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Abstract: The effects of drought stress, Phytophthora cinnamomi infection and their interaction on
water relations and growth were examined for 28 days on two year-old potted trees of Eucalyptus
obliqua (L’Hér.). There were significant effects of drought stress on plant photosynthesis, stomatal
conductance, biomass accumulation, plant water potential at turgor loss point and the bulk modulus
of elasticity. E. obliqua was successfully infected but the trees showed only mild symptoms. Infec-
tion with P. cinnamomi led to a significant reduction in the root biomass and root-to-shoot ratio in
well-watered and droughted plants but did not impact water relations. There was no observable
cumulative effect of drought and P. cinnamomi infection. There are multiple potential reasons why
P. cinnamomi infection did not lead to drought-like symptoms in E. obliqua, including short experi-
mental duration, delayed infection symptoms, potential resistance of E. obliqua and a possible lower
aggressiveness of the P. cinnamomi strain. Hence, our results indicate that P. cinnamomi infection will
not always lead to immediate short-term symptoms, and that plants that are mildly symptomatic
respond very similar to drought stress compared to non-infected trees.
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1. Introduction

Drought stress is one of the major factors leading to the degradation of forests world-
wide [1–4]. Biotic agents such as pathogens can also contribute to tree mortality and
potentially exacerbate the impact of drought stress [5]. The presence of plant pathogens
has been correlated to tree dieback in a range of forest ecosystems [6,7]. Furthermore,
the interaction between drought and disease could influence deterioration of tree health
status [8,9].

Phytophthora species are some of the most invasive fungal pathogens in the
world [10–12]. They have been associated with tree decline in many ecosystems, in-
cluding native forests and urban environments in a large variety of tree species across the
world [13–20]. In Australia, Phytophthora has been strongly linked to many cases of tree
dieback in both native and urban ecosystems [21,22], in Victoria [23], Northern Queens-
land [24] and Western Australia [25,26]. Phytophthora has a wide range of host plants,
including many Australian native plant species [27], e.g., members of the genus Eucalyp-
tus [20,21]. This pathogen is considered as a major threat to the Australian biodiversity
under the Environmental Protection and Biodiversity Conservation Act 1999 [28,29].

The major stress of Phytophthora infection is associated with the impairment of the
plants root system [24]. Zoospores are attracted to root exudates, germinate in the root cap
cell zone, and develop mycelium in the cortical cells, phloem and xylem of the infected fine
roots [27,30,31]. The infection then leads to the formation of necrotic lesions and eventually
damages the roots, leading to inefficiency of water and nutrient uptake [28]. Accordingly,
the infected host plants could develop symptoms similar to those under drought stress,
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including leaf chlorosis, canopy dieback and the development of epicormic shoots and
mortality [19,21].

In natural ecosystems, especially in Mediterranean ecosystems, Phytophthora infections
often occur in wet and warm winters. The infected plants are subsequently exposed to hot
and dry summers, and the compromised root system may by unable to supply the plants
with sufficient water [30]. However, there is conflicting evidence if Phytophthora-infected
plants actually experience water deficit, similar to those under drought-induced stress.
It has been reported that Phytophthora infection leads to the presence of drought stress
symptoms due to the inefficiency of water and nutrient uptake and thus causes water deficit
in plants [15,27]. This has been confirmed in some studies where significant differences in
water potential, stomatal conductance, and photosynthesis occurred following P. cinnamomi
infection [32,33]. However, other studies did not find a significant effect of P. cinnamomi
infection on plant water relations [34–36]. Furthermore, it has been suggested that drought
events might worsen the impacts of Phytophthora infection on plants by lowering the
plant resistance [28] or increasing the inoculum production and infection rate [37,38].
Consequently, drought events that frequently occur in Australia potentially exacerbate
tree decline due the drought-induced water deficit on infected plants. The effects of
climate change might also result in changes in the distribution of forest pathogens such as
Phytophthora with some areas becoming more or less likely to support the species depending
on temperature and water availability [39]. Nevertheless, there is insufficient evidence
that the Phytophthora infection leads to more severe symptoms in a plant that initially has
undergone water deficits during a drought event. Since the symptoms of Phytophthora
infection resemble drought symptoms, it is often challenging to identify Phytophthora
infection in the field [13]. As a consequence, the pathogens’ contribution to tree mortality
is often overlooked, thus highlighting the importance of understanding the relationship
between drought stress and Phytophthora infection on tree mortality.

This study investigated the effects of drought, P. cinnamomi infection, and the interac-
tion of both factors on the water relations and gas exchange in Eucalyptus obliqua. Three
hypotheses were examined: (1) Drought stress significantly decreases plant water potential,
gas exchange, and biomass accumulation due to limited soil water availability; (2) P. cin-
namomi infection results in plant water deficit which leads to drought stress symptoms
described above; (3) The interaction between drought stress and P. cinnamomi infection will
increase drought stress symptoms due to the additive impacts of both factors on limiting
water uptake through the roots.

2. Materials and Methods
2.1. Plant Material

Eucalyptus obliqua (L’Her.) seedlings for this study were sourced as tube stock from a
commercial nursery (Bushland Flora, Mt. Evelyn, VI, Australia) in winter and grown in a
shade house at the Burnley campus of The University of Melbourne, Victoria, Australia. In
October 2018, the four months-old seedlings were about 0.3 m tall and transplanted into
9-L pots containing a mix of 50:30:20 medium, comprising pine bark (3–5 mm), expanded
coir (fine grade: 0–6 mm), and coarse horticultural sand in 6-L pots. In addition, 4 kg
Macracote Coloniser fertiliser plus (Fertool, Dandenong, VIC, Australia), consisting of
8–9 moths, N, P, K (15, 13, 9), and trace elements were added as the supply of macro and
micronutrients. The plants were grown for a further four months in an open area in the
nursery and watered once daily to soil capacity before the start of the experiment. In
February 2019, the plants were transferred to a rainout shelter with open side walls where
the experiment took place and were between 1.2–1.4 m tall at the start of the experiment.

2.2. Experimental Design

The experiment was conducted in a completely randomized design with two main
factors; Drought and Disease (pathogen inoculation with P. cinnamomi). The combination of
the two factors resulted in four treatments: Control (Con) (well-watered and non-inoculated),
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Drought (Dro) (deficit irrigation and non-inoculated), Disease (Phy) (well-watered and inoc-
ulated), and combination of Drought and Disease (DroPhy) (deficit irrigation and inoculated).
Due to an uneven number of trees, we allocated six replicate trees for Con and seven
replicates for each of other three treatments (Dro, Phy, and DroPhy).

During the experiment, two pots of the same disease factor were placed in 60-L black
plastic containers to prevent cross contamination between inoculated and non-inoculated
plants. The pots were placed on a raised mesh within the plastic containers so that pots
could drain freely and no cross contamination between the pots in the same container
would occur. The trays were distributed randomly in the experimental area to eliminate
bias due to potential differences in microclimatic conditions in the rainout shelter. The
climatic conditions under the rainout shelter were similar to the outside conditions, with
small reductions (5%–10%) of the level of photosynthetic active radiation due to the plastic
cover of the shelter (GroTuff greenhouse plastic 180UM, Sage Horticultural, Hallam, VIC,
Australia) and no rainfall.

2.3. Inoculation with Phytophthora and Re-Isolation

In December 2018, we conducted a preliminary study using four pots of E. obliqua
seedlings to determine the time required for P. cinnamomi to infect the seedlings roots. The
P. cinnamomi inoculum was isolated from soil samples collected from field sites in Eastfield
Park, Maroondah Melbourne, where tree decline and the presence of P. cinnamomi had been
observed. P. cinnamomi was isolated from soil by baiting using Eucalyptus sieberi cotyledons
floated on water on the soil [40]. After five days the cotyledons were then removed from
the water and placed on potato dextrose agar (PDA) plates [41]. The agar plates were
stored in a cool environment to provide suitable environment for Phytophthora to grow for
ten days [10].

The seedlings were inoculated with P. cinnamomi by pouring 100 mL of the Phytophthora
inoculum solution into each pot. The suspension was prepared by suspending half of a
90 mm diameter PDA-cultured inoculum in 1000 mL water. The solution was stored in
dark and cool environment for five days to promote the growth of active sporangia [42].
Four weeks after inoculation, the infection of roots was evaluated by collecting roots from
plants in infected pots with a small cork borer and plating of root samples in PDA medium.
Prior to the plating, the root samples were cleaned under distilled running water and
placed in distilled water in a shallow container. After 24 h, the roots were sterilized using
70% ethanol for 20 sec and rinsed in demineralized water prior to the plating to suppress
the presence of contaminants [43]. The P. cinnamomi species was evaluated with microscopy
and identified based on and the colony growth pattern on PDA after 5–7 days, as described
and illustrated in [10] and its morphological characteristic was examined as described and
illustrated in [44].

In the preliminary study, Phytophthora was successfully re-isolated from the roots four
weeks after inoculation. Dieback symptoms such as leaf chlorosis and wilting were also
observed, and symptoms gradually worsened until the end of the trial. However, no tree
mortality occurred during the experiment. Results of this trial were used to estimate the
time for Phytophthora inoculation prior to the main experiment.

In late February 2019, plants subjected to Phy and DroPhy treatments were inoculated
using the same method outlined above. Four weeks after inoculation, however, there were
no visible symptoms of the infection on aboveground organs of the infected plants.

In March 2019, all disease treatment plants were re-inoculated using a second P. cin-
namomi inoculum sourced from infected soil samples taken from field where P. cinnamomi
symptoms were observed. P. cinnamomi in the soil was again baited by using fresh Rhodo-
dendron spp. leaves [45] sourced from the Burnley gardens. The infected leaf was cut into
5 mm × 5 mm pieces, placed in PDA media and grown for 7 d [10]. The inoculum was
made of 90 mm diameter section of the pure culture of P. cinnamomi diluted in 1400 mL
of deionized sterile water. Each pot was given 100 mL of liquid inoculum and in addi-
tion five pieces of 0.5 mm × 0.5 mm block of agar containing P. cinnamomi mycelium.
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The P. cinnamomi was re-isolated from roots as described above after 14 d confirming
successful inoculation.

2.4. Watering

Before the start of the study, all plants were hand watered to field capacity in the
afternoon every two days. A week before the experiment, the weights of every pot were
recorded before and after watering to estimate daily plant water use to determine the level
of irrigation for Dro and DroPhy treatments. The irrigation requirements were calculated
based on the average daily water use of each plant, which was gradually decreased
by 10% every week for the plants in both drought treatments. Plants in the Dro and
DroPhy treatments showed signs of rapid drought stress after the first observation. To
prevent excessive plant stress, the irrigation level was increased from 80% of the estimated
daily evapotranspiration to 80% of saturated pot weight. Subsequently, the irrigation
requirements for the drought treatment were calculated based on the soil water capacity
instead of daily evapotranspiration. The irrigation level of drought treatment was decreased
by 10% every week (Figure 1), whereas the well-watered plants received water at field
capacity (3L) at the same time.
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Figure 1. Relative pot weight as a percentage of the initial pot weight of E. obliqua seedlings subjected
to Control (Con), Drought (Dro), Phytophthora (Phy), and Drought-Phytophthora (DroPhy) treatments.
Bars indicate ± standard errors of the mean values. Where no error bars are visible, the values are
smaller than the size of the symbol.

2.5. Data Collection
2.5.1. Water Relations

Pre-dawn (Ψpd) and midday (Ψmd) leaf water potential of all trees were measured
once a week using a pressure chamber (3000 Series Plant Water Status Console, Soilmoisture
Equipment Corp. Goleta, CA, USA) [46]. A fully expanded leaf with long petiole was cut
from each tree, Ψpd samples were collected 30 min before sunrise and Ψmd samples were
collected at 13:00 h. Leaf samples were stored in ziplocked polyethylene bags inside a
non-transparent box with an icepack to prevent water loss due to transpiration during the
transportation from the nursery to the laboratory [47]. The samples were measured within
one hour of collection.

2.5.2. Gas Exchange

Gas exchange of leaves was measured with an infrared gas analyzer (LI6400, Licor,
Lincoln, NE, USA) once every week between 10:00 and 13:00 h on the same day as the
water relations measurements on fully expanded leaves of each plant with two to three
replicates per plant. This method was non-destructive to the leaves. Irradiance was set
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at 1800 µmol m−2 s−1, block temperature was set at 25 ◦C, and air flow rate through
the chamber was 400 mL min−1. Readings were taken after steady state was achieved,
usually after three minutes for each measurement. Light-saturated photosynthesis (Asat)
and stomatal conductance (gs) were used as the key measurements for gas exchange.

2.5.3. Pressure-Volume (PV) Curves

Pressure volume (PV) curves were determined using the same pressure chamber
described above. Two fully expanded leaves were collected from each plant at 08:00 h.
The samples were rehydrated via the petiole in 50 mL Sarstedt tubes filled with 15 mL
of distilled water inside a non-transparent box for about three hours. This is usually a
sufficient amount of time to achieve rehydration of leaves of eucalypts [48]. One leaf
sample per plant was used in the PV analysis. The leaf was weighed to determine its
fresh weight and then the water potential was determined in the pressure chamber. The
leaf was then allowed to dry out on a bench at room temperature and the process of
leaf weighing and water potential measurement was repeated. Each leaf was measured
approximately 12–15 times until 4–5 water potential measurements were collected that
were more negative than the water potential at turgor loss point. Upon completion of the
measurements, the leaf was oven-dried at 80 ◦C until constant weight and the dry weight
obtained. The data were then processed to determine the osmotic potential at full turgor
(π100), water potential at Turgor Loss Point (ΨTLP), relative water content at turgor loss
point (RWCTLP), apoplastic water fraction (Ra), and bulk modulus of elasticity (ε) based on
Schulte and Hinckley [49] using an Excel spreadsheet downloaded from Landflux webpage:
http://landflux.org/Tools.php.

2.5.4. Final Harvest Biomass Assessment

All trees were harvested after four weeks. Leaves, branches, and stems were separated
and stored in a weighed paper bag and oven-dried to constant weight at 80 ◦C. Roots were
separated from potting mix in a root washing bay, bagged and also dried at 80 ◦C. The dry
weight of each sample was recorded. Above ground biomass was determined from the
combined dry weights of leaves, branches, and the stem (g). Below ground biomass was
equal to the dry weight of root samples (g). The root-to-shoot ratio was calculated as the
ratio of above ground biomass to below ground biomass.

2.6. Statistical Analysis

All data were analysed using one-way analysis of variance (ANOVA) to examine the
effect of the treatments. Fisher’s least significant difference (LSD) test was performed to
determine the significant differences (p ≤ 0.05) between treatments using Minitab version
17 statistical software (Minitab, LLC, State College, PA, USA).

3. Results
3.1. Phenotypic Symptoms of Drought and Pathogen

Well-watered plants had no drought-like symptoms (leaf necrosis or chlorosis, leaf
wilting, leaf rolling) after four weeks, regardless of inoculation (Phy or Con). Leaf chlorosis
and wilting were observed in the droughted plants; however, there were no differences
between inoculated (DroPhy) and non-inoculated (Dro) treatments. Seedlings in both
well-watered treatments (Phy and Con) had healthier-looking leaves that were greener in
colour compared to the plants in both drought treatments.

Root necroses was not visible in any of the inoculated plants (Phy and DroPhy).
Control plants appeared to have more vigorously growing roots compared to the other
treatments and had more fine roots with a brighter colour. No visual differences were ob-
served for roots of plants in drought (Dro) and drought-Phytophthora (DroPhy) treatments.

Despite the absence of root necroses, P. cinnamomi was re-isolated from most of the
root samples that were collected randomly from the infected plants, indicating that the
inoculation treatments were successful. In addition, P. cinnamomi was not recovered from

http://landflux.org/Tools.php
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the root samples of non-inoculated plants (Con and Dro) indicating there was no cross-
contamination between inoculation and no-inoculation treatments.

3.2. Water Relations

The pre-dawn (Ψpd) and mid-day (Ψmd) water potentials of the E. obliqua indicated
that there were significant effects of the drought treatments but no effects of P. cinnamomi
inoculation treatments. Both Ψpd and Ψmd were statistically different between well-watered
and drought treatments by the end of the experiment, regardless of Phytophthora inoculation
(Figure 2).
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Both the Ψpd and Ψmd of well-watered (Con and Phy) plants were relatively constant,
with Ψpd ranging from −0.05 to −0.24 MPa and Ψmd ranging from −0.60 to −0.99 MPa.
There were no significant differences between Con and Phy treatments by the end of the
experiment. The Ψpd and Ψmd of plants in drought treatments (Dro and DroPhy) gradually
decreased, and by the end of the experiment Ψpd were around −3.70 MPa and Ψmd ranged
from −3.76 to −3.99 MPa. There were no statistically significant differences between Dro
and DroPhy plants. On a few occasions, however, significant differences between Dro and
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DroPhy occurred as on the fifth observation of Ψpd and fourth and fifth observations of
Ψmd, which were primarily driven by few individual plants with lower water potential in
the Dro treatment.

3.3. Gas Exchange

Light-saturated photosynthesis (Asat) and stomatal conductance (gs) was significantly
reduced in both drought treatments (Figure 3). The gs of well-watered treatments (Con
and Phy) showed some fluctuation and ranged from 0.14 to 0.38 mol H2O m−2 s−1, but
there were no statistically significant differences between Con and Phy treatments. The gs
of the two drought treatments (Dro and DroPhy) were always lower compared to the well-
watered treatments, and decreased considerably with increasing drought. In the last three
weeks of the experiment stomata were almost completely closed in both drought treatments.
There were no significant differences for gs between Dro and DroPhy treatments (Figure 3).
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The light saturated photosynthesis (Asat) of well-watered treatments (Con and Phy)
fluctuated and ranged from 10 to 17 mmol CO2 m−2 s−1. There were no significant
differences between the Con and Phy treatments at the end of the experiment. The Asat
of the two drought treatments (Dro and DroPhy) significantly decreased on the fourth
observation and at the end of the experiment where Asat was close to zero (around 1 mmol



Forests 2021, 12, 109 8 of 14

CO2 m−2 s−1). There were no significant differences between Dro and DroPhy treatments
(Figure 3).

3.4. Biomass

The aboveground biomass of E. obliqua plants subjected drought treatments (Dro and
DroPhy) was significantly lower than both well-watered treatment plants (Con and Phy)
(Figure 4). However, inoculation had no significant effect on aboveground biomass in
well-watered or droughted plants.
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Figure 4. (A) Final above- and belowground biomass and (B) root-to-shoot ratio of E. obliqua seedlings subjected to Control
(Con), Drought (Dro), Phytophthora (Phy), and Drought-Phytophthora (DroPhy) treatments. Error bars indicate ± standard
error of the mean values. Means with different letters are significantly different at p ≤ 0.05, after ANOVA and LSD test.

There were significant differences in below-ground biomass with well-watered (Con)
plants having a greater root biomass than all other treatments, and well-watered inoculated
(Phy) plants having significantly lower root biomass compared to the control treatment
(Figure 4). Phy plants also had the lowest root:shoot ratio and there were significant
differences between Phy and Con, but no differences between Phy, Dro, and DroPhy.

3.5. Pressure-Volume (PV) Analysis

Pressure-volume (PV) analysis showed no significant differences between treatments
of the osmotic potential at full turgor (π100) or leaf relative water content at turgor loss point
(RWCTLP) (Table 1). However, plants in the two drought treatments (Dro and DroPhy) had
significantly lower water potential at turgor loss point (TLP) and decreased bulk modulus
of elasticity (ε) compared to both well-watered treatments (Con and Phy) (Table 1).

Table 1. Osmotic potential at full turgor (π100), water potential at turgor loss point (ΨTLP), relative
water content at turgor loss (RCWTLP) and bulk modulus of elasticity (ε) for Eucalyptus obliqua trees
under well-watered control conditions or subjected to drought and Phytophthora infection. Data are
means with standard error (n = 6). Treatments with the same letter do not differ significantly at
p ≤ 0.05, after ANOVA and LSD test.

Treatment π100 ΨTLP RWCTLP ε

Con −1.48 ± 0.05 −1.63 ± 0.05 a 0.91 ± 0.01 16.60 ± 2.25 ab

Phy −1.52 ± 0.13 −1.67 ± 0.09 a 0.91 ± 0.01 20.47 ± 7.65 a

Dro −1.75 ± 0.26 −2.18 ± 0.60 b 0.87 ± 0.07 12.14 ±4.77 b

DroPhy −1.65 ± 0.13 −1.93 ± 0.35 b 0.87 ± 0.03 12.38 ± 4.96 b

4. Discussion

The first hypothesis was confirmed as drought stress significantly decrease plant
water potential (Figure 2), stomatal conductance (Figure 3A), photosynthesis (Figure 3B)
and above-ground biomass (Figure 4A) in both drought treatment plants. Moreover, we
observed drought symptoms such as leaf wilting and chlorosis, consistent with previous
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studies [50–52]. Limited soil water availability can lead to plant water deficit and therefore,
substantially reduce plant water potential in most plant species [53]. Furthermore, many
plants species, including Eucalyptus species, tend to close their stomata to reduce water loss
following the onset of initial drought stress, which leads to a decrease in photosynthesis
and ultimately limits plant growth [52].

Drought stress also affected longer-term water relation traits in E. obliqua as both
ΨTLP and εwere reduced in plants of both drought treatments compared to plants in the
well-watered treatments (Table 1). This decrease of the ΨTLP of plants subjected to drought
supports previous studies, as many plants species under drought stress adjust their turgor
loss point to maintain physiological activity with declining leaf water content [54,55]. This
adjustment is often achieved by osmotic adjustment, or the increase in leaf solutes, which
in turn leads to a decrease in the π100 which is seen as the main mechanism of turgor main-
tenance [56]. However, while the π100 was lower in both the drought treatments (Table 1)
the change was not significant compared to the well-watered treatments, indicating that
leaf solute accumulation alone did not lead to turgor maintenance. This is unusual because
osmotic adjustment is a common response of Eucalyptus species to drought stress [56,57].
Instead, turgor maintenance was achieved by means of elastic adjustment. The cell walls of
the E. obliqua leaves became more elastic in plants under drought stress, which is indicated
by the significantly lower ε in both the Dro and DroPhy treatment plants (Table 1). These
plants also had a lower (but not significantly different) relative water content at turgor loss
point. Hence, more elastic cell walls allowed for more water to be lost before turgor was
lost. Elastic adjustment is not often observed, but is recognized as a mechanism for turgor
maintenance under water deficit conditions [58].

The second hypothesis was that P. cinnamomi infection would result in water deficit
through reduced root water uptake, which then would lead to drought stress symptoms.
However, our results did not confirm this hypothesis. P. cinnamomi infection often results
in root necroses, which eventually damages the root system, and reduces plant water
uptake [59,60]. The reduction of plant water uptake could cause water deficit in the plant
and thus potentially decreases plant water potential and stomatal conductance [61,62].
This can also limit plant growth and often leads to the development of drought-like symp-
toms [19,21,60]. In this experiment, P. cinnamomi infection did not lead to root necroses
and the development of drought-like symptoms. In addition, it did not significantly affect
plant water relations (Figure 2, Table 1), photosynthesis (Figure 3B), stomatal conductance
(Figure 3A), aboveground biomass (Figure 4A), and other drought tolerance traits. Never-
theless, P. cinnamomi infection significantly reduced average root biomass in well-watered
inoculated plants (Phy) compared to control, and the root:shoot ratio of Phy was the lowest
among all treatments (Figure 4B). In other studies, Phytophthora infection decreased root
biomass by inhibiting the growth of new fine roots [35,61,62]. The absence of primary
or secondary symptoms of Phytophthora inoculation, such as root necrotic and drought-
like symptoms, is in contrast to previous studies [19,21,60,63]. However, our results are
similar to Turco et al. [36], who observed no symptoms in Quercus ilex and Q. cerris that
were inoculated by P. cinnamomi in a full irrigation treatment, although root necrosis was
eventually observed after 11 weeks. The occurrence of secondary symptoms following
the P. cinnamomi infection might be latent depending on the pathogen aggressiveness,
host susceptibility and environmental condition [22,61]. A time lag of 6 to 18 months can
occur during Phytophthora infection until drought-like symptoms are observed in field
studies [22,35,61].

The decrease of plant water potential in some species following P. cinnamomi infection
often causes severe root damage which limits plant water uptake to the point that the
remaining roots are insufficient to meet plant water demand [60,64]. Similarly, the reduction
in root mass could have contributed to the reduction of stomatal conductance, which
tends to lower photosynthesis and eventually limits carbon gain for plant growth, as
the trees adjusted their water balance following the reduction in plant water uptake
by avoiding water loss from transpiration [59,61,62]. Some studies also reported that



Forests 2021, 12, 109 10 of 14

although P. cinnamomi infection did not significantly affect plant water potential, the root
loss following the infection is more likely to reduce stomatal conductance as it is more
sensitive to root loss compared to water potential [59,60]. Additionally, Phytophthora
infection can affect the cytokinin and phenolics which can be responsible for controlling
stomata closure [65]. In our experiment, severe root damage was not observed in the
infected plants, although lower root biomass was observed in the infected trees with full
irrigation, suggesting that P. cinnamomi did not cause water deficit in E. obliqua as the
plants still had sufficient roots to meet their water demand over the experiment period.
These results are consistent with some previous studies such as Maurel et al. [61] and
Turco et al. [36] which reported that Phytophthora infection does not always cause plant
water deficit. Maurel et al. [61] suggested that Phytophthora infection will potentially lower
plant water relations if more than 90% of the plants roots are damaged. This conclusion was
also confirmed by Crombie et al. [66] that showed plant water potential was not affected
until more than 80% of roots were removed.

Other factors could have contributed to the lack of effects of P. cinnamomi infection
on plant water relations in this experiment including the relative short duration of the
experiment, resistance of plants to the pathogen, delayed response of the plants to the
infection and unexpected adaptation to the stress. A lack of effects of P. cinnamomi on plant
water potential despite the development of root necrosis can be caused by high tolerance
of the trees to the infection and delayed response of the trees to the infection [36]. This
was previously observed in species with higher resistance to P. cinnamomi [67]. P. cin-
namomi infection can affect resistant species; however, the progression of the symptoms
is slower than in more susceptible species [68]. Differences in infection symptoms can be
caused by differences in the defense response between susceptible and resistant species to
P. cinnamomi [69].

The third hypothesis was that the interaction between drought stress and P. cinnamomi
infection would increase the drought stress symptoms in plants due to the additive impacts
of both factors on limiting plant water uptake. However, we observed no additional effects
of P. cinnamomi infection under drought treatment, indicating that there were no cumulative
effects of the interaction of both factors. It has been suggested that drought conditions could
ameliorate the effect of Phytophthora on plants [64,68]. Soil drought can limit Phytophthora
growth, which can inhibit the build-up of the inoculum and thus also reduce the rate of
Phytophthora infection [70]. This was reported for Eucalyptus marginata where drought
was impacted the growth of P. cinnamomic [71]. Consequently, more significant effects of
Phytophthora infection were mostly observed in wet soils compare to dry soils [62,72,73].
Similarly, greater root loss was observed in infected plants with full irrigation compared
to deficit irrigation [62]. Weste and Ruppin [70] also suggest that ecosystem devastation
caused by Phytophthora was greater in areas with frequent waterlogging and poor drainage.
In our experiment, the soil of the plants was kept moist after inoculation, thus favoring
P. cinnamomi growth. But the soil in the drought treatments was very dry. The effects of
P. cinnamomi infection on root conditions were more apparent in the inoculated plants
with full irrigation rather than the droughted plants. Although plant water potential,
photosynthesis, stomatal conductance, and above ground biomass accumulation of the
plants in the DroPhy treatment were similar to those in the drought treatment, this was
likely due to limited soil water availability rather than P. cinnamomi infection.

The absence of effects of Phytophthora infection on E. obliqua water relations, gas
exchange and biomass accumulation in this study could also be due to other factors: First,
it could be related to the low pathogenicity of the Phytophthora species used for inoculation.
Zentmyer and Guillemet [42] reported that more than 300 P. cinnamomi isolates were
distributed in the world and that each of them has different pathogenicity. However, we
did not examine the strain and pathogenicity of P. cinnamomi used and its aggressiveness is
unknown. This strain was isolated from soil in parks in Maroondah, Melbourne, where
many heavily declined and dead eucalypt trees are present, including E. obliqua. The
pathogen was isolated from the soil, was present in roots of eucalypts in the parks, and



Forests 2021, 12, 109 11 of 14

it led to canopy decline and tree death, so it has had some pathogenicity. Several other
Phytophthora were also isolated from the reserves and future investigations that examine
the pathogenicity of each of these Phytophthora would help to understand its aggressiveness
and the species that are susceptible [74]. It is also possible that P. cinnamomi may have lost
its virulence after subculturing in vitro.

Second, it is also possible that this population of E. obliqua has a greater resistance
to P. cinnamomi. A study by Stukely and Crane [75] demonstrated that some resistant
trees were discovered among 16 E. marginata provenances, which are known as one of
the most susceptible Eucalyptus species to P. cinnamomi. This Phytophthora resistance was
strongly controlled by genetic factors, and the resistance of provenances was based on the
mortality rate and lesion length following stem inoculation [75]. Since resistant trees have
a lower probability of being severely affected by P. cinnamomi infection [67], future studies
on intra-species variation of susceptibility to P. cinnamomi would also be useful. Should
this particular E. obliqua provenance be more resistant to P. cinnamomi, it could be selected
for breeding for rehabilitation projects in P. cinnamomi declined areas.

Third, it is also possible that our experimental period was too short, as P. cinnamomi
could take a longer time to affect the trees [22,35,61]. The effects of Phytophthora infection
can develop slowly, depending on the aggressiveness of the pathogen, the plant condition
and the growth condition. In other studies, it could take one to two years of observation
before the impacts of P. cinnamomi infection on plants were apparent [35,60]. Accordingly,
a longer duration of the experiment is recommended for future studies.

5. Conclusions

In this study P. cinnamomi infection did not affect plant water relations, gas exchange
and above ground biomass despite its effects on root biomass, and there were no cumulative
effects with drought stress. While Phytophthora infection of roots was confirmed by the
re-isolation from the root samples it is possible that the effects of the infection on plant
physiology were delayed or other factors, including pathogen aggressiveness and plant
condition could have contributed. As P. cinnamomi is a water-based pathogen, the drought
conditions in our experiment could have reduced its pathogenicity. However, it is also
possible that the links between drought stress symptoms and Phytophthora infection are not
as common as previously proposed.
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