between most texture measures and AGB were 0.2–0.5.
Band4 (red) had the highest correlation with AGB among the spectral variables, with a
value of −0.57. RVI64 had the highest correlation with AGB among the vegetation indexes,
with a value of −0.54. The correlation coefficients of elevation, slope, and canopy density
with AGB were 0.56, 0.46, and 0.24, respectively.

The AGB models constructed by combining different feature selection methods (RFE,
VSURF, LASSO) and machine learning algorithms (RFR, XGBoost, CatBoost) had different
orders of feature importance. Figure 4 shows the top 10 selected prediction features based
on feature importance for the different forest types obtained with the RFE feature selection
method and the three machine learning algorithms. Spectral variables, vegetation indexes,
texture measures, terrain factors, and the forest factor were included in most of the AGB
models for all forests (All), although the specific selected variables differed. This result
indicated that multiple features, rather than a single feature, influenced AGB estimation.
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method (RFE) and three machine learning algorithms (random forest regression (RFR), extreme
gradient boosting (XGBoost), and categorical boosting algorithm (CatBoost)).

Five features were selected in the coniferous forest model: T9Mea, B3-Green, Elevation,
B7-SWIR2, and Canopy. T9Mea, Elevation, and Canopy were also frequently selected for
the AGB models of broadleaf forest, indicating that these features have significant roles
in AGB estimation. Canopy and elevation were the two most important features in all
mixed forest models. In AGB models of all forests, the three most important variables were
Canopy, T7Mea, and Elevation for the RFE-RFR model; T9Mea, Canopy, and Elevation for
the RFE-XGBoost model; and Canopy, Elevation, and T7Mea for the RFE-CatBoost model.
Canopy and Elevation were included in all AGB models, indicating that both features
contained sufficient information to enhance the performance of AGB estimation models.

Textures based on 7 × 7 and 9 × 9 window sizes were frequently involved in the
models, indicating that these two window sizes were more appropriate for AGB estimation.
Window size is an important factor that affects the accuracy of the AGB estimation model.
Small windows are more sensitive to the pixel difference between canopy and shadow ratio,
whereas large windows cannot extract sufficient texture information due to the excessive
smoothness phenomenon of texture parameters. Mean texture was frequently involved in
the model, indicating that Mean contributed more than other texture measures.
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Figure A1 presents the rankings of the top 10 AGB model variables obtained when
LASSO was combined with the machine learning algorithms, and Figure A2 presents the
results obtained when VSURF was used. Similar to RFE, all types of features (spectral
variables, vegetation indexes, texture measures, terrain factors, and the forest factor) were
involved in the AGB models when LASSO and VSURF were used for feature selection.
However, the specific variables selected were different. Spectral variables, vegetation
indexes, and texture measures played different roles in the AGB models of broadleaf,
mixed, and coniferous forests. The spectral and vegetation index variables could be used
to distinguish broadleaf and mixed forests, owing to their diversity of tree species and
multiple canopy layers. By contrast, because the coniferous forest was dominated by a
small number of species, its AGB could be explained well by texture rather than spectral
information. It was interesting to note that canopy density contributed significantly to the
models for most forest types, especially in broadleaf and mixed. This likely reflects the fact
that forest canopy structure was complex and diverse.

3.2.2. Comparison of Model Performance

The key tuning hyperparameters and the configurations of the tuning parameters for
36 AGB models are shown in Table A1. Three machine learning algorithms, RFR, XGBoost,
and CatBoost, were used to fit the modeling dataset based on the RFE feature selection
method, and the results are presented in Table 5. Comprehensive consideration based on
the accuracy indicators (R2, RMSE, RMSE%, and Bias), CatBoost was the best machine
learning algorithm. For the coniferous forest, the CatBoost algorithm produced more
accurate estimates (with RMSE of 26.54 Mg/ha) than the RFR (with RMSE of 26.63 Mg/ha)
and XGBoost (with RMSE of 28.81 Mg/ha) algorithms. CatBoost also achieved the lowest
RMSE values for different forest types except for mixed forest compared with the other
algorithms. Interestingly, sometimes the Bias of the RFR is lower than CatBoost. One
possible explanation is that the positive and negative predicted values cancel each other
out in the RFR algorithm. The ensemble learning algorithms (XGBoost and CatBoost)
have shown potential in fields such as biology and medicine [13,33–36]. Here, we found
that CatBoost turns out to be a promising method for modeling forest AGB using remote
sensing data.

Table 5. AGB estimation accuracy assessments on validation dataset by combining RFE with machine learning algorithms
(CatBoost, XGBoost, RFR) for different forest types.

Forest Type Model R2 RMSE (Mg/ha) Bias (Mg/ha) Relative RMSE (%) Run Times (min)

Coniferous
CatBoost 0.77 26.54 −5.56 25.62 0.78
XGBoost 0.72 28.81 −2.15 27.81 20.17

RFR 0.77 26.63 −5.88 25.70 0.17

Broadleaf
CatBoost 0.73 24.67 0.63 15.84 1.36
XGBoost 0.71 25.55 0.10 16.40 25.13

RFR 0.73 24.74 0.13 15.87 5.37

Mixed
CatBoost 0.59 22.62 2.14 12.10 1.51
XGBoost 0.60 22.44 0.20 12.01 20.14

RFR 0.59 22.72 1.81 12.16 0.63

All
CatBoost 0.73 25.77 −0.86 16.80 1.81
XGBoost 0.72 26.21 −0.91 17.08 29.81

RFR 0.72 26.13 −0.93 17.04 12.55

Table 6 presents the estimate accuracy of AGB models in which LASSO was combined
with the machine learning algorithms, and Table 7 presents the results obtained using
VSURF. For all forest types, models that used RFE-based selection clearly performed
better than models that used VSURF or LASSO. For example, for broadleaf, the RMSE
of VSURF-selected models (24.77, 25.62, and 25.08 Mg/ha) and LASSO-selected models
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(25.11, 26.16, and 25.54 Mg/ha) were much larger than those of RFE-selected models (24.67,
25.55, and 24.74 Mg/ha). These results indicate that the RFE-selected dataset retained more
useful information from the original dataset, thereby explaining the differences in AGB
estimation. The best AGB model predictions were obtained when RFE was combined with
the CatBoost algorithm. Moreover, the RFE–CatBoost model (RFE used for feature selection
and CatBoost used for regression) performed well in prediction accuracy compared to
the VSURF-RFR model (in which random forests were used for both feature selection and
regression) for all forest types. This result indicates that the typical method of simultaneous
feature selection and regression with the same machine learning algorithm may not always
ensure an optimal estimate. The combination of different feature selection and regression
algorithms was helpful in improving the accuracy of the AGB model.

Table 6. AGB estimation accuracy assessment on validation dataset by combining LASSO with machine learning algorithms
for different forest types.

Forest Type Model R2 RMSE (Mg/ha) Bias (Mg/ha) Relative RMSE (%) Run Times (min)

Coniferous
CatBoost 0.73 28.12 −3.35 27.14 1.59
XGBoost 0.74 28.30 −5.50 27.31 20.91

RFR 0.73 28.24 −4.09 27.25 0.77

Broadleaf
CatBoost 0.72 25.11 0.83 16.11 2.05
XGBoost 0.70 26.16 0.79 16.79 28.79

RFR 0.71 25.54 0.36 16.39 8.26

Mixed
CatBoost 0.60 22.73 1.05 11.10 1.51
XGBoost 0.57 23.73 2.64 12.70 19.78

RFR 0.58 23.18 1.12 11.66 0.35

All
CatBoost 0.71 26.65 −0.97 17.37 1.85
XGBoost 0.69 27.73 −0.74 18.08 28.11

RFR 0.71 26.81 −1.24 17.48 10.74

Table 7. AGB estimation accuracy assessment on validation dataset by combining VSURF with machine learning algorithms
for different forest types.

Forest Type Model R2 RMSE (Mg/ha) Bias (Mg/ha) Relative RMSE (%) Run Times (min)

Coniferous
CatBoost 0.74 27.72 −4.91 26.76 1.72
XGBoost 0.73 28.51 −5.17 27.52 19.62

RFR 0.75 27.44 −4.04 26.49 0.78

Broadleaf
CatBoost 0.73 24.77 0.49 15.89 1.85
XGBoost 0.71 25.62 0.67 16.44 28.90

RFR 0.72 25.08 0.88 16.09 9.01

Mixed
CatBoost 0.59 22.89 0.76 12.25 1.20
XGBoost 0.56 23.69 1.03 12.68 17.45

RFR 0.57 23.20 2.30 12.42 0.48

All
CatBoost 0.74 25.79 −1.15 16.67 3.18
XGBoost 0.72 26.25 −0.68 17.11 36.82

RFR 0.72 26.12 −0.94 17.03 12.18

3.3. Evaluation of AGB Estimation

The scatter plots shown in Figure 5 illustrate the relationships between predicted and
observed AGB for different forest types using the RFR, XGBoost, and CatBoost algorithms
with the RFE variable selection method. The CatBoost algorithm was superior to the RFR and
XGBoost algorithms. Within a given algorithm, the accuracy of the broadleaf model is the
highest, followed by the all and mixed models, the coniferous model being the least accurate.
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4. Discussion

Feature selection methods and machine learning algorithms were effective tools
for improving the accuracy of AGB estimates. To predict the AGB of four forest types,
36 models were derived using three feature selection methods (RFE, VSURF, and LASSO)
and three machine learning algorithms (RFR, XGBoost, and CatBoost) based on NFCI data.
CatBoost performed well in the prediction of all forest types compared to XGBoost and
RFR. AGB models were most accurate when RFE was used for feature selection, and this
method worked better than VSURF or LASSO. The combination of RFE feature selection
with the CatBoost algorithm effectively improved the accuracy of AGB estimates. Since
feature selection can reduce data dimensionality, minimize data storage space, and improve
model interpretability, it has been employed to improve the performance of predictive
models. RFE showed the smallest RMSE, followed by VSURF and LASSO. The first five
features selected for the RFE-RFR-Broadleaf model were Elevation, Canopy, T9Mea, RVI64,
and B3-green. This result demonstrated that the feature selection method effectively
selected different types of features, including spectral variables, vegetation indexes, texture
measures, terrain factors, and the forest factor, confirming its applicability and effectiveness
for AGB estimation from multispectral data. In this study, there is a high correlation
between the Mean texture and AGB. It seems likely that these results are in fact due to the
reflection of the regularity of the image texture in the Mean texture. The image texture rules
of different tree species are quite different; thus, the average image texture can better reflect
the tree species diversity in the study area. The Mean texture contains the information on
the species of the tree and is beneficial to the diversity prediction of the forest tree species,
which is consistent with the finding of Li et al. [63]. Canopy density was proved to have an
effect on the accuracy of the AGB estimation. There are many types of trees in the study
area, and the variance in the growth status of those tree species leads to the change in
the canopy density. A high canopy density can be attributed to the lush of the forest and
a high AGB. In a study conducted by Li et al. [63], AGB and LAI were estimated based
on digital aerial photograph data in northeast China. When the results were analyzed,
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it was found that the canopy density extracted from photogrammetric point cloud is the
most strongly related to the estimated LAI. However, the underlying mechanisms and
relationships should be studied in more detail in the future. The results of the present
study agree to a large extent with those of previous studies [6,7,13]. The feature selection
capability of RFE has been reported in recent studies of halophyte biomass estimation
based on WorldView-2 multispectral data (Rasel et al. [7].) and forest parameter prediction
using optical data (Dan Li et al. [63]). The VSURF feature selection method implements
a feature selection function by measuring the importance of features [18]. Specifically, it
produces a set of feature scores ranked from largest to smallest, rather than an optimal
feature combination. A feature set is the final result of RFE, which more fully conveys
the information from the original dataset. In addition, the stability of RFE was enhanced
owing to the use of “random forests” as the underlying model for RFE during iteration.

The application of machine learning algorithms to optical data processing in quantita-
tive remote sensing is developing rapidly. However, there have been few applications of
new ensemble learning algorithms to AGB estimation. Here, the CatBoost algorithm was
shown to be superior to XGBoost, but it was only slightly superior to RFR. The RFR algo-
rithm, a parallel integrated algorithm, is not sensitive to predictive variables that contain
noise, as the decision tree is independent [64,65]. The decision tree of XGBoost is generated
based on the previous tree and improves the processing of regularized learning targets to
avoid overfitting [60]. In contrast to XGBoost, CatBoost can avoid overfitting by adding an
algorithm to compute leaf nodes when choosing a tree structure [62]. Consequently, Cat-
Boost not only performed well on the validation set but also had the lowest degree of overfit-
ting on the validation set. For example, the RFE-ALL-RFR (R2 = 0.96, RMSE = 10.50 Mg/ha)
model outperformed RFE-ALL-CatBoost (R2 = 0.81, RMSE = 21.76 Mg/ha) in the training
dataset, but RFE-ALL-CatBoost (R2 = 0.73, RMSE=25.77 Mg/ha) turned out to be better
than RFE-ALL-RFR (R2 = 0.72, RMSE = 26.13 Mg/ha) in the validation dataset. CatBoost
also had a faster run time than XGBoost, thus improving the efficiency of the operation.
In addition, CatBoost works faster in large samples. In the coniferous (n = 358) and mixed
(n = 247), RFR was slightly faster than CatBoost. However, in broadleaf (n = 2111) and ALL
(n = 2716), CatBoost runs much faster than RFR (Tables 5–7). This finding is in line with the
results reported by Zhang et al., which show that the CatBoost algorithm outperformed the
RFR and GBRT algorithms for the AGB estimation [37]. Li et al. focused on the potential for
machine learning algorithms to improve AGB estimation accuracy [23]. Interestingly, our
results showed only a slight difference in prediction performance between XGBoost and
RFR, whereas Li et al. reported better results for XGBoost. The different feature selection
method used in our study may explain the differences in our results.

The AGB prediction models based on a combination of different feature selection
methods and machine learning algorithms were superior to those in which one machine
learning algorithm was used for both feature selection and regression. For example, the
RFE-CatBoost-Coniferous model (RMSE = 26.54 Mg/ha) outperformed the VSURF-RFR-
Coniferous model (RMSE = 27.44 Mg/ha). Previous studies on LAI estimation also reported
that using the same machine learning algorithm for both feature selection and regression
was not always the optimal solution. It is interesting to note that Chen et al. found the
VSURF-RFR model to be the best, although in this case, the study object and the method
of comparison were different [38]. Overall, our experiment indicates that using the same
machine learning algorithm for feature selection and regression does not improve AGB
estimation accuracy. There are two likely causes for such a result. One possible explanation
for this might be that the scores are adopted by the RF algorithm as the criterion for
feature selection. However, most of the scores only represent the correlation between
one particular input variable and the AGB. Therefore, it does not guarantee that the
combination of variables with high scores would be the optimal choice for AGB estimation.
Additionally, the feature selection process was conducted twice duo to the employment of
the combination of the feature selection method and the regression algorithm.



Forests 2021, 12, 216 15 of 21

Here, the combination of CatBoost algorithm and feature selection methods was
applied to AGB prediction for the first time and achieved the best performance. In this
regard, the combination of different feature selection methods and regression algorithms
can be considered as a powerful tool in AGB prediction. This tool could be extended to
other fields of forest ecology, for example, predicting other biophysical parameters (leaf
area index, forest canopy coverage rate, and effective canopy coverage rate), soil nutrient
or soil heavy metal content using optical and hyperspectral remote sensing data. To some
readers, machine learning methods (especially neural networks) seem like a black box. The
three machine learning algorithms (RFR, XGBoost, and CatBoost) selected in our study are
easier to understand in the steps of modeling and interpretation. With the advent of the
era of big data, more data sources and larger amounts of data are available in the forest
ecology field. Machine learning approaches can overcome the disadvantages of traditional
approaches in dealing with big data.

Several previous studies have emphasized the effects of ecological conditions, canopy
closure, and soil background on AGB estimation [4,17,26,66]. Here, the CatBoost algorithm
made a significant improvement to the AGB model. However, the problems of low value
overestimation and high value underestimation that have been reported in previous studies
have not been completely solved [4,26,67]. All the algorithms underestimated the AGB
observed values when the AGB values were larger than about 200 Mg/ha (Figure 5). On the
one hand, the factors affecting AGB estimation are complex. In our study, original spectral
variables, vegetation index, texture features and topographic factors are included, but there
are also some potentially important variables affecting AGB prediction, such as climate
factors, etc. On the other hand, the Landsat OLI data itself has a number of limitations,
including a low resolution of 30 m and the obvious mixed pixel phenomenon [32,68].
For plots with low AGB values, the reflectance of spectral bands is affected by ground
vegetation and soil. For plots with high AGB values, the multispectral sensors become
saturated [47]. Further research is needed to improve AGB estimation with feature selection
methods and machine learning algorithms based on hyperspectral, high-resolution optical,
and lidar data.

5. Conclusions

We used three feature selection methods (RFE, VSURF, and LASSO) and three machine
learning algorithms (RFR, XGBoost, and CatBoost) to develop AGB estimation models for
different forest types. The CatBoost algorithm was applied to AGB prediction from optical
remote sensing data for the first time.

The following conclusions can be drawn:

(1) Feature selection has a significant influence on the predictive performance of the AGB
models. The RFE algorithm is one of the most appropriate feature selection methods
for AGB estimation from optical remote sensing data.

(2) The CatBoost algorithm better than the XGBoost and RFR algorithms and has great
potential for AGB prediction.

(3) Using the same machine learning algorithm for feature selection and regression
is not always the best approach for AGB estimation. Combining separate feature
selection methods with regression algorithms can improve the accuracy of AGB model
estimates. The AGB estimations in which RFE was the feature selection method and
CatBoost was the regression algorithm achieved greater accuracy, with RMSEs of
26.54 Mg/ha for the coniferous forest, 24.67 Mg/ha for the broad-leaved forest,
22.62 Mg/ha for the mixed forest, and 25.77 Mg/ha for all forests.
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Appendix A

Table A1. Optimal hyperparameter using a grid search with 10-fold CV for the different AGB models.

Method Forest Type
CatBoost XGBoost RFR

Depth Learning Rate Max Depth Eta Mtry

LASSO

Coniferous 6 0.049787 2 0.3 17
Broadleaf 6 0.049787 2 0.3 9

Mixed 6 0.049787 1 0.3 12
All 4 0.135335 2 0.3 9

RFE

Coniferous 4 0.049787 1 0.4 2
Broadleaf 6 0.049787 2 0.3 4

Mixed 4 0.135335 1 0.3 10
All 4 0.135335 3 0.3 9

VSURF

Coniferous 2 0.135335 2 0.3 14
Broadleaf 6 0.135335 2 0.3 12

Mixed 4 0.135335 2 0.3 20
All 4 0.135335 3 0.3 12

Note: In CatBoost models, iterations = 100 for all feature selection methods. In the XGBoost model, nrounds = 50,
gamma = 0 for all feature selection methods.
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