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Abstract: In this article, we introduce an alternative solution for forest regeneration based on
unmanned ground vehicles (UGV) and describe requirements for external data, which could sig-
nificantly increase the level of automation. Over the past few decades, the global forested area has
decreased, and there is a great need to restore and regenerate forests. Challenges such as the lack
of labor and high costs demand innovative approaches for forest regeneration. Mechanization has
shown satisfactory results in terms of time-efficient planting, although its usage is limited by high
operational costs. Innovative technologies must be cost-efficient and profitable for large scale usage.
Automation could make mechanized forest regeneration feasible. Forest regeneration operations can
be automated using a purpose built unmanned platform. We developed a concept to automate forest
planting operations based on mobility platform. The system requires external data for efficient mobil-
ity in clear-cut areas. We developed requirements for external data, analyzed available solutions, and
experimented with the most promising option, the SfM (structure from motion) technique. Earth
observation data are useful in the planning phase. A DEM (digital terrain model) for UGV planter
operations can be constructed using ALS (airborne laser scanning), although it may be restricted by
the cost. Low-altitude flights by drones equipped with digital cameras or lightweight laser scanners
provided a usable model of the terrain. This model was precise (3–20 cm) enough for manually
planning of the trajectory for the planting operation. This technique fulfilled the system requirements,
although it requires further development and will have to be automated for operational use.

Keywords: automation; cost-efficient; forest regeneration; restoration; unmanned ground vehicle;
object recognition; multistage data; remote sensing; earth observation

1. Introduction

According to the Food and Agriculture Organization (FAO) [1], the total forested area
globally has decreased from 1990 to 2020, from 32.5% to 30.8%. Besides forest management
(e.g., harvesting), land-use changes and disturbances have played a significant role in
this decrease. Annually, there were roughly 207 million hectares of forest land disturbed
between 2003 and 2012 [2]. Due to these substantial amounts of disturbance and harvesting,
there is a great need to restore and regenerate forests. Forest regeneration is a cornerstone
of sustainable forestry. It is divided into two parts: natural and artificial regeneration. On
the one hand, natural regeneration is an inexpensive way to regenerate forests, although it
requires time for a stand to develop and tree species composition may not be satisfactory.
On the other hand, with artificial regeneration a forest owner can choose the tree species
to plant and regeneration is quicker and usually effective. For successful regeneration,
there must be quality planting stock and planters. Despite the positive results of artificial
regeneration, only 31.5% of the forest area in North Europe is artificially regenerated and
68.5% is left to naturally regenerate [3].
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Over the last 50 years, mechanization and automation have been established in forestry
and mechanized harvesting has reduced felling costs. Forest regeneration, as with plant-
ing and cleaning, still largely depends on a manual work force [4]. Even though new
technologies have decreased seedling costs, the labor costs of planting have increased [5].
Mechanization in planting produces high-quality regeneration and is time-efficient but still
has low cost-efficiency [6]. In Finland and Sweden, only 1–5% of all seedlings are planted
mechanically [6,7].

There are only a few examples of new technological advances in forest regeneration.
Since the recent appearance of unmanned aerial systems (UASs) in the civilian market, new
options are available to estimate and map forest biophysical properties [8] and to plant
trees using unmanned aerial vehicles (UAVs) [9]. Only the Finnish company Rakkatec
has developed an unmanned ground vehicle (UGV) for forestry applications [10]. Their
modular platform Rakka 3000 can be equipped with a variety of forestry and agricultural
machinery and tooling but it is not well suited for forest regeneration purposes, and
although remote controlled it still requires human operation. Automation could increase
the cost-efficiency of mechanized forest regeneration systems. Automating could decrease
the amount of human intervention needed that would reduce operational costs. There
are two automation possibilities, using purpose-built machines or automating the current
solutions. Both solutions require on-board sensors. However, using only on-board sensors
for navigation may not achieve the required reduction in human intervention to make
the system economically feasible. Purpose-built autonomous vehicles could be smaller,
since no cabin is needed and one operator could control many machines simultaneously,
increasing efficiency. There are some automated excavators [11] that could be used for
forest regeneration but there are very few purpose-built autonomous vehicles suitable for
forest regeneration operations.

In forest regeneration areas, there are obstacles and objects that will affect the planting
operation and mobility of the platform. Some of these obstacles and objects could be
detected using remote sensing data. Large characteristics (e.g., flooding, drought, branch
piles, ditches) must be detected to plan the planting operation and smaller obstacles (e.g.,
tree stumps, stones, dead wood) must be detected to plan the trajectory for the platform.

In this paper, we discuss how remote sensing can support modern semi-autonomous
forest planting systems. We use a commercial off-the-shelf UGV as an example for concept
development. Based on the system parameters, we develop requirements for the external
data needed to improve system performance. We compare the requirements with remote
sensing data currently available from satellite-, aircraft-, and drone-based sensors.

2. Robotic Forest Regeneration

Technological advances have been made in autonomy and machinery development,
and some of those can be used for forest regeneration. Purpose-built unmanned ground
vehicles designed for rough environments [12] such as forest regeneration areas can carry
the necessary payloads and can regenerate forests autonomously. The potential operational
concept for mid-sized UGVs with the necessary autonomous functionality to automate
planting operations has three main modules:

1. Mobility platform (UGV);
2. Autonomous functionality (waypoint navigation, obstacle avoidance);
3. Payload (mechanized planting payload).

2.1. Mobility Platform

We chose the Milrem Multiscope UGV (Figure 1) as an example of a mobility platform
with the necessary functionalities to automate the mobility needed. The mobility platform
has two crawler modules that are mechanically and electrically connected. Between the
crawlers module there is a free area for the payload. The UGV has a net weight of 1630 kg
and payload capacity of 1200 kg. The tracked UGV can move in regeneration areas. The
Multiscope UGV is capable of ascending–descending gradients of up to 60% and driving
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sideways along gradients of up to 30%. It has a specific ground pressure of 16.7 kPa,
which is less than one-third of the specific ground pressure exerted by a human foot. This
means that damage to soil is minimal, it can operate in wet areas, and it can manage
steeper slopes than wheeled machinery [13]. The UGV has a turning radius of 0 m, i.e., the
machine can turn itself on the spot. The maximum traction force is 15 kN, depending on
the surface. The UGV is a diesel–electric hybrid powered by electric motors (2 × 19 kW)
and a diesel generator. The vehicle can be operated from a working station and operations
are supported by autonomous functions such as waypoint navigation [14].
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Figure 1. The Multiscope unmanned ground vehicle by Milrem Robotics.

2.2. Autonomous Functionality

The crucial part of the automation involves GNSS-based waypoint navigation [15]
(Figure 2). This functionality enables the trajectory to be configured through a user interface
(UI), as depicted in Figure 2. This enables automation of the mobility part of the planting
operation. The UGV will move autonomously on a pre-defined track and conduct a
planting operation with a suitable payload.
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For the regeneration operation, the trajectory is set by the human operator from the
UI; the planting payload then prepares the soil and plants at the required spacing.

2.3. Payload

A planting payload for the UGV is visualized in Figure 3. This was designed to carry
up to 380 seedlings and uses spot mounding as the soil preparation technique [5].
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In order for the system to become economically feasible the payloads must be modular
so that the UGV can be used for other operations, thereby increasing the machine utilization
(MU) rate [6]. The payload is powered by a hydraulic power unit.

The forest regeneration service architecture based on the UGV technology is illustrated
in Figure 4. At the workstation, the daily operation is pre-planned in terms of the navigation
path and service requirements. In this phase, external data are used for pre-planning,
including choosing the right tree species. Next, the vehicles are delivered to the production
site using conventional trailers. The operator oversees unloading and driving from the
unloading point to the production site. When the planting begins, the operator monitors the
working systems from a workstation and intervenes when necessary, using tele-operation
capabilities. When below-ground obstacles appear and planting is interrupted, the UGV
or the planting tube will move 10–20 cm to retry planting. Communication is performed
by radio link or a local network. Depending on the specific operation, the operator will
continue providing support in terms of refuelling, periodically refilling the seedlings
container, and other tasks. The operator at the workstation can provide decision-making
support for the entire UGV fleet. During operations, the UGV could gather data regarding
the surroundings and information about the condition of each seedling, surrounding trees,
soil, and other site characteristics using LIDAR [16], accelerometers, gyroscopes, and video
analysis. These data could be used as inputs to a forestry-specific digital twin, for forest
modeling, or for training purposes.
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3. Requirements for External Data

External data are needed for pre-planning and to set the trajectory [17] for planting
operations. In forest regeneration areas, there are obstacles that cannot be surpassed
by UGVs, for example tree stumps higher than 60 cm. These obstacles require human
interventions, whereby the operator must manually overcome the obstacle or drive around
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it. The main purpose of using external data is to reduce these human interventions by
choosing a trajectory for the UGV that would avoid these obstacles as much as possible. To
choose the right trajectory, the locations of the obstacles must be known before planning
the operation for the UGV. If this could be done with remote sensing data, it would
avoid walking through every operational area and marking these obstacles manually
before operation with the UGV begins. If the remote sensing data are usable, the human
intervention rate could be lowered to enable economically feasible planting operations
with purpose-built unmanned vehicles.

In reforestation, for quality work with UGVs, high-quality information about different
obstacles is needed, which may affect the mobility or interrupt mounding and planting
activities. The most common obstacles and objects found on the surfaces of clear-cut sites
and disturbed areas are stumps, roots, stones, and slash [18–20]. Depending on the site,
these kinds of objects vary, and there can also be deadwood, holes, roads, ruts, seeds,
retention trees, advance regeneration, or other vegetation. For example, a fresh clear-cut
site with stumps, slash, retention trees, and advance regeneration is shown in Figures 5
and 6.
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When planning the trajectory for the UGV, mechanical constraints must be known
and considered. The data for the location, size, and type of obstacle will enable planning
of an optimal trajectory that will increase the efficiency of the system [17]. The UGV
mobility characteristics are known, which is the baseline for developing high-level system
requirements (Table 1) for external data concerning platform mobility.

Table 1. System requirements that are relevant for defining the need for remote sensing.

The System Shall Be Capable of

Detecting and labeling obstacles and delivering respective mobility decisions.

Assembling a perception model of the mobility environment based on acquired and pre-recorded
sensor information.

Augmenting a perception model of the mobility environment based on sensor information.

Classifying objects (branches, stumps, stones, dead wood).

Classifying large excessively moist areas from acquired sensor information.

Classifying positive slopes from acquired sensor information.

Classifying negative slopes from acquired sensor information.

Perceiving no-go zones from data acquired from sensors.

Classifying large excessively dry areas from acquired sensor information.

Classifying large disturbance areas from acquired sensor information.

4. Earth Observation Data

Precision driving for planting requires detailed data to detect small and large obstacles
that affect platform mobility. The ground is rarely smooth, although by detecting the
obstacles, objects, and environmental conditions, one can create a cost map on which the
platform can autonomously operate. The forest environment is diverse and changing, so
the cost map should be updated or the data should be collected right before the operation.
Once the cost map is developed, the trajectory for the mobility platform can be set by
human operator or by the mission planning software from the workstation. We summarize
different remote sensing methods that can detect and map these objects and obstacles and
their accuracy in Table 2.

Table 2. Remote sensing sensors and platforms providing supportive data for fulfillment of system requirements. ALS—
airborne laser scanning; DLS—drone laser scanning; SAR—synthetic aperture radar.

The System Shall Be Capable of Sensors Spatial Resolution Platform

Detecting and labeling obstacles and delivering respective
mobility decisions. LIDAR, RADAR, Visual cameras, 5–50 cm Drone

Assembling a perception model of the mobility environment based on
acquired and pre-recorded sensor information.

Sentinel-2 MSI, Landsat-8 OLI,
sparse ALS, dense ALS, SAR 1–30 m Satellite

Augmenting a perception model of the mobility environment based on
sensor information. LIDAR, RADAR, Visual cameras, 5–50 cm Drone

Classifying objects (branches, stumps, stones, dead wood). LIDAR, RADAR, Visual cameras, 5–50 cm Drone

Classifying large excessively moist areas from acquired
sensor information.

Sentinel-2 MSI, Landsat-8 OLI,
sparse ALS, dense ALS, SAR 1–30 m Satellite

Classifying positive slopes from acquired sensor information. LIDAR, RADAR, Visual cameras, 5–50 cm Drone

Classifying negative slopes from acquired sensor information. ALS, DLS 50 cm Aircraft

Perceiving no-go zones from data acquired from sensors. ALS, DLS 50 cm Aircraft

Classifying large excessively dry areas from acquired
sensor information.

Sentinel-2 MSI, Landsat-8 OLI,
sparse ALS, dense ALS, SAR 1–30 m Satellite

Classifying large disturbance areas from acquired sensor information. Sentinel-2 MSI, Landsat-8 OLI,
sparse ALS, dense ALS, SAR 1–30 m Satellite
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Satellite remote sensing can provide data for pre-planning. Sentinel-2 MSI and
Landsat-8 OLI scanners provide multispectral images with spatial resolutions ranging
from 10 to 30 m [21,22]. These data are provided for public access free of charge, which is
particularly important for cost efficiency. However, such data are only suitable for map-
ping objects or land patches 50 to 100 m in size [23]; detection of single trees or advance
regeneration is not possible. Potential applications are confirmation that a clear-cut event
has occurred, estimating the cover of green vegetation and variability of radiance that can
be related to variability of the local conditions. Shortwave infrared bands located in the
spectral range of 1300 to 2500 nm are sensitive to water and can be used to detect flooding.
The data are used to detect disturbances (flooding, pathogens, insects, forest fires) and plan
forest management activities.

Aerial images for topographic surveys are taken at altitudes ranging from 2 to 10 km
and the spatial resolution may range from 0.1 m to several meters. The cameras usually
have four spectral bands (blue, green, red, and near-infrared). Stereoscopic measurements
can be made from aerial images if there is sufficient overlap between photos, and then a 3D
point cloud can be constructed. By combining spectral signatures and 3D point clouds, it is
possible to detect retention trees, skidding roads that are usually filled with cutting slash,
and patches of vegetation at a level that may be usable for pre-planning of UGV planter
movement.

Airborne laser scanning (ALS) has reached a level of technical readiness for practical
applications. The measurements are conducted for topographic surveys for the construction
of digital terrain models (DEM), although 3D point clouds also contain information about
the plant canopy structure. The ALS data are characterized by laser wavelength, point
density per unit area, illuminated footprint size at the position of return, and count of
registered returns per emitted pulse [24]. Regular ALS flights are conducted at altitudes that
enable 0.1–5 returns per square meter. This is not sufficient to detect tree stumps, although
these data are sufficient to construct DEMs for UGV planter operations. A compromise
must be made between the cost of airborne laser scanning, achievable point density, and
area coverage [25]. Denser point clouds allow analysis of finer details, although costs
increase rapidly for large area measurements. In many countries, low-density point cloud
datasets are already freely available.

Pre-planning planting operations may be enhanced if positions of stumps, fallen trees,
rocks, or other obstacles are known. A custom technique called structure from motion
(SfM) was developed to generate high-density 3D maps, from which these small obstacles
can be detected. We have experimented with this technique in a relevant environment
(Figure 7) using DJI Phantom 4, a single camera feed, and LIDAR. Currently, the SfM
photogrammetry is used in forestry for monitoring and it enables surveys requiring low
costs and little technical expertise [25]. Single or multiple camera feeds can be merged
and optionally enhanced with LIDAR and GPS data to produce both textured polygonal
and colored 3D point cloud maps; subsequent steps correlate the new data with existing
map layers to improve the overall result. The automatic labeling of surface objects and the
properties of the surface are performed to generate extra inputs used for automating cost
map generation for UGV path planning.

The desired spatial density of the data is configurable, as the needs vary across
applications; practical results for 3 cm and 20 cm precision reconstruction are presented
in Figures 7–10. The reconstruction and fitting are computationally intensive processes
requiring central or cloud resources, although these steps enable the concurrent integration
of multiple sources. The achieved level of detail enables precise navigation of UGV
platforms in local reference frames, lowering the requirements of global positioning. GPS
signals are unreliable close to and under trees, although even here adequate precision was
achieved during testing, as the generated detailed map was reliable. Emerging from tree
cover, the predicted global position matched with the reacquired GPS position.
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5. Conclusions

We have described an alternative planting solution based on a mid-sized UGV with
the necessary autonomous functionality to automate forest planting operations. Without
pre-mapping, the existing autonomy may not be enough for the human intervention rate
to be low enough for the system to operate cost-effectively. The future of automated UGVs
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for forest regeneration depends on total costs per unit area or per plant. This study shows
that one of the important elements that can drive down the regeneration cost is the efficient
use of external data in the pre-mapping phase. When combining onboard sensors with
external data, one can achieve human intervention rates that are economically feasible for
planting operations with purpose-built unmanned vehicles. The cost of the external data
must be considered.

Satellite information from Sentinel-2 MSI and Landsat-8 OLI scanners may not fulfil
the system requirements for mapping terrain obstacles because of the low spatial resolution.
However, information gathered from satellites could be used to confirm that a clear-cut has
occurred or to estimate green vegetation cover. There are also commercial satellites with
better resolutions, although these may be costly. Free ALS data could be outdated and the
spatial resolution may not be sufficient to fulfil the system requirements. Ordering specific
overflights for the planting operation does not seem feasible. However, ALS could be used
to create elevation maps.

Based on a literature review and an experiment we conducted, the SfM technique
seems to be the most suitable option for pre-mapping. This can be done just before the
operation, using a drone and sensors that provide up-to-date data. This approach is cost-
efficient compared to booking overflights and is the most accurate solution compared to
other available solutions. According to the 3D model created with the SfM technique, an
operator can plan the trajectory to avoid the obstacles in the path of the UGV. Drone flying,
data collection, modeling, and trajectory creation can be automated, making this process
cost-effective.
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