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Abstract: Sirex nitobei, an Asian native wood wasp species, is a major pest in coniferous commercial
forestry, infesting and weakening conifers through its obligate mutualism with a wood-rotting
fungus species. The combination of wood wasp larvae and obligate mutualistic fungus causes
the breakdown of plant vascular tissue, leading to the weakening of the plant and eventually
to death, as well as a high economic cost in commercial forestry. Since it was first recorded in
China in the early 1980s, S. nitobei has widely spread and become successfully established. Despite
its extensive distribution range, little is known about the factors influencing current and future
distribution patterns for potential pest control and monitoring. We used a maximum entropy model
in conjunction with climate variables and shared socio-economic pathways to predict the current and
future distribution of S. nitobei in China. We used the jackknife method and correlation analysis to
select the bioclimatic and environmental variables that influence the geographic distribution of S.
nitobei, which resulted in the inclusion of the monthly total precipitation in July (prec7), the monthly
average maximum temperature in February (tmax2), the monthly average minimum temperature
in July (tmin7), the monthly total precipitation in December (prec12), and isothermality (bio3). We
found that precipitation and temperature influenced the potentially suitable areas, as predicted by
the maximum entropy model. Moreover, the association of the fungus, the wood wasp, and the host
plant impacts are related to availability of moisture and temperature, where moisture affects the
growth of the fungus, and temperature influences the emergence, development and growth of larvae.
Under the current climate conditions, the total potential suitable areas increased by 18.74%, while
highly suitable and moderately suitable areas increased by 28.35 and 44.05%, respectively, under the
2081–2100 ssp245, 370 scenarios. Favorable conditions under climate change, low rainfall, and high
temperature will favor the speedy larval development, the growth of its obligate nutritional fungal
mutualist and the ability of S. nitobei to rapidly spread in previously unsuitable areas.

Keywords: Sirex wood wasp; maximum entropy model; potentially suitable area; CMIP6; climate
models; pest control

1. Introduction

Invasive alien species (IAS) can cause significant negative ecosystem level, economic,
and human health impacts in areas they are introduced to [1–4]. Indeed, invasive species
are predicted to be one of the biggest drivers of global change as a result of their impacts on
the environment [5]. Typically, invasive alien species are those species that are introduced
intentionally or unintentionally by humans to regions outside their geographic distribu-
tion [6]. Once established, these species begin to have negative effects on the environment
through their interactions with biota in the introduced region. However, some species can
produce deleterious effects similar to invasive species in regions in their native ranges, the
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species may have a distribution within a continent, but may not occur in some parts of
the continent, which would be their introduced range once they arrive and are establish
there [7], often referred to as native pest species [8]. Insects, in particular, can be far more
damaging as an invasive species due to their high rates of reproduction, high abundances,
physiological tolerance to extreme temperatures, and ability to fly, giving them leverage to
spread faster and further [9]. Moreover, under the scenario of global climate change, more
areas are predicted to become more suitable as temperatures increase, making previously
unsuitable habitats become more habitable.

Sirex nitobei (Hymenoptera: Siricidae), a wood-boring wasp species native to Asia with
a Palaearctic and Oriental distribution range, is an important pest of conifers, Larix and
Pinus species in commercial forestry. In China, the hosts of S. nitobei include Pinus sylvestris
var. mongolica, P. tabuliformis, P. armandii, P. thunbergia, and P. massoniana; while in Japan, it
infests P. densiflora and P. thunbergii [10,11]. The species has become successfully established
within some Asian countries where it was previously not found. It has been recorded in
China, Japan, and Korea [12]. In China, the first report of S. nitobei dates to 1980, and since
then, the species has spread into 13 provinces, including Zhejiang, Beijing, Heilongjiang,
Jilin, Liaoning, Inner Mongolia, Hebei, Shandong, Shaanxi, Gansu, Jiangsu, Anhui, and
Yunnan [13]. S. nitobei has a long lifecycle, producing one generation a year, with a four-day
lifespan [14]. Using the ovipositor, the female drills through the phloem to the xylem,
often drilling multiple tunnels in the xylem during oviposition. During drilling, mucus
and mycelium are injected into the tunnel. The mycelia are from its obligate mutualistic,
either Amylostereum areolatum or A. chailletii [15], carried by the wood wasp, and the mucus
which contains a phytotoxin that promotes its growth. The fungus growth can weaken the
immune system of the host plant, and destroy the cellulose and lignin [16]. The nature of
the obligate mutualism association between S. nitobei and its wood fungus is that S. nitobei
larvae cannot digest plant cellulose, hemicellulose or wood fibers due to a lack of important
enzymes required for the digestion of these substances. The fungus, supported by the
mucus, facilitates this by breaking down the cellulose and lignin in the wood, enabling the
larvae to consume it [17]. Research has shown that neither mucus nor obligate mutualistic
fungus can directly cause tree death alone; it is only the combination of mucus and obligate
mutualistic fungus that can cause the tree to weaken or die [18]. Damage to the cellulose
and lignin can lead to a blocked vascular tissue, which reduces nutrient transport from the
stem to the crown, causing the wood to desiccate [19]. Moreover, this damage causes the
plant to increase stem respiration to compensate, which causes starch content to decrease.
This has severe negative impacts on wood quality and ultimately reduces the commercial
value of wood. In addition, due to the poor transportation of the photosynthetic products,
as a result of the damage to the vascular tissues, the leaves begin to turn yellow, resembling
senescence [20]; thus, damage from S. nitobei causes premature senescence in the host plant.

In 2013, S. nitobei was found to co-infest host plant species together with the invasive
European wood wasp, S. noctilio, which was a severe international quarantine woodborer
that invaded China in 2013 [21]. Together, they severely affected the timber industry as most
of the host are important wood species for coniferous timber production. The software used
in most of these studies makes use of data on climatic variables in the current occurrence
areas as well as some of the species characteristics to predict possible suitable habitats
under various climate change scenarios. Maximum entropy theory is one such model, and
predicts species potential future distribution using occurrence points and environmental
variables [22–25]. The model has been applied in a wide range of studies predicting habitat
suitability for plants, animals, and fungi [26–29], especially in invasion biology studies.
The model is highly advantageous above others due to its faster operational capability,
simplicity of operation, stable calculation results, and high accuracy [30], even with a few
occurrence points [31,32]. For the latter, maximum entropy is ideal as a model to be applied
to studies on the distribution patterns of Sirex wood wasps, since they occur in areas that
are inconvenient for transportation, making it difficult to collect occurrence data, and their
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habitat ranges are extensive. Furthermore, this is one of the main challenges in monitoring
and attempting to control the population of S. nitobei.

The maximum entropy model was used to predict the globally suitable areas of
the three natural enemy nematodes of the European wood wasp, S. noctilio, (Fischbein
et al.) using a combination of bioclimatic variables from the WorldClim database v1.4.
The predicted results of suitable and unsuitable areas were consistent with the previous
successful and failed releases in non-native areas of these nematodes. Climate and other
factors affected the establishment of nematode populations, and affected the control effect
of S. noctilio [33]. Similarly, Sun et al. used 19 bioclimate variables, from the WorldClim
database v1.4, to predict the globally suitable areas of S. noctilio under the near current and
future climate conditions, and showed that the potential distribution areas of S. noctilio
were concentrated in 30◦ N–60◦ N and 25◦ S–55◦ S. High suitability was found for all
continents, with the exception of Antarctica. The environmental variables significantly
influencing the potential distribution and habitat suitability of S. noctilio are annual mean
temperature (bio1), mean temperature of the warmest quarter (bio10), and precipitation of
the wettest month (bio13). In 2050 and 2070, the area of moderate and highly suitable areas
changed with the increase or decrease in carbon dioxide emissions [34]. In January 2020,
the WorldClim database updated the global climate and weather data from v1.4 and v2.0
to v2.1 [35,36]. The database v1.4 contains the historical climate data from 1960 to 1990,
and the database v2.1 contains the historical climate data from 1970 to 2000. In database
v1.4, the Coupled Model Intercomparison Project Phase 5 (CMIP5) data, the future climate
have four representative concentration pathways (RCP), including rcp26, rcp45, rcp60,
and rcp85. RCPs summarize the impact of many strategies to deal with climate change in
future greenhouse gas emissions [37]. The periods included 2050 and 2070, the average
for 2041–2060 and 2061–2080, respectively. In database v2.1, the CMIP6 data, the future
climate had four shared socio-economic pathways (SSPs), including ssp126, ssp245, ssp370,
and ssp585. SSPs can better reflect the correlation between socio-economic development
and climate scenarios [38,39]. The periods of CMIP6 are more specific, including 2021–
2040, 2041–2060, 2061–2080, and 2081–2100. The CMIP provides an essential reference for
research on the laws of past climate change and the predictions of future climate change. It
is a critical platform in climate science and an essential part of IPCC (The Intergovernmental
Panel on Climate Change) scientific reports over the years. Compared with CMIP5, the
simulation results of CMIP6 are closer to the actual observations [40,41]. CMIP5 had
uploaded 19 global climate models (GCM), and recently, CMIP6 uploaded nine GCMs to
the WorldClim database. Compared with CMIP5, the predictive results of CMIP6 with the
National (Beijing) Climate Center Climate System Model (BCC_CSM) were significantly
improved [42].

The aim of this study was to predict the potential geographic distribution of S. nitobei,
and the environmental variables driving this, under near climate change and future climate
change scenarios using maximum entropy model and CMIP6 data. We chose the medium-
resolution BCC_CSM, the BCC-CSM2-MR, to predict the potential distribution area of
S. nitobei under future climate conditions. Further, we perform this research to inform or
guide pest control strategies for this pest species.

2. Materials and Methods
2.1. The Source of Occurrence Points

The occurrence data of S. nitobei were obtained from the following sources: (1) The
collection records of S. nitobei specimens deposited in Beijing Key Laboratory for Forest
Pests Control (Beijing Forestry University, BFU), National Zoological Museum of China
(Chinese Academy of Science, CAS), Research Institute of Forest Ecology, Environment, and
Protection (Chinese Academy of Forestry, CAF), Sawfly Collection of Central South Univer-
sity of Forestry and Technology (CSUFT), and College of Agriculture and Biotechnology
(Zhejiang University, ZJU); (2) published reference related to S. nitobei [10,12,13,43–47]; (3)
observational data that we collected from 2013 to 2019, where we investigated the historical



Forests 2021, 12, 151 4 of 17

and potential occurrence points in Beijing, Heilongjiang, Jilin, Liaoning, Shandong, Shaanxi,
Inner Mongolia, Gansu, Yunnan, and other provinces. S. nitobei samples were collected
during its emergence period and by rearing from trunks of dying trees.

2.2. The Selection Occurrence Points

We used Google Earth 7.1 (Google Inc., Mountain View, CA, USA) to verify accuracy
of the latitude and longitude of the collected occurrence points. To eliminate the influence
of large spatial correlation and over-fitting simulation, the buffer analysis was used to filter
the occurrence points that were too close. The spatial resolution of environmental variables
used in this study was 2.5 arc-minutes, covering about 21.0 km2, with the radius of the
buffer zone set to 2.5 km [48]. When the distance between the occurrence points was less
than 5.0 km, only one occurrence point was retained.

2.3. Environmental Variables

Insects species’ distribution patterns are influenced by a variety of environmental
variables [49]. The environmental variables we used in this study were from the WorldClim
v2.1 (https://www.worldclim.org/), and included 19 bioclimatic variables, monthly aver-
age minimum temperature, monthly average maximum temperature, and monthly total
precipitation. We also used the environmental variables of the future climate condition, the
periods of the 21st century, under four climate scenarios, including ssp126, ssp245, ssp370,
and ssp585. The GCM chose the BCC-CSM2-MR.

We used the ArcMap software v10.2 (Environmental Systems Research Institute Inc.,
Redlands, CA, USA) to convert the environment variables from *.tif format to *.asc format
(ArcToolbox: Conversion Tools - From Raster - Raster to ASCII), in preparation for use in
MaxEnt software 3.4.1 (Princeton University, Princeton, NJ, USA). The coordinate system
was set to World Geodetic System (WGS) 1984. Since too many variables can increase the
ecological space dimension, which can affect the predicted performance and accuracy of the
maximum entropy model, we used the jackknife analysis in MaxEnt software to obtain the
percent contribution of each environmental variable [50–52]. We extracted the environmental
variables’ climate information of all occurrence points using ArcMap software (ArcToolbox:
Spatial Analyst Tools - Extraction - Sample). We used Pearson’s correlation analysis to
calculate the relationship between the climatic/environmental variables using SPSS software
v20.0.0 (International Business Machines Corporation, Armonk, NY, USA) [53].

2.4. Maximum Entropy Model Optimization

The maximum entropy model parameters set in this study were as follows: Create
response curves and jackknife to measure variable importance; Cloglog output mode [25];
output file format as ‘asc’. To predict the potentially suitable distribution area under future
climate conditions, the filenames of future climate variables data were set to correspond to
the near current climate variables and loaded into ‘Projection layers directory/file’.

The following parameters were also used in the model analysis. We used random
seed, which is similar to bootstrapping, where each run will use a different random seed.
The random test percentage was set to 25, which means that 75% of the occurrence points
are randomly selected as the training set, and the remaining 25% are used as the test set.
We used ArcMap software, DIVA-GIS software v7.5.0 (https://www.diva-gis.org/), and R
software v4.0.3 (https://www.r-project.org/) to calculate the ‘Regularization multiplier’
(RM). The R packages used were ENMeval, dismo, dotCall64, fields, grid, knitr, maps,
maptools, raster, rgeos, sp, spam, and spThin, to calculate the RM and feature classes
(FC). The RM was set to 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. The FC included linear (L),
quadratic (Q), hinge (H), product (P), and threshold (T). The ENMeval package was used
to calculate the corrected Akaike information criterion correction value (AICc value) under
different parameters. AICc value was used to estimate the complexity of the maximum
entropy model, with the smallest AICc value corresponding to the FC combination and
preferred RM [54]. We tested eight different FC combinations, including L, LQ, LQP, QHP,

https://www.worldclim.org/
https://www.diva-gis.org/
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LQH, LQHP, and LQHPT [24,55,56]. The “checkerboard2” method was used to calculate
the AICc value. The model was run ten times (replicates set to 10) under the same setting,
with the final result presented as the average of the replicates.

2.5. Classification of Potentially Suitable Area

The asc file resulting from 10x replication of the maximum entropy model was con-
verted to a raster by ArcMap software (ArcToolbox: Conversion Tools - To Raster - ASCII
to Raster). The S. nitobei distribution range in China was analyzed using ArcMap software
(ArcToolbox: Spatial Analyst Tools - Extraction - Extract by Mask). In this study, we used
the lowest presence threshold (LPT) to define the suitable distribution area and unsuitable
distribution area [57]. The contents of the potential distribution areas were divided into
four categories, including unsuitable distribution areas (0–LPT), low suitable distribution
areas (LPT–0.4), moderately suitable distribution areas (0.4–0.6), and highly suitable dis-
tribution areas (0.6–1.0). We calculated the area of each category using ArcMap software
(ArcToolbox: Spatial Analyst Tools - Reclass - Reclassify), and set the coordinate system of
the potential distribution map of S. nitobei to China Lambert Conformal Conic.

2.6. The Predictive Accuracy of Maximum Entropy Model

The area under the curve (AUC) of the receiver operating characteristic (ROC) curve,
the AUC value, is widely used to estimate the predictive accuracy of the maximum entropy
model. The following criteria are used to determine if the predicted accuracy is good or
bad: AUC scores range from 0 ≤ to ≤ 1; the output showing 0.5 < AUC ≤ 0.7 is considered
failed or bad predictive power; 0.7 < AUC ≤ 0.8 is general; 0.8 < AUC ≤ 0.9 is good;
0.9 < AUC ≤ 1.0 is very good. The larger the AUC value, the more credible the maximum
entropy model [58]. However, even though the AUC value as evaluation criterion of
maximum entropy model is widely used, it does present some problems: (1) it ignores the
predicted probability values and the goodness-of-fit of the model; (2) it summarizes the
test performance over regions of the ROC space in which one would rarely operate; (3) it
weights omission and commission errors equally; (4) it does not give information about the
spatial distribution of model errors; and, most importantly, (5) the total extent to which
models are carried out highly influences the rate of well-predicted absences and the AUC
scores [59]. The AUC value could vary with the spatial range of the selected background
point. The more extensive the spatial range, the higher the AUC value [60]. To eliminate
the possible deviations of the AUC value, we used the AUC value of the partial-area ROC
(P-ROC AUC) to estimate the predictive accuracy of the maximum entropy model. We
used 5% error rate (E = 0.05) to calculated the AUC ratios, AUC ratio = AUCE/AUC0.5, by
using Niche Analyst software v3.0 (http://nichea.sourceforge.net/) (Calculate AUC value
of partial - area ROC approaches) The AUC ratios > 1 indicated that the model has a very
good random prediction. [61].

3. Results
3.1. The Major Parameters of Maximum Entropy Model

We used buffer analysis to all collected 31 occurrence points and finally got 24 occurrence
points of the S. nitobei for the maximum entropy model. By using the jackknife analysis
and Pearson’s correlation analysis to select bioclimatic and environmental variables. The
selection results of the environmental variables are shown in Table 1.

Table 1. Environmental variables used in predicting the potential geographic distribution of S. nitobei.

Climate Variables Code Percent Contribution

Monthly total precipitation in July (mm) prec7 35.9
Monthly average maximum temperature in February (◦C) tmax2 21.0

Monthly total precipitation in December (mm) prec12 8.6
Monthly average minimum temperature in July (◦C) tmin7 2.8

Isothermality (×100) bio3 0.5

http://nichea.sourceforge.net/
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The FC combination of the maximum entropy model in this study was LQH and the
‘RM’ was 2.5 (Figure 1).
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Figure 1. The regularization multiplier and feature classes of S. nitobei in the maximum
entropy model.

3.2. The Predictive Accuracy of Maximum Entropy Model

The accuracy of predicted result, under current climate and future climate conditions,
was estimated by the AUC value and AUC ratio. The results showed that the AUC and
AUC ratio values of 17 climate conditions were all greater than 0.9 and 1.0, indicating that
the predicted results of the maximum entropy model were very good (Table 2).

Table 2. The predictive accuracy of the maximum entropy model estimated by AUC and AUC ratio.

Climate Conditions AUC AUC Ratio

Near current 0.990 1.90
2021–2040 ssp126 0.990 1.85
2041–2060 ssp126 0.980 1.89
2061–2080 ssp126 0.986 1.88
2081–2100 ssp126 0.987 1.86
2021–2040 ssp245 0.991 1.87
2041–2060 ssp245 0.981 1.85
2061–2080 ssp245 0.989 1.84
2081–2100 ssp245 0.995 1.86
2021–2040 ssp370 0.984 1.86
2041–2060 ssp370 0.986 1.88
2061–2080 ssp370 0.983 1.85
2081–2100 ssp370 0.980 1.84
2021–2040 ssp585 0.992 1.86
2041–2060 ssp585 0.982 1.86
2061–2080 ssp585 0.984 1.88
2081–2100 ssp585 0.985 1.86
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Under near current climate conditions, the mean omission curve on the test data had
a slight deviation near the predicted omission (Figure 2), which might be due to the small
sample size.
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3.3. The Potential Distribution of S. nitobei under the Current Climate Condition

The potentially suitable distribution areas of S. nitobei as predicted by the maximum
entropy model were divided into four grades: highly suitable, moderately suitable, low
suitable, and unsuitable (Figure 3). The predicted results showed that the range of the
suitable area, under the current climate condition, is 79◦–137◦ E, 21◦–54◦ N; and the highly
suitable area is 93◦–132◦ E, 25◦–50◦ N. The administrative regions that were predicted to be
highly suitable areas included Beijing, Tianjin, Henan, Shandong, Liaoning, and Chongqing.
The moderately suitable areas and the low suitable areas were mainly distributed around
highly suitable areas. With the except for Hainan, the low suitable areas only had spo-
radic distribution, while other administrative regions had large areas (Figure 3). The
predicted area of the highly suitable area was 2.54 × 106 km2, accounting for 26.46% of
the total land area of China, followed by the predicted area of low suitability which was
2.65 × 106 km2, accounting for 27.56% of the total land area; the moderately suitable area
covering 8.45 × 105 km2, accounting for 8.80% of the total land area. The total predicted
area of suitability for S. nitobei in China was 6.03 × 106 km2, accounting for 62.82% of the
total land area of China (Figure 3).

3.4. The Relationship between the Distribution of S. nitobei and the Environmental Variables

The jackknife method was used to analyze the importance of the five environmental
variables that strongly impacted the distribution of S. nitobei (Figure 4). The longer the
blue bar, the more influential the variable is to the species distribution, and the shorter
the green bar, the more information the variable has compared to others. Among the
five environmental variables, the two environmental variables that have a greater impact
on the distribution of S. nitobei were the monthly total precipitation in July (prec7) and
the maximum temperature in February (tmax2) (Figure 4). In terms of the variables
that were most crucial in predicting area suitability for S. nitobei, isothermality (bio3),
monthly total precipitation in December (prec12) and the minimum temperature in July
(tmin7) contributed significantly and gave the most unique information in predicting
area suitability.
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Figure 4. Jackknife analysis result showing most important environmental variables predicting
potentially suitable distribution areas of S. nitobei in China. Monthly precipitation in July and
maximum temperature in February significantly contributed to explaining the suitability of the area,
with monthly precipitation in July and isothermality having the most unique information predicting
area suitability for S. nitobei.

The response curves between the dominant environmental variables and the distri-
bution probability drawn by the maximum entropy model (Figure 5) reflected the range
of environmental variables under different thresholds. In this study, LPT was the thresh-
old used to divide the range of potentially suitable distribution of S. nitobei. The results
showed that the suitable value of the potentially suitable distribution area under prec7
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was 68–469 mm, and the most suitable value was 158 mm of rainfall. When the prec7 was
between 68–158 mm of rainfall, the probability of occurrence increased as precipitation
increases; and when the prec7 was between 158–469 mm, the probability of occurrence
decreases as precipitation increases. Thus, areas of excess rainfall could have a negative
influence on the establishment of S. nitobei; the suitable rainfall range for a highly suitable
area was predicted to be 122–305 mm with a suitable tmax2 value of −13–19 ◦C, and the
most suitable value was found to be 3 ◦C. When the tmax2 was −13–3 ◦C, the probability
of occurrence increases with increasing temperature, and when the tmax2 was −3–19 ◦C,
the probability of occurrence decreases with increasing temperature increases. The suitable
value for the highly suitable area was −5–11 ◦C. The suitable value of the tmin7 was greater
than 0 ◦C, and the probability of occurrence increases with increasing temperature. The
suitable temperature value for the highly suitable area was greater than 15 ◦C. The suitable
value of the prec12 was 0–78 mm, and the probability of existence decreases with the
precipitation increases. The suitable value of the highly suitable area was 0–19 mm.
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3.5. Potential Distribution of S. nitobei under Future Climate Conditions

Under the future climate conditions, the periods of 21st century, including 2021–2040,
2041–2060, 2061–2080, and 2081–2010, under four CMIP6 climate scenarios, including ssp126,
ssp245, ssp370, and ssp585 showed an increase in predicted area suitability for the distribu-
tion of S. nitobei in China, showing potential spread into unsuitable areas which are becoming
suitable (Figures 6 and 7). The total predicted area of suitability increases in the period 2061–
2080 ssp370 and 2021–2040 ssp370, from 5.69 × 106 km2 to 7.16 × 106 km2, increasing by
18.74% in the former, and decreasing by 5.64% in the latter when compared to the total area
of the suitable area under current climate condition. Similarly, the maximum highly suitable
area appears in the period 2081–2100 ssp245, reaching an area of 3.26 × 106 km2, with an
increase of 28.35% compared to the highly suitable area of the suitable area under current
climate condition; while the minimum suitability area was predicted for the period 2041–2060
ssp245, reaching an area of 2.24 × 106 km2, with a decrease of 11.93% in suitable area under
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current climate condition. The moderately suitable area increased in the period 2081–2100
ssp370, increasing to 1.21 × 106 km2, with an increase of 44.05% compared to current climate
condition, while a decrease was noted in the period 2061–2080 ssp126, reaching an area of
6.96 × 105 km2, with a decrease of 16.67% compared to the moderately suitable area under
current climate condition. The predicted area of low suitability also shows similar trends,
reaching an area of 3.28 × 106 km2 during the period 2041–2060 ssp370, with an increase
of 23.77%, while the minimum predicted low suitability area reached was 1.90 × 106 km2

during the period 2081–2100 ssp126, with a decrease of 28.30% compared to the total area of
the low suitable area under current climate condition (see Figure 7).
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4. Discussion

We found that the wood wasp, S. nitobei, has a high suitability area in China and
has the potential to spread to previously unsuitable and moderately suitable areas under
future climate change scenarios in the 21st century. In the study, we revisited some of
the old records of the species taken during the early 1980s when the species was first
recorded. New occurrences were recorded and old ones were deleted and corrected. In our
own sampling initiatives, we found that detection of Sirex wood wasp sites of infestation
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was unique, characterized by circular emergence holes and the teardrop rosin secretion
flowing from the emergence holes [47,62,63]. These factors improved the efficiency and
accuracy of Sirex wood wasps field investigation. The selected 24 occurrence points
covering 14 administrative regions in China. There were 20 occurrence points distributed
in a highly suitable area, 2 in the moderately suitable area, and 2 in low suitable area
(Figure 3). Maximum entropy is highly reliable as a predictive climate suitability model
due to its requirements of small sample sizes and its ability to accurately predict potential
distribution based on environmental variables and current cooccurrence data.

4.1. The Association between Environmental Variables and the Potential Spread of S. nitobei

The earliest record of the S. nitobei collection in China was in 1980, and it has now
expanded 1750 km southwest, 1450 km northwest, and 2200 km northeast from the earliest
discovery place. An adult Sirex wood wasp maximum flight distance was 56 km [64,65]. The
excellent flying ability and the continuous large suitable areas explained the long-distance
spread of S. nitobei. The four primary environment variables affecting the distribution
of S. nitobei were the rainfall in July (prec7), maximum temperature in February (tmax2),
minimum temperature in July (tmin7), and rainfall in December (prec12), which showed
that S. nitobei had strong environmental adaptability driven by temperature and precipita-
tion. The range of predicted suitable habitats for S. nitobei under the near current climatic
conditions was 79◦–137◦ E, 21◦–54◦ N, while the current range of occurrence points was
103◦–131◦ E, 25◦–48◦ N, a large area of occurrence compared to other Sirex wood wasps
distributed in China [13,21]. The highly suitable area for S. nitobei under the current climate
covers a total area of 6.03 × 106 km2, largely driven by summer rainfall patterns, tempera-
ture and isothermality. These areas increase by a great proportion when modeled in future
climate scenarios and shared socio-economic paths.

Changes in environmental factors, especially temperature and rainfall, can influence
microclimates and influence the habitability of areas for the species. The increased impact
of climate change, particularly changes in rainfall and temperature patterns, can influence
the survival ability of the species. Here we show that the S. nitobei can increase its distribu-
tion range when areas are within the maximum rainfall range of 152 mm and temperatures
below 15 ◦C. S. nitobei may have high flexibility and adaptability in its tolerance to fluctu-
ating environmental conditions. Thus, when the environment of a certain habitat of the
S. nitobei destroyed, it could quickly find another suitable habitat. Therefore, its habitat
can always be maintained above the minimum area requirements (MAR) required for
survival [66–68]. This is evident in the increasing suitability of moderately suitable areas
under the current climate condition, as well as the future predicted moderately suitable
areas. The high adaptability may allow S. nitobei to easily colonize new areas in predicted
suitability areas with only a small population [69].

Temperature can significantly affect the reproductive output of insects. Under unfa-
vorable temperatures, eggs and larvae may not survive. Temperature and precipitation
have been shown to affect the emergence of S. nitobei larvae as well as the developmental or
pupal stages [10,70]. Thus, precipitation (prec7) and minimum temperature in July (tmin7)
may affect the critical period that determines larval emergence. Furthermore, the growth
conditions of the obligate mutualistic fungus of S. nitobei, A. areolatum, and A. chailletii,
are also affected by temperature and moisture. The growth condition of A. areolatum is
0–30 ◦C [71,72]. The larvae of S. nitobei rely on the obligate mutualistic fungus for nutrition
for their growth, while moisture availability affects the growth condition of the fungus. The
fungus prefers to grow in wood that has a lower moisture content [18,20]. We show that as
precipitation increases, the occurrence of S. nitobei is predicted to decrease, and this could
be related to the availability of food for larval development. This is likely because when the
wood is too wet, the fungus cannot grow or affect the wood so that it is more palatable for
the larvae of S. nitobei. In a similar research, Sun et al., used the maximum entropy model
to predict the globally suitable areas of S. noctilio, using environmental variables including
the annual mean temperature (bio1), mean temperature of the warmest quarter (bio10),
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and precipitation of the wettest month (bio13) [34]. These three environmental variables
were also affecting the growth of the mature larvae and the pupa, and also could predict
potentially suitable areas determined by variation in temperature and precipitation [46].
Therefore, the environmental adaptability of larvae and the obligate mutualistic fungus
could influence the distribution of Sirex wood wasps in China, and the spread of Sirex
species could be enhanced by climate change patterns associated with low rainfall and
high temperatures.

We initially used the maximum entropy model to predict the potentially suitable areas
of S. nitobei around the world, and found that the high and moderately suitable areas of
S. nitobei are mainly concentrated in China, Japan, South Korea, and North Korea. This
was consistent with the information that has been reported [10,11,13,14,62,63]. Besides,
there were a few sporadic suitable areas in northeastern India, Nepal, and southeast Russia,
around known habitats of S. nitobei, and there was a small range of low or unsuitable
areas of S. nitobei in other countries or regions. However, there are no relevant reports on
S. nitobei in other countries.

4.2. The Main Factors Affecting the Predictive Accuracy of the Maximum Entropy Model

We found maximum entropy model to be highly effective and accurate in predicting
the potentially suitable areas of S. nitobei in China. The model yielded high AUC variables,
and although using the AUC value to verify the predictive accuracy of maximum entropy
model is controversial [59,60,73], we did not find a significant difference between the AUC
value and AUC ratios under different climate conditions in this study. The AUC values
and AUC ratio were greater than 0.9 and 1.0, indicating the predictive accuracies were
very good (Table 2, Figure 2). In this study, the maximum entropy model was confirmed
to reliably predict the suitable area of S. nitobei by using a wide range but a small sample
size of occurrence points [74]. Moreover, it is important to incorporate up to date and
relevant climate and environmental data when using distribution models. Here we used the
updated WorldClim database with near current and future climate variables, which gave
predictions that are much closer to reality and have biological relevance. However, there
are still challenges and a 20-year gap with the current timeline, which means that there
are still restrictions for predicting the potentially suitable area of the species as researchers
cannot get the latest climate database.

4.3. The Suitable Area of S. nitobei under the Future Climate Conditions and the Suggestions about
the Pest Control

Comparing the range of the potentially suitable area of S. nitobei under the future
climate conditions with the near current climate condition, the area of the total suitable
area was increasing under the four CMPI6 climate scenarios, with an increase of 18.74% in
total suitable area under climate scenario 2061–2080 ssp370; an increase in land area from
6.03 × 106 km2 to 7.16 × 106 km2 predicted potential total suitable area. The percentage of
increase in the area of the highly suitable area was 28.35% and that of moderately suitable
area was 44.05%, showing a more rapid increase in suitability under the scenarios 2081–2100
ssp245 and 2081–2100 ssp370; while under the same climate scenarios, low suitability areas
increased by 23.77%. Overall, in the climate scenarios of the period 2021–2040 ssp370,
2041–2060 ssp245, 2061–2080 ssp126, and 2081–2100 ssp126, there is a general decrease in
the suitability area of S. nitobei, which could be associated with high rainfall patterns and
temperature variations in these periods and currently shared socioeconomic pathways,
which would affect the lifecycle of S. nitobei as well as its obligate mutualistic fungus.
The most apparent increase and decrease in the suitable areas were in Jiangxi, Hunan,
Guangdong, Inner Mongolia, Tibet, and Xinjiang. The time interval of the 21st century
periods under four CMIP6 climate scenarios is ten years, and thus within ten years, the
area of the suitable area would not change significantly. As a result, the potentially suitable
area under the scenario ssp585 might present a more realistic result.

Sirex wood wasps are highly adaptable and can spread easily due to their distance
dispersal abilities. In terms of possible measures for pest control strategies that can be
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employed to control S. nitobei, we suggest that quarantine should be formulated to prevent
spread. S. nitobei showed high levels of adaptability and likely to have physiological toler-
ance to highly variable environmental conditions. Under future climate change scenarios,
the species is likely to spread widely as more areas become more suitable and habitable
through favorable environmental conditions.

5. Conclusions

We found that maximum entropy model is effective in predicting the potential suitable
areas of S. nitobei in China, despite the given small sample sizes. Incorporation of near
current and future climate scenarios allowed for a better predictive outcome and enabled
the precise identification of important environmental variables driving current and poten-
tial future suitable areas, particularly the shared socioeconomic pathways ssp126, ssp245,
ssp370, and ssp585. As expected, temperature and precipitation were very important in
predicting the potential suitable areas of S. nitobei, which could be related to the biological
requirements for reproduction and larval development, as well as the growth requirements
of its obligate mutualistic fungus. Under the future climate conditions, the total area and
the area of suitable areas for S. nitobei will increase continually, with noticeable changes
in areas such as Inner Mongolia, Tibet, and Xinjiang. The pest control of S. nitobei should
focus on these areas where multiple types of Sirex wood wasps jointly infest the host plants,
and the distribution needs to be continuously mapped.
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