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Abstract: Accurate individual tree crown (ITC) segmentation from scanned point clouds is a fun-
damental task in forest biomass monitoring and forest ecology management. Light detection and
ranging (LiDAR) as a mainstream tool for forest survey is advancing the pattern of forest data
acquisition. In this study, we performed a novel deep learning framework directly processing the
forest point clouds belonging to the four forest types (i.e., the nursery base, the monastery garden,
the mixed forest, and the defoliated forest) to realize the ITC segmentation. The specific steps of our
approach were as follows: first, a voxelization strategy was conducted to subdivide the collected
point clouds with various tree species from various forest types into many voxels. These voxels
containing point clouds were taken as training samples for the PointNet deep learning framework
to identify the tree crowns at the voxel scale. Second, based on the initial segmentation results,
we used the height-related gradient information to accurately depict the boundaries of each tree

check for

updates crown. Meanwhile, the retrieved tree crown breadths of individual trees were compared with field

Citation: Chen, X; Jiang, K.; Zhu, Y; measurements to verify the effectiveness of our approach. Among the four forest types, our results
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revealed the best performance for the nursery base (tree crown detection rate r = 0.90; crown breadth
estimation R% > 0.94 and root mean squared error (RMSE) < 0.2m). A sound performance was
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also achieved for the monastery garden and mixed forest, which had complex forest structures,
complicated intersections of branches and different building types, with = 0.85, R* > 0.88 and
RMSE < 0.6 m for the monastery garden and r = 0.80, R? > 0.85 and RMSE < 0.8 m for the mixed forest.

10.3390/12020131 For the fourth forest plot type with the distribution of crown defoliation across the woodland, we

achieved the performance with r = 0.82, R? > 0.79 and RMSE < 0.7 m. Our method presents a robust
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1. Introduction

The accurate separation of individual trees plays an essential role in the tree parameter
inversion. Forest parameters [1], such as tree location, tree height, canopy density, crown
width, tree species, and diameter at breast height (DBH), are crucial for forest resource
management, field inventory retrieval, and silvicultural activity execution [2]. The tradi-
tional acquisition of tree structural parameters was usually through field measurements,
but this process is extremely time-consuming, labor-intensive, and destructive [3]. Light
detection and ranging (LiDAR) is an active remote sensing technology, as its high precision
Attribution (CC BY) license (https:// and high efficiency has led to it becoming one of the most efficient surveying techniques
creativecommons.org/licenses /by / for acquiring detailed and accurate target phenotypic data [4]. In terms of the carrying plat-
40/). form, laser scanning systems can be classified into four categories: airborne laser scanning

This article is an open access article
distributed under the terms and

conditions of the Creative Commons

Forests 2021, 12, 131. https:/ /doi.org/10.3390/£12020131 https:/ /www.mdpi.com/journal/forests


https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-0671-5950
https://orcid.org/0000-0003-4294-8337
https://doi.org/10.3390/f12020131
https://doi.org/10.3390/f12020131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12020131
https://www.mdpi.com/journal/forests
https://www.mdpi.com/1999-4907/12/2/131?type=check_update&version=2

Forests 2021, 12, 131

2 0f 22

(ALS) [5], satellite-based laser scanning (SLS) [6], vehicle-borne laser scanning (VLS) [7],
and terrestrial laser scanning (TLS) [8]. Similar like ALS, the unmanned aerial vehicle
(UAV) provides an alternative platform for lidar data acquisition, which can decrease the
cost and provide denser LiDAR points when flying at a slow speed and a lower altitude [9].

As mentioned above, the detection and the segmentation of a single tree crown is a
fundamental step to accurately estimate the individual tree structural attributes [10]. We
classified the existing methods of individual tree crown (ITC) segmentation into two main
categories, which are widely used in the field of forestry: (1) the canopy height model
(CHM)-based approach [11] which uses image processing to segment a single canopy and
then uses a local maximum to define the location of the treetop. Algorithms such as the
marker-controlled watershed algorithm [12], graph-based segmentation algorithm [13],
and localized contour expansion based on the topological relationship [14], have also been
adopted to accomplish tree crown segmentation based on the detected treetop locations.
Nevertheless, the relatively low accuracies for these algorithms are always caused by the
inhomogenous, interlocked, and blocked canopies [15]. (2) The point-based approach is a
method that requires massive computation of 3D points. This method can effectively reduce
the loss of information at the tree level [16] and avoid errors caused by the point cloud
interpolation during the process of generating CHM, such as the K-means clustering [17],
mean-shift algorithm [18], voxel space projection [19], adaptive multiscale filter [3], and
regional growth method [20]. However, for natural forests in which tree crowns can be
extremely irregular and are often heavily intersected, the results of accurate individual tree
crown segmentation by these methods still need to be improved.

Deep learning, as a new area of machine learning, has been widely used in image
classification, object detection and localization among other aspects [21]. Deep learning
algorithms using Convolutional Neural Networks (CNN) have shown encouraging re-
sults for the automatic classification of two dimensional (2D) images [22], such as facial
recognition [23], autonomous driving [24], medical imaging [25], and fruit and vegetable
detection [26,27]. However, the phenotypic structure [28] of more 3D objects is directly
reflected in the point cloud, and the original information and spatial characteristics will
be lost if a 2D network is used. Therefore, 3D object detection was proposed by many
research communities.

At present, with the development of Laser Scanning technology, 3D deep learning has
received great attention. The methods of 3D point cloud recognition based on deep learning
can be divided into four categories: (1) A feature-based method [29] which extracts feature
descriptors from the point clouds and then uses a fully connected network to classify the
shape. However, this method is constrained by the representation power of the features
extracted; (2) The multi-view method [30] which applies 2D convolutional network to
classify the 2D images that use a projection strategy to convert 3D point clouds or shapes
from different perspectives. The method based on multi-view achieves good performance
in classification tasks [31], but it loses the original 3D spatial position information in the
process of being transformed into 2D image; (3) The method based on voxelization which
converts the unordered point clouds to a continuous arrangement of the voxel grid and
classifies the voxel grid by 3D convolutional neural network [30,32]. The method based on
voxelization can be effectively retained the original spatial information of the point clouds
in each voxel, which is beneficial for subsequent refinement processing for the accurate
target depiction. Compared the performances of the aforementioned three methods, the
voxel-based method using the divide-and-conquer strategy [33] to recognize the small
targets from the whole collected data of the studied complex scenes and then stitched
the recognized results together to realize the small objects extraction from the whole
collected data. Many researchers have proposed some related deep learning frameworks,
e.g., PointNet [34], Kd-Network [35], and PointCNN [36]. PointNet was the pioneering
work with raw point clouds in each voxel as input for deep learning. The model PointNet
provides a unified architecture for applications ranging from object classification, part
segmentation, to scene semantic parsing.
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In this paper, a novel individual tree segmentation method combined with a Point-
Net method is proposed. The research objectives of this paper mainly include (1) using
UAV-borne laser LiDAR to collect data; (2) voxelizing the training and testing sites; (3) trans-
forming the data of the training and testing sites from voxelization into the format required
by the PointNet for training and testing; and (4) identifying the segmented voxels based on
the PointNet and using the gradient information to construct and describe the boundary
of the tree in each voxel to realize the individual tree crown (ITC) segmentation. The
workflow of our method is shown in Figure 1.

(Poﬁnt cloud data acquisition)

Data filtering

( Ground LiDAR Data ) ( Aboveground LiDAR Data )

Voxelization

Y

( Many voxelizations )

Converting point cloud format to hdf5 format

Y ~ Train and test model
(Training set and testing set)

Rasterization method ¢

Digital surface model Recognizing the target
(DSM) of each voxel tree in each voxel

Gradient information

Y
Individual tree crown
(ITC) segmentation

Figure 1. The main steps for our individual tree segmentation based on the deep learning method.

2. Materials and Methods
2.1. Study Area

The study area is located in Qishan scenic area of Chizhou City (30°38'15.89” N,
117°30'11.33” E), southwest of Anhui province (Figure 2), China. As a national forest city,
Chizhou city has a warm climate with four distinct seasons and abundant rainfall, belong-
ing to a warm and humid subtropical monsoon climate. The average annual precipitation
here is 1400 to 2200 mm, the average annual temperature is 16.7 °C, and the average temper-
atures in the coldest month (January) and the hottest month (July) are approximately 3.1 °C
and 28.7 °C, respectively. Qishan covers a total area of 36 km?, with the highest elevation of
868 m. The tree population in this area mainly consists of 10 different tree species, including
metasequoias (Metasequoia glyptostroboides Hu & W. C. Cheng), Chinese firs (Cunninghamia
lanceolata (Lamb.) Hook), cedars (Cedrus deodara (Roxb.) G. Don), ginkgoes (Ginkgo biloba L.),
sapindus (Sapindus mukorossi Gaertn.), apple trees (Malus pumila Mill.), poplars (Populus L.),
camphors (Cinnamomum camphora (L.) Presl), ceibas (Bombax malabaricum) and locust trees
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34.6°N

119.6°E
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(Sophora japonica Linn.). As shown in Figure 2, four experimental site types, including
nursery base (experimental site 1), the monastery garden (experimental site 2), the mixed
forest (experimental site 3) and the defoliated forest landscape (experimental site 4), in the
Qishan scenic were chosen for our experiments. Moreover, experimental sites 1, 2, and 4
are located at the foot of the mountain, while experimental site 3 is located at the waist of
a mountain with unevenly hilly terrain. Four experimental sites consisted of buildings,
shrubs, and trees.

(b)

) ® 117°30°11.33"E,30°38'15.89"'N
D Experimental site 1
(nursery base)

D Experimental site 2
(monastery garden)

Experimental site 3
(mixed forest)

D Experimental site 4
(deciduous forest)

29.4°N

114.9°E

0 500 1000 2000
[ —— ]
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Figure 2. General situations of the study area. (a): The location of the study area and the four experimental sites within the
Qishan scenic area, Chizhou, Anhui province, China. (b): The remote sensing image acquired from Google Earth, where the
different coloured rectangles mark the edges of the different experimental sites. (c): The photos show the growth of trees in

the four experimental sites.

Four subsets extracted from the four experimental sites occupying the area of 1947.16,
44,596.64, 60,601.78 and 14,780.11 square meters, respectively, were taken as the study area
in the follow-up experiments. The vegetation components and buildings in 50% of the area
of each subset were extracted as the training samples. The rest of the four subsets served as
testing samples (which did not intersect with the subset used as the training samples).

2.2. Laser Data Acquisition

The LiDAR data were measured using a Velodyne HDL-32E sensor on the DJI FC6310
unmanned aerial vehicle (UAV) [37]. The laser group in the system can realize the adjust-
ment of angle from —30.67° to +10.67° and provide a 360° horizontal field of view. The
sensor can output approximately 700,000 scan point clouds per second with a measurement
accuracy of £2 cm. In addition, this sensor has the advantages of penetrating smoke and
fog, and the working environment can be from —10 °C to +60 °C, which greatly improves
the redundancy of working environment. The Velodyne LiDAR system integrates laser
scanning with SLAM (simultaneous localization and mapping) technologies [38] to rapidly
complete the registration of each scan and generate a high-density point cloud for each
target tree. During data acquisition, the flight speed, flight altitude, and laser scanning
overlap were set as 18 m/s, 60 m (above the take-off location level) and 40%, respectively.
The final extracted point clouds were stored in LAS 1.2 format. The average point density
of the collected LiDAR data for the nursery base, monastery garden, mixed forest and
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defoliated forest habitats were 1511.30 pts m~2, 1002.17 pts m~2, 722.31 pts m~2, and
502.34 pts m 2, respectively.

2.3. Data Pre-Processing

After acquiring the point cloud data from the experimental sites scanned by the laser
scanner, we used the method of Gaussian filtering [21] to remove noise points from the
scanned data. The point clouds after denoising were classified as aboveground points
and ground points using the cloth simulation filtering (CSF) [39] method. Then, the
aboveground points were voxelized according to different voxel sizes and points within
a voxel were randomly sampled to 1024 points. We converted the point clouds in each
voxel constituting the training and testing sets into HDF5 [40] format according to the
requirements of the PointNet. In this experiment, the criteria of the HDF?5 file included
two parts: data and labels. In the data section, data converted from the scanned points
as training and testing sites were an array of n x 1024 x 3, where n represents the total
number of segmented input voxels; 1024 represents the number of point clouds of random
sampling in a voxel and 3 represents the dimension, i.e., spatial position (x, y, z). Labels
were used to identify certain properties or features, or classifications or contained objects.

2.3.1. Training Data

In this study, we manually generated three types of the training data, which include:
(1) individual trees belonging to a variety of tree species and under two plant physiological
status (with and without leaves), (2) different Chinese architectural styles, such as, palaces,
city walls, temples, and houses, and (3) other objects including bare ground, understorey
vegetation and a small portion of point clouds regarding a single tree (usually <20%) or
intersecting parts of adjacent trees. The number of training samples (trees and buildings)
for the nursery base, monastery garden, mixed forest plot and defoliated forest landscapes
were 501 (trees), 168 (trees)/334 (buildings), 426 (trees), and 166 (trees), respectively. Figure
3 shows the partial training data, where manually extracted point clouds of the individual
trees or part of the buildings were bounded in a voxel.

A large number of samples is the basis for high-precision training, so it is worth
having as much training data as possible to train neural networks to avoid over-fitting.
In our study, data augmentation [41] was used to solve this problem. The method of
data augmentation is a strategy that increases the diversity of data available for training
models without actually collecting new data, thus improving the accuracy of the model. We
generated new training data set based on the rotation of the entire point cloud in each voxel
by a random angle and along the vertical axis. Meanwhile, the strategy of moving every
point in each voxel with a small offset along a random vector, i.e., jittering the position
of each point of every training sample by a Gaussian noise with zero mean and a small
standard deviation (ranging 0.02-0.06). As a result, the number of training samples was
broadly expanded to 10240.

2.3.2. Testing Data

The Four aforementioned experimental sites, i.e., the nursery base, the monastery
garden, the mixed forest and defoliated forest were used to test the accuracy and robustness
of the method. The number of trees in the testing sites in experimental sites 1,2, 3 and 4
was 522,160, 456, and 167, respectively (Table 1). After removing the noise points, the four
scanned point sets Vi, V>, V3, Vy of the corresponding experimental sites were subdivided
into many voxels through voxelization. Then, the point cloud in each voxel was obtained
by each voxelization (i.e.,vj, v; € V) according to the HDF5 criteria.
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Figure 3. Illustration of the partial training sets of point clouds collected for the PointNet network. Lines 1 to 10 are
extracted individual trees of corresponding scanned points regarding different tree species, namely (a) metasequoias,
(b) Chinese firs, (c) cedars, (d) ginkgoes, (e) sapindus, (f) apple trees, (g) poplars, (h) camphors, (i) ceibas, and (j) locust
trees, respectively. The last five lines (k-o0) are parts of buildings including palaces, city walls, temples, and houses in
different Chinese architectural styles and other objects including bare ground, understorey vegetation and a small portion
of point clouds regarding a single tree (usually <20%) or intersection parts of adjacent trees.



Forests 2021, 12, 131

7 of 22

Table 1. A detailed description of the dataset for our deep learning method.

Nursery Base Monastery Garden Mixed Forest Defoliated Forest
NT 1059 336 921 338
NP 2,942,740 44,693,237 43,773,108 7,424,662
NPPT 2779 31,020 47,528 21,966
Area (m?) 1947.16 44,596.64 60,601.78 14,780.11
NT 537 176 465 171
Training sites NP 1,485,416 22,432,004 22,044,103 3,722,314
Area (m?) 984.13 22,377.18 30,461.12 7439.57
NT 522 160 456 167
Testing sites NP 1,457,324 22,261,233 21,729,005 3,702,348
Area (m?) 963.03 22,219.46 30,140.66 7340.54

NT: the number of trees. NP: the number of scanned points. NPPT: the average number of scanned points per tree.

2.4. Training by PointNet

PointNet is the first deep neural network that directly processes out-of-order point
cloud data. The PointNet has three core building blocks, i.e., the transformation networks
(T-Net), the max pooling layer as a symmetric function to aggregate information from

all the voxels and the multi-layer perceptron (MLP) network. A point cloud pf (xi,Yi,2i)
is represented as a 3D scanned point in the j-th voxel belonging to the scanned point
set P C R3, where each point p is a vector of its (x,y,z) coordinate as point’s channels.
There are three core properties for the point cloud, including (1) being unordered, which
represents a network that consumes N 3D point sets that needs to be invariant to N!
permutations of the input set in data feeding order, (2) the interaction among points, which
means that points are not isolated, and neighbouring points form a meaningful subset, and
(3) invariance under transformations [42], which represents that the learned representation
of the point set should be invariant to certain transformations. Therefore, it is necessary to
design a symmetric function in algebraic combinatorics, of which the value is independent
of the order in the scanned points in a voxel. The PointNet network is represented by the
symmetric Equation (1).

@

i P Y- j
FPv P2 Pis - Pr02s) = 7(_max {h(p;)})

In the formula, p’i, pé, o pf, R P]ioz4 is the input disordered point cloud in the j-th

voxel; pf € P; 1024 is the number of input point clouds for each voxel; f is the continuous
set function and map a set of points to a vector; 7 represent the multi-layer perceptron
network and & represents the composition of a single variable function and a max pooling
function. The values of the continuous set function f in Equation (1) are invariant regardless
of the input order of the point cloud.

Figure 4 shows the network architecture of PointNet. The input of the network was
the three-dimensional coordinates (n x 1024 x 3) of the three-dimensional point cloud
containing n voxels and 1024 points within a voxel. T-Net is a mini-network that can
predict the affine transformation matrix. The first T-Net in the network generated an affine
transformation matrix to normalize the rotation, translation and other changes of the point
cloud. At this time, the input of the first T-Net was the original point cloud data, and the
output (aligned data) of the first T-Net was a 3 x 3 rotation matrix. Then, the original 3D
point data was multiplied by the transformation matrix (3 x 3) learned by the first T-Net to
achieve data alignment for ensuring the invariability of the model for specific spatial trans-
formation. The aligned data of point clouds (1024 x 3) in each voxel was passed through a
multi-layer perceptron (MLP (64, 64)) with the given numbers of layer sizes shown in the
bracket to obtain the matrix (1024 x 64). The fully connected layers of MLP are shown by
the three dotted boxes in the upper part of Figure 4. After that, 64-dimensional features
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were extracted for each voxel, and then the 64 x 64 transformation matrix was predicted
by the second feature space transformation matrix of the T-Net prediction network, which
was applied to the features to achieve feature alignment. Similarly, the matrix (1024 x 64)
was multiplied by the transformation matrix (64 x 64) to achieve the alignments of features.
Then, the second MLP (64,128,1024) was used for feature extraction based on each voxel
until the feature’s dimension is changed to 1024, and then the global feature vector of
each voxel was extracted by max pooling layer. Finally, the global features of the 1 x 1024
dimension pass through the third MLP (512, 256, 3), resulting in 3 classifications, where
3 represents the categories of the classification (i.e., the number of categories defined by
the label, O represents the tree, 1 represents the building and 2 represents other objects).
Each category corresponds to the classification scores for the point cloud. Then, through
the activation layer based on the SoftMax function, the prediction probability of the point
clouds in each voxel can be obtained.

MLP(64,128,1024)

2 @ X
a0 )%
A

MLP(64,64) MLP(512,256,k)
[ ——————— e e e "
i3 64 64 64 64 128 1024 1024 512 256 k=3
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Figure 4. The architecture

—

@
(64,64) MLP(64,128,1024)
________ feature max
- transform N MLP(512,256,3) softmax
<+ o~ ool o
S | shared % [ ! —
| share = alobal feature : predict possibilities
o
- —-I_L_I—'— - output scores
----------------: : Second :
E E E O Input Layer
L] L] 1
H H traﬂSform: @ riccen Layer
L) 1 1l
matrix H H matrix H @ oust oyer
multiply H H multiply H
L} 1 n

of PointNet. The architecture is mainly composed of two transformation matrix prediction

networks (T-Net), three multi-layer perceptrons (MLP) and a max pooling layer. The network takes 1024 points in a voxel as

input, applies input and feature transformations, and then aggregates point features by max pooling. The output is the

predicted possibilities for the classifications of classes.

Loss = ———
R

2.5. The loss Function of the Training Process

The SoftMax cross-entropy function (Formula (2)) was taken as the loss function for
the deep learning network. In the training process, the loss function is defined as follows:

k k
1 .
Y Ly + weightregreLyeg = —-———3_ Y (indic. 0 log () ) ) + weightregreLreg 2
L (1)
[0,0,1] The first category (=0
indic.; = ¢ [0,1,0] The second category (=1 3)
[1,0,0] The third category {= 2
i
r 4 o2l
y{ = softmax(Z{) =5 4)
v o
=0
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Z{ = W * pj (5)
Lyeg = lZ_loss(I - AAT) )

In Formula (2), indic. ; represents an indicator related to the number of classifications.
If the calculated category ¢ and the current category [ of the voxel j are the same, the
indicator is assigned to 1, otherwise equal to 0. In our work, the total number of the
categories is 3. Hence, k=2 and I = {0,1,2}. e represents the dot product of two matrices.
Lyeg is used to constrain the feature transformation matrix, where A is the feature alignment
matrix (i.e., the transform matrix 64 x 64 obtained from the second T-Net), and [ is a unit
matrix. The function [2_loss represents the sum of the square of each element in the matrix

and then divided by 2. Here, the value of weighteg is set to 0.001. yA{ € [0,1] is the
probability of the network output for the j-th voxel which uses the SoftMax function,

indicating the probability that the input voxel belongs to the I-th category. Z{ is the
calculated probability value of the point clouds in the j-th voxel belonging to the /-th
category after neural network analyzing. w is the linear weights of the network model and
pl is the point cloud of the j-th voxel of the segmented input voxel.

The weight (w) of each layer of the deep convolution neural network is updated by
a stochastic gradient descent (SGD) algorithm [43]. A layer is a container that usually
receives weighted input, transforms it with a set of mostly non-linear functions and then
passes these values as output to the next layer. When the training loss function is less
than a certain loss threshold value (i.e., convergence), then the training is stopped and the
weight of each layer of the fixed network is no longer changed, so that the trained deep
convolutional neural network can be obtained.

2.6. Individual Tree Segmentation

The testing process included the following steps. The point clouds of each testing
site were assigned to continuous distributed voxels by voxelization. Then, the subdivided
point clouds in each voxel were analyzed by the PointNet framework with the learned
parameters through the training stage and the classification results of each voxel were ob-
tained. For the point clouds in a voxel recognized as trees, we refined tree crown boundary
delineation based on the height-related gradient information and accurate depicted the
crown boundaries beyond the limitation of the defined voxel boundaries.

First, the point clouds in a voxel classified as the categories of trees were mapped into
evenly distributed planar raster C of digital surface model (DSM) [44]. The elevation value
ofarastercellc, € C,k=1,2,... m? was equal to the largest height value of the points
within the cell, where m? represents number of the cells contained in a raster derived from
the point clouds within a voxel.

Then, a local maximum searching algorithm [45] was adopted to find the positions of
treetop in each voxel. The Hamiltonian operator, denoted hereafter by V, represents the
gradient of the cell in the three-dimensional space which was defined by x, i (horizontal)
and z (vertical) axes. The corresponding Equation is as follows:

Verpn = 358+ 5,0+ 529 %

In Equation (7), the ﬁ, v and w are the unit vectors in the x, y and z directions,
respectively. The gradient is the result of the Hamiltonian operator directly acting on the
DSM C of each voxel. In our study, the DSM of each voxel at a raster cell resolution is
11 x 11. g—g, aa—(y: and %—S are the derivatives of the highest scanned point in each raster cell
along the x, y and z directions, respectively. The phenotypic features of the tree crown
periphery present a downward hierarchical structure, i.e., the height value on the surface
pixels of the crown decreases gradually from the peak to the surroundings. Hence, there
must be saddle points (the lowest point and the gradient of this point close to 0) existing
between two adjacent trees. Assisted with the calculated gradient information of each
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® each pixel obtained by the DSM
® boundary pixel of tree crown
® treetop

cell, the valley line between adjacent tree crowns was located by contour line extraction
method [46], which is similar to the graph cut method based on the node depth. Finally, if
the height value of part of the point clouds within the two adjacent voxels with a continuous
downward trend, i.e., continuous gradient descent along the similar directions, it indicates
the point clouds belonging to the same tree crown were subdivided into two parts by
voxelization. Hence, the two parts of one tree crown should be merged (Figure 5).

Figure 5. Schematic diagram showing the individual tree crown segmentation for the point clouds in the 21 adjacent voxels

based on height-related gradient information. The black cuboid represents the segmented voxel classified as a tree by the
PointNet. (b,c) are the side and top views of the zoomed area of the yellow cuboid shown in figure (a), respectively.

The segmentation results of the selected testing sites with different forest stand struc-
tural features were evaluated versus the manually measurement results. TP (true positive)
represents the number of trees that were correctly segmented. FN (false negative) represents
the number of segmented trees that were not detected (omission error). FP represents (false
positive) the number of segmented trees that do not exist in reality but were incorrectly
added (commission error) by our model. In addition, the r (recall), P (precision), and F
(F-score) for the three testing sites were calculated using the following Equations [47]:

TP
"TTPYEN ®)
TP
P_TP+FP ©)
rxP
-2 1
>|Sr—l—P (10)

where the r represents the detection rate of the tree, P represents the correctness of the
detected trees, and F represents the overall accuracy of the detected trees. As can be
seen in the formulas, high TP, low FN, and low FP values represent high accuracy of the
tree detection.
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3. Results
3.1. Results of Training and Testing of the PointNet Model

The experiments except for a section about deep learning performed on a windows 10
64-bits PC equipped with an Intel(R) Core (TM) i7-7700 CPU @2.80 GHz processor (Intel
Inc., Santa Clara, CA, USA), and 16GB-RAM. Since deep learning involves automating a
computer system to study a large amount of training data and requires high computing
power, we used NVIDIA RTX 2080Ti GPU (NVIDIA Inc., Santa Clara, CA, USA) instead of
CPU to reduce our training time. In the model of PointNet, the learning rate is 0.0001, the
batch size is 16, and the number of epochs is 200. The training loss and training accuracy
are plotted in Figure 6. The total training and testing time is approximately 100 h.

100
0.8
:\5 80
S 60 0.6
e @ 0.4
5 40 g >
8 4
g 20 | ‘ | | ! . 0.2
0 0
0 50 100 150 200 0 50 100 150 200
Epoch Epoch

(a) (b)

Figure 6. (a,b) are the curves of training accuracy value and training loss value of PointNet for tree recognition from input
voxels. Fluctuations in the light colored region were caused by repeatedly learning effective features from complicated
samples in a batch to identify whether the voxel is a tree, but the overall upward trend and the downward trend of the
curve indicates a better convergence result of training.

With the continuous epoch of the learning process, training samples (point cloud
in each voxel) showed an increasing trend for training accuracy and a decreasing trend
for training loss, indicating that our PointNet was a global optimization process. Both
training accuracy and training loss show a significant increase and decrease in the first
25 epochs, respectively. The reason is likely that when dealing with samples overwhelming
in 3D object classification, the model PointNet shows incompatibility due to the fact that
its gradients are mainly determined by these easy-classified samples. During the training
process, the neuron network encountered some complicated samples in a batch, e.g., a
voxel containing parts of multiple trees, small proportion of an individual tree data or
some dwarf shrubs, which impaired the learning efficacy of the model and resulted in the
strong fluctuations in the value of the regression loss function. After 75 epochs, accuracy
and loss of training sample converged to 0.96 and 0.009, respectively, indicating the strong
fitting ability of the PointNet. Figure 7 shows the side view of the recognition results of the
four testing plots obtained by the model of the PointNet.
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Figure 7. Recognition results of the partial LIDAR data belonging to the four forest plot types in our study sites using Point-
Net model: (a) nursery base, (b) monastery garden, (c) mixed forest, and (d) defoliated forest. A simplified representation

using the upper rectangles in different colours represents the classification results of the point clouds below within each

corresponding voxel, where the green, blue and red rectangles in (al,b1,c1,d1) indicate that the point clouds under the

rectangle within the voxel were recognized as trees, buildings and other objects, respectively. (a2-a4,b2-b4,c2—c4,d2-d4)

show the zoomed classification results for the point clouds in some voxels.

The quantitative assessment of individual voxels of four testing sites is listed in Table

2. In the experiment, the setting of voxel size is crucial, which will affect the accuracy of
the PointNet model. Therefore, we set different appropriate specifications of the voxels
(i.e., the average tree crown width in the E-W and the N-S directions of each testing site
were taken as the length and width of the voxel) according to the characteristics (i.e., tree
crowns) of trees of the four testing sites as much as possible. The nursery base (testing
site 1) has homogeneous forest with similar tree crown sizes, species, and ages. Hence,
it is relatively easy to set the size of the voxelization. For the monastery garden (testing
site 2) with different types of buildings, different tree species, it will be cumbersome to set
the size of the voxel due to the intricate growth and different size of various tree species.
For the mixed forest (testing site 3) with various sizes of tree crowns, the complicated
intersection of branches and containing roughly 15% of the sub-canopy trees, the defoliated
forest (testing site 4) with bare branches, and a few of trees with lower parts covered by
surrounding shrubs, it is difficult to ensure that a voxel contains a complete tree.

Table 2. Overall accuracy assessment of individual voxels of four testing sites for identifying trees.

Nursery Base Monastery Garden Mixed Forest Defoliated Forest

Average tree crown

5 . 1.35/1.36/3.29 6.46/5.81/6.34 7.08/6.59/13.71 5.23/5.2/14.95
length/width/heights (m)
Length/width/height of voxels (m) 1.35/1.36/4.92 6.46/5.81/26.96 7.08/6.59/48.06 5.23/5.2/20.96
Total number of voxels after voxelization 528 592 646 270

Identification results

T:497; B:5; O:26 T:168; B:331; O:93 T:424; B:30; O:192 T:165; B:19; O:86

T: the number of voxels identified as trees. B: the number of voxels identified as buildings. O: the number of voxels identified as

other objects.

The average tree crown size obtained by preliminary forest survey was used to define
the size of the voxels. Here, we defined voxels with lengths, widths and heights of 1.35 m,
1.36 m, 4.92 m for the nursery base, 6.46 m, 5.81 m, 26.96 m for the monastery garden,
7.08 m, 6.59 m, 48.06 m for the mixed forest, and 5.23 m, 5.2 m, 20.96 m for the defoliated
forest, respectively.
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For four testing sites, nursery base, monastery garden, mixed forest and defoliated
forest, the identified voxels of trees are 470, 136, 365, and 137, respectively. For the nursery
base, as shown in Figure 7(a2), the main errors appeared when the voxel containing scanned
points was regarded as a small portion of tree saplings with immature tree crown and
unclear topological structure (e.g., not typical tower and umbrella shapes). The model
PointNet extracts the feature of each independent point and the feature of the global point
cloud, and it is difficult to learn the conjunction feature from two different objects, which
likely resulted in incorrect identification with incomplete canopy shapes after extracting
point cloud feature from a voxel acquired by segmentation. When a voxel contains parts
of multiple tree data with a bimodal distribution (i.e., a complete tree crown and a small
portion (<20%) of an adjacent tree crown), the model will learn the complete information
generally and always identify whole point clouds in a voxel as tree.

For the monastery garden, the spatial tree shape is a geometrical primitive with the
phenotypic feature like a major trunk supporting an elliptical or conical-like shaped tree
crown, which differs from the rigid objects such as buildings with regular phonotypical
traits. When a voxel contains both parts of trees and buildings, the assumed errors raised
when the voxel containing both tree and the wall of the temples were easily misjudged due
to ambiguous phenotypic features. The point clouds in the mixture of trees and buildings
are always identified as a non-tree, a reasonable explanation is that high data complexity
deteriorates the useful information extracted from the tree by a deep learning network and
makes the classification results of the point clouds in the voxel uncertain. The classification
accuracy for the mixture point clouds in a voxel might be affected by the proportion of point
clouds regarding the tree in a voxel and feature extraction means of machine learning. In
contrast, a good performance was achieved for the case of the section of the buildings after
voxelization. We expect that the main reason for this result is that the temples have regular
surface traits different from the tree and the first T-Net in the network generated an affine
transformation matrix to normalize the rotation, translation and other changes of the point
cloud, which affords the efficient spatial and distance metric from multi-viewing angles
and captures the globe and local features matching the semantic features corresponding to
the training samples.

For the mixed forest plot with a variety of crown shapes and clustered and interwoven
foliage clumps, which yields the uneven density of the forest stem distribution and overlap-
ping shielding between crowns (Figure 7(c2)). The rich biomass forest creates complicated
and difficult-to-distinguish LiDAR point patterns and deteriorates the recognition ability
of the deep learning network. Hence, the point clouds regarding the overlapping trees
contained in a few voxels were falsely recognized as tree. Besides, the point clouds of
some tree crowns with skewed trunks and tilted tree body were not properly recognized,
which differs from the upward structure of tree crown with roughly symmetric dispersed
branching structures and prone to misclassification.

For the defoliated forest containing trees without leaves, the classification results are
shown in Figure 7d. In the period of dormancy, trees with bare branches present deficient
in the foliage elements. Judged by the globe structure of tree models, many tree skeletons
were successfully recognized. However, some cases were still failed to identify by the
network, e.g., a few of trees with lower parts covered by surrounding shrubs, many trees
with incomplete trunk or branches cut away by adjacent voxels. Moreover, the lack of
adequate training samples of defoliated trees also diminished the recognition strength of
the deep learning network.

After the voxel classification based on the PointNet model, the tree crown delineation
was conducted using the method mentioned in Section 2.6. The extracted individual tree
crown was identically color-coded and shown in Figure 8.
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Figure 8. Program diagrams showing our results of individual tree crown segmentation, where different colours indicate

the segmentation results for each tree. (a—d) show the partial segmented LiDAR data for the nursery base, monastery

garden, mixed forest and defoliated forest, respectively.

Sound performance was achieved in the tree segmentation results for the four different
types of forest sites using the PointNet method (Figure 8). It is found that the overall
segmentation accuracy of the nursery base and the monastery garden (r = 0.90 and r = 0.85,
respectively) (Table 3) are higher than that of mixed forest and defoliated forest (r = 0.80
and r = 0.82, respectively). One explanation for this difference is that the nursery base has
similar tree ages, uniform planting arrangement, fewer cross-growing branches of trees
and almost no understorey vegetation, which makes the voxel contain more complete tree
point clouds with certain morphological characteristics. The monastery garden contains
many trees with nearly spatial isolated crowns and modified shapes by manually pruning.
Hence, some trees have compact envelop of crowns and are convenient for the use of
height-related gradient information to realize the individual tree segmentation. Different
from the nursery base, the mixed and defoliated natural forests are composed of versatile
tree species and shrub compositions with interlacing and protruding branches. It is difficult
for the deep learning model and gradient-based segmentation method to segment trees
among the forest canopy with data deficiency caused by occlusion and other trees in the
period of dormancy with bare branches and unsmoothed outmost appearance, which result
in relatively poor individual tree segmentation results (r = 0.80 for mixed forest and r = 0.82
for defoliated forest, respectively). For the four types of the forest plots, some commission
errors arose due to multi-foliage clumps belonging to the same tree crown, strong lateral
branches generating locally convex points and the upturned eaves on the roof corner of the
temples mistakenly identified as treetops.

Table 3. Accuracy assessments of the individual tree segmentation on the four testing sites.

NT NS TP FP EN T P F
Nursery base 522 511 470 41 52 0.90 0.92 0.91
Monastery garden 160 151 136 15 24 0.85 0.90 0.87
Mixed forest 456 445 365 80 91 0.80 0.82 0.81
Defoliatedforest 167 163 137 26 30 0.82 0.84 0.83
Overall 1305 1270 1108 162 197 0.85 0.87 0.86

NT: the number of the trees in the plot. NS: the number of segmented trees. TP: the number of trees that were correctly segmented. FN: the
number of segmented trees that were not detected. FP: the number of segmented trees that did not existing in reality but were incorrectly
added by our model. r (recall): tree detection rate. P (precision): the correctness of the detected tree. F (F-score): the overall accuracy of the

detected tree.
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3.2. Accuracy of Tree Crown Width Estimation

For the segmented individual trees by our method, 100 trees were selected from
each testing site to calculate the tree crown width in the north-south (Cb,) and east-west
direction (Cb,) compared with manually segmented results. Correlation of coefficients (R?),
root mean squared error (RMSE), and relative root mean square error ({rRMSE) were also
calculated to evaluate the qualitative aspects of our results.

For the four testing sites, the nursery base achieves the highest accuracy of tree crown
width estimation (R? = 94.4 + 0.28%, RMSE = 0.13 £ 0.01m and rRMSE = 9.59 =+ 0.70%)
(Figure 9), which might be attribute to the regular and uniform geometry of tree crowns
with less intersection of branches. A relatively lower accuracy was obtained for the mixed
forest (R? = 85.105 + 0.015%, RMSE = 0.74 & 0.01m and rRMSE = 10.835 =+ 0.245%) and
monastery garden (R? = 88.665 + 0.285%, RMSE = 0.57 + 0.01m and rRMSE = 9.31 4 0.33%),
an reasonable explanation is that part of the tree canopy is blocked by surrounding tall
trees or buildings, resulting in the deviation in the tree crown breadth estimation for some
suppressed trees in the middle of the forest or some trees right next to the buildings. The
alignment of crown width estimation between our method and manually measurements
was further reduced for the defoliated forest plot. Due to many trees in the plot with
bare branches and without foliage, many tree crowns have no continuous dripline and
the smoothed crown surface, which leads to the generated DSM having empty cells or
gaps where elevation data is missing. These detrimental factors unfavorably impacted the
gradient calculation and crown width measurements. Hence, a relatively lower statistical
index (R? = 79.94 + 0.13%, RMSE = 0.61 4 0.02m and rRMSE = 11.7 4 0.35%) of the crown
width estimation was obtained for the last plot.

# Crown width in the north-south direction (Cb-) [l Crown width in the east-west direction (Chb.)
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Figure 9. Scatter plots illustrating the comparison results of the crown width obtained by field mea-
surements versus our method for the four different forest types, i.e., (a) nursery base, (b) monastery
garden, (c) mixed forest, and (d) defoliated forests.
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4. Discussion
4.1. The Advantages of Our Approach

The automatic extraction (segmentation) of individual trees from airborne laser scan-
ning data is an important prerequisite for tree phenotypic and biophysical parameter
estimation [48]. At present, machine vision algorithm and image processing techniques
have been widely used in individual tree segmentation. However, it is difficult to process
cluster trees with similar height and varying density distributions when only the limited
geometric spatial information was incorporated. For example, the clumped tree crowns
with similar heights and tight distribution may be mistakenly detected as a single treetop
and leads to under-segmentation. Moreover, the non-treetop local maxima may be falsely
detected as treetops and results in over-segmentation. For the segmentation of individual
trees based on the centers of tree crowns and point density distributions [49], a bias is
expected when trees extend one-sided tree crown or tilted tree body suffering from compet-
itive growth with neighboring trees or environmental influences, e.g., hurricane damage
or inhomogeneous distribution of solar irradiance. Clusters of the high density scanned
points often appeared within the conjunction areas of the overlapping tree crowns, open
branches with dense leaves or needless and occlusion-free vegetative elements exposed to
the laser scanning sensors. Therefore, these issues will cause a decrease in individual tree
segmentation merely depend on the limited features of point clouds.

Deep learning, which attempts to model high-level abstractions in data using a hierar-
chal manner, has provided machines with a greater ability to identify the target through
extracting efficient features from vast samples and repeatedly improving the neural net-
work performance [21]. In addition, with the rapid development of deep learning, a
large body of research has been committed to a variety of deep learning classification or
segmentation tasks using 2D images as the raw input data to realize the individual tree
segmentation [50]. Although these methods have achieved good performance in tree crown
segmentation, they still lose the original 3D geometric information of the studied targets
in the process of being transformed into a 2D image. The disorder, non-uniformity, irreg-
ularity, and noise of forest point clouds introduce significant challenges into point cloud
segmentation, and the existing image classification and segmentation framework cannot
be directly applied to point cloud. Hence, we proposed a novel deep learning method of
PointNet that directly processes out-of-order point cloud data to achieve the segmentation
of individual trees. To the best of our knowledge, this paper is a bold attempt to employ
PointNet for individual tree crown segmentation directly acting on the scanned data, which
retains the spatial features of the point cloud to the greatest extent and achieves sound
performance in the final test. The T-Net of the model is used to normalize the rotation,
translation and other changes of scanned data in the input voxel, and The MLP of the
model is used to extract numerous features from various neural networks and aggregate
these features to effectively learn the characteristics of the entities regarding trees and other
objects. The PointNet model in tandem with a larger number of the collected training
samples obtained the optimal weights by iterative forward and back propagation in the
training process, which makes the model robust to recognize the point clouds making up
the tree structure.

4.2. Comparison with Existing Methods

The synergetic use of the voxelization strategy, the PointNet model, and the height-
related gradient information on the raw point clouds were employed in our study, which is
different from some existing ITC segmentation methods, such as the watershed algorithm
and point cloud-based cluster segmentation algorithm.

The watershed algorithm is based on the physical principle of the asymptotic water
expansion on the DSM or CHM and finally stop in the low-lying area of tree crown
boundaries. However, the watershed algorithm is limited to tree species with regular
shapes, which has good performance on the similar phenotypic characteristics of tree
crowns, i.e., the trees neatly arranged with commonly tower or umbrella shapes. For forest
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areas with irregular crown shapes and complex internals, the high canopy density of the
forest and overlapping shielding between the crowns may lead to multiple local apices
in the forest canopy. In addition, the performance of the watershed algorithm is prone to
inappropriate dealing with the weak edge (i.e., the subtle greyscale changes on the surface
of the forest appearance) and the noise on the DSM, which will produce over- and under-
segmentation. These situations will be exacerbated for the watershed algorithm when
encountering lush forest habitats composed of canopy and sub-canopy trees make up the
multi-layered forest components with interlocked crowns and mixture species.

The point cloud-based cluster segmentation algorithm is an algorithm that adopts a
top-down region growing approach to sequentially segment individually trees from the
tallest to the shortest. In general, it is assumed that to analyze the geometric spatial features
of the scanned points to seek apices of the tree crowns, which couples with various distance
metrics to realize the individual tree segmentation. However, the key parameter of the
method is uncertain for various forest plot types. If inappropriate parameter values are
assigned, trees with elongated branches and serious bending branches may be over-divided,
or the adjacent trees with crown overlapping may be falsely segmented. Hence, the suitable
parameters are vital for the final performance of the method. Furthermore, this algorithm
makes use of the 3D structure inherent in the Lidar point cloud, so mis-segmentations may
occur where the canopy is unequally sampled by the laser pulses due to mutually occluded
vegetative elements and varying scanning angles of the instruments.

Here, the comparison results of the watershed algorithm, point cloud-based cluster
segmentation algorithm and our deep learning-based method were applied on the collected
point clouds of the same four experimental forest sites (i.e., nursery base, monastery garden,
mixed forest, and defoliated forest), the accuracies of the three methods are listed in Table
4. This table shows that for the nursery base with similar tree crown shape, lower planting
density and neat arrangement, the three methods exhibited the similar segmentation
accuracies. For the complex forests contains a broader mixture of tree species and diverse
structure of trees, a small increase in the accuracy of tree segmentation was achieved, which
illustrates that our deep learning framework performed better to extract spatially explicit
traits of tree body when working with highly complex forest scenarios.

Table 4. Comparison of the accuracies of ITC segmentation using watershed algorithm, point cloud-based cluster segmenta-

tion algorithm and our method on raw point clouds of the same four experimental forest sites.

Method Experimental Forest Plots NT/NS TP FP EN r P F
Nursery base 522/534 470 64 52 0.90 0.88 0.89
Monastery garden 160/156 134 22 26 0.84 0.86 0.85
Watershed algorithm Mixed forest 456/451 365 86 91 0.80 0.81 0.80
Defoliated forest 167/165 127 38 40 0.76 0.77 0.76
Overall 1305/1306 1096 210 209 0.84 0.84 0.84
Nursery base 522/517 465 52 57 0.89 0.90 0.89
Point cloud-based Monastery garden 160/147 134 13 26 0.84 0.91 0.87
cluster segmentation Mixed forest 456/439 351 88 105 0.77 0.80 0.78
algorithm Defoliated forest 167/169 127 42 40 0.76 0.75 0.75
Overall 1305/1272 1077 195 228 0.83 0.85 0.84
Nursery base 522/511 470 41 52 0.90 0.92 091
Monastery garden 160/151 136 15 24 0.85 0.90 0.87
Our method Mixed forest 456 /445 365 80 91 0.80 0.82 0.81
Defoliated forest 167/163 137 26 30 0.82 0.84 0.83
Overall 1305/1270 1108 162 197 0.85 0.87 0.86

NT: the number of the trees. NS: the number of segmented trees. r (recall): tree detection rate. P (precision): the correctness of the detected
tree. F (F-score): the overall accuracy of the detected tree. TP: the number of trees that were correctly segmented. FN: the number of
segmented trees that were not detected. FP: the number of segmented trees that did not existing in reality but were incorrectly added by

our model.
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4.3. Potential Improvements

As mentioned in Section 3.1, it is crucial to set the appropriate voxel size in this
experiment. An overly larger voxel size will make more point clouds of several objects
containing in one voxel and impair machine’s ability to understand semantic features of
single tree. Conversely, an overly smaller voxel size will fragmentize the complete point
clouds set of a single tree and adversely affect exploiting geometric knowledge of tree
crowns. Here, we set the voxel size for each experiment site as the average crown width
obtained from preliminary forest survey. Trees with large or small tree crowns will be the
main challenges for our method. This problem is similar to the selection of the filter size
for CHM smoothing prior to the water expansion using the marker controlled watershed
method [51]. Some studies employed the semi-variogram statistics [51] to determine the
local range of crown sizes from the CHM before individual tree crown segmentation.
Likewise, strategy of automatic adoptive voxel size assignment can be further designed
applied to the deep learning framework to optimize the parameter settings. In addition, as
mentioned in Section 2.3, the number of point clouds in a voxel was sampled by random
sampling method to 1024, which is smaller than the original number of the scanned points.
In the experiment, different sampling strategy can be designed to generate more training
samples from the original collected scanned points of the same tree. Meanwhile, subtle
jittering of the position of each point with expected tolerance is also an alternative manner
for realizing data augmentation for the training samples.

The deep learning network of PointNet only learns the local features of each point and
ignores the connection relationship between points, i.e., it cannot capture the local structure
induced by the metric space points live in, therefore making it unlikely to be able to learn
fine-grained patterns or to understand complex scenes. Therefore, compared with the
revolutionized neural networks, such as PointNet++ [52] with a class pyramid feature ag-
gregation scheme, the ability of PointNet to explore the inter-relationship between features
is slightly weaker. Further, we will combine advanced neural networks to optimize the
efficiency of deep learning model and to achieve high accuracy of tree crown recognition.

5. Conclusions

In this paper, a deep-learning method based on the scanned point clouds collected
by UAV-borne LiDAR was designed to recognize trees at voxel scale and combine the
height-related gradient information to accomplish individual tree crown delineation. The
proposed segmentation algorithm is composed of two stages. In the first stage, point clouds
of various forms of trees and buildings were manually extracted as the training samples,
which were brought into the PointNet model to train the network and obtain the optimal
network parameters. Then, the point clouds of each forest sites were subdivided based
on the voxelization. The point clouds in each voxel were taken as the testing samples,
which was analyzed by the trained PointNet network to obtain the classification results. In
the second stage, based on segmentation results of deep learning at voxel scale, a height-
related gradient information was adopted to accurately depict the boundaries of each tree
crown. Meanwhile, the tree crown breadth estimated from our deep learning method was
compared with the manually measured results to verify the effectiveness of our approach.
For the studied four forest plot types, i.e., the nursery base, the monastery garden, the
mixed forest and the defoliated forest, the results revealed the best performance for the
nursery base (tree crown detection rate r = 0.90 and crown breadth estimation R?>0.94).
For the monastery garden and mixed forest with a complex forest structure, complicated
intersection of branches and different types of buildings, a sound performance was also
achieved with r = 0.85 and R? > 0.88 for the monastery garden and r = 0.80, and R? > 0.85 for
the mixed forest. For the fourth forest plot type with the distribution of crown defoliation
across the woodland, we achieved the performance with r = 0.82 and R? > (.79 for the
defoliated forest. Compared with the watershed algorithm and point cloud-based cluster
segmentation algorithm, the proposed method improves the tree detection accuracy by
1%—6%. Overall, this work manifested that the application of deep learning framework
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directly processing on the scanned points of various forest types is feasible to solve the
individual tree segmentation problem.
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