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Abstract: Variations in the airborne pollen load are among the current and expected impacts on plant
pollination driven by climate change. Due to the potential risk for pollen-allergy sufferers, this study
aimed to analyze the trends of the three most abundant spring-tree pollen types, Pinus, Platanus
and Quercus, and to evaluate the possible influence of meteorological conditions. An aerobiological
study was performed during the 1993–2020 period in the Ourense city (NW Spain) by means of a
Hirst-type volumetric sampler. Meteorological data were obtained from the ‘Ourense’ meteorological
station of METEOGALICIA. We found statistically significant trends for the Total Pollen in all cases.
The positive slope values indicated an increase in pollen grains over the pollen season along the
studied years, ranging from an increase of 107 to 442 pollen grains. The resulting C5.0 Decision
Trees and Rule-Based Models coincided with the Spearman’s correlations since both statistical
analyses showed a strong and positive influence of temperature and sunlight on pollen release
and dispersal, as well as a negative influence of rainfall due to washout processes. Specifically,
we found that slight rainfall and moderate temperatures promote the presence of Pinus pollen
in the atmosphere and a marked effect of the daily thermal amplitude on the presence of high
Platanus pollen levels. The percentage of successful predictions of the C5.0 models ranged between
62.23–74.28%. The analysis of long-term datasets of pollen and meteorological information provides
valuable models that can be used as an indicator of potential allergy risk in the short term by feeding
the obtained models with weather prognostics.

Keywords: data mining; C5.0 decision trees algorithm; pollen trends; urban environment; meteorology

1. Introduction

Airborne pollen can be used for the study of the structure of plant communities in
a determined area, mainly defining the presence of taxa characterized by a predominant
anemophilous pollination mechanism. Based on this, we can monitor the transformations
in plant communities through aerobiological studies due to their adaptation to changing
climatic conditions or marked anthropogenic impacts, such as forest fires, timber exploita-
tions or important ecosystem retrogressions [1]. The construction of pollen calendars with
long-term aerobiological data reflects the influence of climatic characteristics of the area on
the species of a given geographical region, obtaining valuable information about the adap-
tation of plant communities to the changing climatic conditions and possible variations
in duration and intensity of pollination [2]. Plants are effective bioindicators of climate
change impacts since the displacement of phenological events is widely considered for the
study of global climate change [3,4].

Although the heterogeneity found on plant responses depends on the season of the
year and the considered species, a uniform advance of spring phenological stage occurrence
has been detected in different species and regions [3]. The advances found were 1 to 3 days
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per decade on average in spring phenological events during the last decades in temperate
regions of the northern hemisphere [5–8]. Moreover, climate change may trigger shifts in
spatial and temporal airborne pollen loads since pollen concentrations are usually highly
temperature-sensitive, leading to increases in pollen concentrations and/or lengthening of
pollen seasons [9–13]. This issue acquires remarkable importance in urban areas since at
least 50% of the world´s population currently inhabits this kind of settlement, contrasting
with rural zones [14]. Urban environments are potential sources of allergenic pollen
particles, with highly abundant airborne pollen from a number of tree and shrub species,
despite the fact that floral diversity is reduced and pollen sources are relatively scarce in
towns [15].

According to the World Health Organization, 30% of the world population suffers
some form of allergy to pollen emissions [16]. Pollen discharges from urban vegetation
can lead to high socio-economic, environmental and health costs, negatively affecting the
life quality of local populations [17,18]. Comparatively longer pollen seasons were previ-
ously found in urban areas relative to rural areas for various pollen types. Pollen seasons
started earlier and ended later in urban areas. This fact noted that the conditions for pollen
production and release are achieved earlier in the urban areas and therefore last for a
longer period [15,19,20]. In addition, the ‘heat island’ effect in urban areas—with higher
temperatures than in surrounding areas due to the accumulated heat irradiation—results in
reduced relative humidity and specific thermal winds, leading to specific pollen deposition
and dispersal patterns, giving rise to longer vegetative periods [14,21,22]. Since pollen pro-
duction is sensitive to environmental variability [23–25], pollen monitoring from different
taxa can be a useful tool to evaluate local and/or global environmental changes [26], as
meteorological factors, mainly air temperature, have notable environmental impacts both
at macro-and microscales [27,28].

Due to the geographical location of Galicia, Spain, in which different biogeographical
regions converge, this region is an extraordinary laboratory for the study of biodiversity and
climate change effects. This characteristic is especially marked in the Ourense region, where
this study was carried out, due to its transitional character between the Mediterranean and
Atlantic biogeographical regions. Due to the potential risk for allergy sufferers, especially
for urban inhabitants, and the influence of current and expected impacts caused by climate
change on plant behavior, the aim of this study was to analyze the trends of the main
spring tree pollen taxa recorded in the Ourense city atmosphere, located in NW Spain.
The possible influence of meteorological conditions on airborne pollen concentrations was
assessed for the first time by means of new tools, such as Data Mining algorithms, applied
on long-term datasets to evaluate the possible impacts caused by climate change on plant
pollination and dispersal mechanisms.

2. Materials and Methods
2.1. Study Area and Meteorological Data

The study was performed in the Ourense city (Galicia, Spain), geographically located
at 42◦20′ N–7◦52′ W, during the 1993–2020 period. This urban area is situated in the
northwest Iberian Peninsula, in southern Europe (Figure 1). The studied area belongs to the
‘Oceanic-Euoceanic’ bioclimate, related to the tempering effect that seawater masses exert
on the climate of landmasses, generating a continentality gradient [29]. Meteorological data
were obtained from the ‘Ourense’ meteorological station (ID 10148) of the Galician Institute
for Meteorology and Oceanography–METEOGALICIA. The considered parameters were
daily maximum, mean and minimum temperatures (◦C), rainfall (L/m2) and sunlight
hours (hours) [30].
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Figure 1. Location of the Ourense city in Galicia, NW Spain, south Europe (QGIS version 2.18), and 
detail of the Ourense center urban area (the aerobiological sampler icon indicates its location) [31]. 

2.2. Aerobiological Data 
Aerobiological monitoring was conducted during the 1993–2020 period following the 

Spanish Aerobiology Network (REA) protocol [32]. For the aerobiological study, a volu-
metric Hirst-type sampler [33], model Lanzoni VPPS-2000 (Lanzoni s.r.l., Bologna, Italy), 
was used on the roof of the Science Faculty building of the University of Vigo, in the 
Ourense campus, at approximately 15 m above ground level near the city center. The vol-
umetric trap was calibrated to input a constant airflow of 10 L/min, similar to human 
breathing. Melinex tape coated with a 20 g/L (2%) silicone solution was used for the trap-
ping surface, which was changed weekly and cut into seven pieces corresponding to daily 
samples. Four longitudinal transects were applied to each slide under a light optical mi-
croscope at 400× magnification for the determination of daily airborne pollen concentra-
tions applying a correction factor [32]. The obtained results were expressed as total values 
of pollen/m3 referring to daily mean values. Based on the obtained pollen/m3 concentra-
tions, we calculated the Main Pollen Season (MPS) for each considered pollen taxa follow-
ing the Andersen [34] method, which accounts for 95% of the total annual pollen, starting 
when the accumulated sum of pollen reaches the 2.5 percentile of total pollen and ending 
when it reaches the 97.5 percentile. The Seasonal Pollen Integral (SPIn) was calculated as 
the sum of daily pollen concentrations/m3 over the MPS [35]. 

Some data gaps in the pollen dataset were detected during the study period, mainly 
caused by sampling failures due to weather conditions, since thunderstorms are frequent 
in this area in the autumn and winter months and sometimes in the spring. However, 
sample failure during the spring months could also be due to faults in the electrical system 
of the building where the collector is located, or mechanical failure of the aerobiological 
sampler. Over the 28-years study period (1993 to 2020), the detected gaps were most com-
mon in the main pollen season of the considered taxa. There was a total of six gaps, be-
longing to four different years, coinciding with the pollen season of spring taxa (from the 
end of February to mid-May), and 21 gaps belonging to 15 years not included in the pollen 
season of spring taxa (mainly in September, October, November and December). Regard-
ing the gaps within the pollen season of the considered taxa in this study, they showed a 
maximum range of seven days, a minimum of one day and a median of two days. Mean-
while, the gaps located out of the pollen seasons showed a maximum range of seven days, 
a minimum of one day and a median of four days. 

  

Figure 1. Location of the Ourense city in Galicia, NW Spain, south Europe (QGIS version 2.18), and
detail of the Ourense center urban area (the aerobiological sampler icon indicates its location) [31].

2.2. Aerobiological Data

Aerobiological monitoring was conducted during the 1993–2020 period following
the Spanish Aerobiology Network (REA) protocol [32]. For the aerobiological study, a
volumetric Hirst-type sampler [33], model Lanzoni VPPS-2000 (Lanzoni s.r.l., Bologna,
Italy), was used on the roof of the Science Faculty building of the University of Vigo,
in the Ourense campus, at approximately 15 m above ground level near the city center.
The volumetric trap was calibrated to input a constant airflow of 10 L/min, similar to
human breathing. Melinex tape coated with a 20 g/L (2%) silicone solution was used for
the trapping surface, which was changed weekly and cut into seven pieces corresponding
to daily samples. Four longitudinal transects were applied to each slide under a light
optical microscope at 400×magnification for the determination of daily airborne pollen
concentrations applying a correction factor [32]. The obtained results were expressed as
total values of pollen/m3 referring to daily mean values. Based on the obtained pollen/m3

concentrations, we calculated the Main Pollen Season (MPS) for each considered pollen
taxa following the Andersen [34] method, which accounts for 95% of the total annual
pollen, starting when the accumulated sum of pollen reaches the 2.5 percentile of total
pollen and ending when it reaches the 97.5 percentile. The Seasonal Pollen Integral (SPIn)
was calculated as the sum of daily pollen concentrations/m3 over the MPS [35].

Some data gaps in the pollen dataset were detected during the study period, mainly
caused by sampling failures due to weather conditions, since thunderstorms are frequent in
this area in the autumn and winter months and sometimes in the spring. However, sample
failure during the spring months could also be due to faults in the electrical system of the
building where the collector is located, or mechanical failure of the aerobiological sampler.
Over the 28-years study period (1993 to 2020), the detected gaps were most common in the
main pollen season of the considered taxa. There was a total of six gaps, belonging to four
different years, coinciding with the pollen season of spring taxa (from the end of February
to mid-May), and 21 gaps belonging to 15 years not included in the pollen season of spring
taxa (mainly in September, October, November and December). Regarding the gaps within
the pollen season of the considered taxa in this study, they showed a maximum range of
seven days, a minimum of one day and a median of two days. Meanwhile, the gaps located
out of the pollen seasons showed a maximum range of seven days, a minimum of one day
and a median of four days.

2.3. Pollen Calendar and Pollen Trends

A pollen calendar was built based on the 28-year dataset covering the 1993–2020
period, with the objective to determine pollen diversity, quantity and seasonal distribu-
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tion over the studied period. These characteristics define the intensity and duration of
pollination for each plant species. The ‘AeRobiology’ package [36] for R version 4.0.2 [37]
was used for this purpose. The function ‘pollen_calendar’ was applied to the considered
database, and a linear interpolation was used to fill the gaps before the generation of the
pollen calendar [38]. The selected pollen taxa for this study were the most abundant spring
tree species recorded in the Ourense city atmosphere, including Pinus, Platanus and Quercus.
These plant species showed the highest total pollen values during the considered period
and exceeded 100,000 pollen grains (Figure 2).
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Figure 2. Histogram of accumulated Annual Pollen Integral APIn (sum of daily concentrations over
the whole year) during the study period of the fifteen most abundant pollen types recorded in the
studied atmosphere. Sum of pollen grains of the studied taxa Quercus, Pinus and Platanus pollen
during the considered 1993–2020 period recorded in the Ourense city atmosphere. The triangular
axis increases 50,000 units (pollen grains) from the central white space (value 0).

The function ‘plot_trend’ from the AeRobiology package [36] was applied to the
selected plant species for the calculation and plot of the main pollen trends. This function
calculates the main indexes of the pollen season of each considered species and applies a
linear regression trend, showing the seasonal distribution of the considered parameters
over the years. The considered seasonal indexes were the start and end date of the MPS
(Start Date and End Date), the peak date or the date with the maximum airborne pollen
concentrations over the MPS (Peak Date), and the total pollen integral over the MPS (Total
Pollen). A linear interpolation was used for filling the gaps in the input data [38].

2.4. Statistical Analysis
2.4.1. Correlation Analysis

We applied the non-parametric Spearman´s correlation test to assess the statistical
influence of the meteorological conditions on daily pollen airborne concentrations over the
entire 1993–2020 studied period, considering the maximum, mean and minimum tempera-
tures, rainfall and sunlight hours. The correlation analysis was applied to the MPS period
for each pollen type, along the 28-years study period. The correlations were considered as
significant at 95% (p ≤ 0.05) and 99% (p ≤ 0.01) confidence level. The STATISTICA version
8.0 software (StatSoft Inc., Tulsa, OK, USA, 2007) was used for this purpose.

2.4.2. Data Mining Algorithm: C5.0 Decision Trees and Rule-Based Models

Data Mining supposes that the core of the KDD (Knowledge Discovery in Databases)
process consists of automatic exploratory analysis and modeling of large datasets with the
aim to detect previously unknown patterns. According to this, the obtained model can be
used to understand phenomena in the data for the purpose of prediction or identification-
classification [39]. Most Data Mining techniques are discovery-oriented, being based on
inductive learning from the building of models generalized from a sufficient number of
training cases. Among the numerous Data Mining methods, the C5.0 Decision Trees and
Rule-Based Models belong to the supervised classification methods. Supervised methods
attempt to determine the relationship between input attributes (independent or explanatory
variables) and a target attribute (the dependent variable). This relationship is represented
by a model structure. Models usually describe and explain hidden phenomena in the
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dataset and can be used to predict the value of the target attribute by knowing the values
of the attributes or input variables [40].

For the statistical analysis of aerobiological and meteorological data, we applied the
‘C5.0 Decision Trees and Rule-Based Models’ algorithm (C50 package version 0.1.4.) for
R software 4.0.2 [37], which is a Data Mining procedure for data exploration and the
identification of previously unknown patterns [39]. The C5.0 algorithm is one of the most
widely used methods among classification trees that allow the development of models
to predict or identify the class or type to which an element belongs, based on the values
of input or explanatory variables. The C5.0 uses the criterion of entropy or quantity of
information (I) to assess the homogeneity of the classified groups, and the ‘winnowing’
mechanism to select the propitious predictors instead of using them all (1) [41]:

I = −∑
i
[pi log2(pi)] (1)

where I: quantity of information; pi: proportion of values falling into the class level i.
Additionally, the C5.0 algorithm has an important improvement over the previous

C4.5 version, including the boosting meta-algorithm that reduces bias and variance in a
supervised machine-learning context. Boosting algorithms weigh the good and poorly clas-
sified cases differently in each iteration and give a greater weight to the poorly classified,
thereby progressively modifying the decision rule. In C5.0, boosting generates a prede-
termined number of classifiers (decision trees) instead of just one, improving these ‘weak’
classifiers to achieve a higher degree of success, leading to a ‘strong’ classifier. Boosting in
C5.0 raises the accuracy of the decision tree model [42].

Daily values of each pollen type were used as the dependent variable, and meteorolog-
ical variables were used as independent explanatory variables. The airborne pollen values
were transformed into a qualitative variable since the algorithm requires this condition for
the dependent variable. For this data transformation, we followed the REA pollen cate-
gories for each plant species (Table 1), generating two categories of LOW when the pollen
value is included in the Low REA category and HIGH when the pollen value is within the
Moderate and High REA categories for each pollen type [32]. The obtained model classifies
the provided cases into the two created classes, relating them with the meteorological
parameters used as explanatory variables. In addition, the obtained model is also able to
predict the category to which a new case will belong based on the explanatory variables.

Table 1. Pollen thresholds proposed by the REA in pollen/m3 for the considered pollen types [32].

Pollen Type GROUP Low Moderate High

Pinus 4 1–50 51–200 >200
Platanus 4 1–50 51–200 >200
Quercus 4 1–50 51–200 >200

Regardless of the length of the dataset for the different types, the training dataset was
obtained as 80% of randomly selected cases by the ‘set.seed’ function for each pollen type.
The remaining 20% of cases were used as a validation dataset to verify model functioning.
Model accuracy was tested by a confusion matrix to obtain the percentage of successes of
the prediction in comparison to the real classification of data, evaluating the performance
of the classification model. Once the obtained percentage for the training dataset was
demonstrated to be good enough (at least higher than 60%), the obtained model trained
with the training dataset was applied to the validation dataset to verify that the obtained
model was not over-fitted with the training data. When this condition is checked, a new
model is obtained based on the entire available dataset for each pollen type during their
MPS over the 1993–2020 studied period.
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3. Results
3.1. Pollen Seasonal Distribution

The seasonal distribution of the different pollen types recorded by the aerobiological
sampler was assessed by means of a pollen calendar built for the main 15 pollen types
during the 1993–2020 studied period, considering the highest values among the entire
pollen types recorded (Figure 3). This representation describes the main airborne pollen
content in the atmosphere of the plant species present in the area with a predominant
anemophilous pollination mechanism.
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Figure 3. Pollen calendar showing the 15 main pollen types recorded by the aerobiological sampler
placed in the Ourense city center, developed from the 1993–2020 studied period.

Among the considered species in the obtained pollen calendar of the Ourense urban
area, tree pollen is represented by a wide variety of plant species, some of them related to the
bioclimatic characteristics of the area, such as the genus Pinus, Quercus, Castanea and species
of the Ericaceae family mainly in shrub forms. Other tree pollen species are related to the
riverbank areas such as Fraxinus, Alnus and Betula, or with the urban green areas in which
these species are planted, as in the case of Cupressaceae, Populus and Platanus. The presence
of Olea pollen in the Ourense city atmosphere mainly represents the ornamental use of
some individuals, although there has been an increase in the cultivation of olive trees
for farming exploitation near the urban nucleus. Regarding the herbaceous plant pollen,
Rumex, Plantago and the families Urticaceae and Poaceae represent the main pollen types
recorded in the Ourense atmosphere. Regarding the mean seasonal distribution obtained
as an average of the 1993–2020 period, we observed airborne pollen grains over the entire
year, although with different intensities depending on the plant species and season of the
year. We found that the highest airborne pollen levels were recorded during two main
periods, in April and May (mainly due to the Pinus, Platanus and Quercus, and also Betula
pollen in lower importance), and in July (due to Poaceae and Castanea pollen). We also
detected some high pollen levels during the winter months of January and February due to
Alnus pollen (Figure 3).

3.2. Main Seasonal Indexes of the Considered Pollen Types

Considering the entire 1993–2020 studied period, the Pinus MPS had a duration of
80 days on average, ranging from 46 to 122 days. The earliest MPS start was detected on
14 February 2001, while the latest MPS start was observed on 1 April 2018, with a mean
start date of 8 March. The MPS end date was 25 May on average, with the earliest end date
on 28 April 2003 and the latest end date on 28 June 2013. The average SPIn was 4576 pollen
grains for the Pinus pollen type, ranging from 1794 to 8871 pollen grains. The maximum
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pollen peak for this pollen type was 1003 pollen/m3 in 2002, while the average value of
pollen peaks over the studied period was 472 pollen/m3. The date of the maximum pollen
peak varied from 1 March to 27 April over the considered years, with a mean date of 2 April
(Figure 4).
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the parameters of start date (date), end date (date), length of MPS (date) and pollen peak (pollen/m3).

The Platanus MPS started on 20 March and ended 16 April, on average, with a mean
length of 28 days ranging from 17 days in 2006 to 39 days in 2013. The earliest start date
was recorded on 7 March 2020, while the latest start date was observed on 6 April 2018.
Regarding the MPS end date, the earliest date was recorded on 28 March 2020, and the
latest date was 8 May 2018. The mean value of SPIn was 3461 pollen grains, ranging
from only 196 pollen grains in 1999 to 9848 pollen grains in 2015. The maximum daily
pollen peak over the study period was recorded in 2012, with 2347 pollen/m3, while the
mean value for the pollen peak was 732 pollen/m3. The mean peak date was 26 March
considering all studied years, varying from the earliest peak date on 11 March 2020 to the
latest peak date on 6 April 2010 and 2018 (Figure 4).

The Quercus MPS started 25 March on average, ranging from the earliest date on
11 March 1997 to the latest date on 19 April 2018. The mean MPS end date was on 7 June,
varying from the earliest date on 20 May 1997 to the latest date on 30 June 2013. The length
of the Quercus MPS was on average 75 days, ranging from 53 days in 2011 to 100 days in
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2016. The mean SPIn over the studied period was 6247 pollen grains, markedly varying
from 1296 pollen grains in 1998 to 18,269 pollen grains in 2017. The maximum daily
pollen peak was recorded in 2014, with 1250 pollen/m3, while the mean value for the
entire studied period was 456 pollen/m3. The peak date ranged from the earliest date
on 21 March 1998 and 2009, to the latest date on 6 May 2018, with the mean peak date on
10 April (Figure 4).

Regarding the coefficient of variance (CV), which is a standardized measure of the
dispersion of the data distribution relating the standard deviation to the mean, it showed
similar and very low percentages for the MPS date-related variables (start, end and peak
dates), ranging between 0.02% and 0.03% for all pollen types. Related to this, the CV of the
MPS length showed markedly higher values, varying from 12.23–16.39%. The obtained
results showed higher homogeneity among the date-related variables than the pollen-
related variables, such as the SPIn ranging between 20.91–26.35%, and the pollen peak with
values between 22.08–28.63%.

The obtained results from the linear regression trend analysis applied to the main
seasonal indexes showed significant regressions for the pollen peak variable in Platanus
(R2 = 0.499; p < 0.05) and Quercus (R2 = 0.546; p < 0.05) pollen taxa (Figure 4).

3.3. Pollen Trends

As a result of the applied ‘plot_trend’ function of the AeRobiology package for R [30],
we calculated the main indexes of the pollen season of each considered pollen type obtain-
ing a linear adjusted trend. We found statistically significant trends (p < 0.05) for the SPIn
variable (Total Pollen) in all cases. The positive slope values indicated increased pollen
grains over the MPS in the studied years; increases ranged from 107 pollen grains in the
case of Pinus to 442 pollen grains in the case of Quercus (Table 2). The significant trends
found from the ‘plot_trend’ function are shown in Figure 5. Further regression analysis
with the STATISTICA package also detected positive significative trends for the oak start
date of the pollen season and the oak and pines peak pollen amount.

Table 2. Calculated seasonal indexes over the studied years by the ‘plot_trend’ function of the
AeRobiology R software package. S statistically significant trend line slopes displayed in bold.
Significance level: * p < 0.05, ** p < 0.01.

Pollen Type Pinus Platanus Quercus

Start Date 0.3 0.3 0.3
End Date 0.6 0.3 0.1
Peak Date 0.3 0.1 0.3

Total Pollen 106.9 * 269.4 ** 442 **
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3.4. Statistical Analysis: Influence of Meteorological Conditions

The Spearman’s correlation test applied to daily meteorological variables and the
correspondent daily pollen concentrations over the MPS of each pollen type during the
considered study period showed statistically significant correlations for the considered
pollen types, with similar influences in some cases. We detected that rainfall negatively
correlated with all studied pollen types. On the other hand, we found significant positive
correlations between all pollen types and maximum temperature. Minimum tempera-
ture and sunlight hours also showed similar significant correlations except with Platanus
pollen, which showed the lowest number of statistically significant correlations with the
meteorological conditions. For the other considered pollen types, Pinus and Quercus, the
minimum temperature exerted a negative influence on airborne pollen presence, while the
daily sunlight hours had a positive influence (Table 3). The mean temperature showed a
more dissimilar influence, with a significant and positive correlation only with Quercus.
All significant correlations were found at the 99% confidence level (p ≤ 0.01). The highest
Spearman´s correlation coefficients were found for Quercus with rain (R = −0.425) and
maximum temperature (R = 0.408). The weakest correlations were found for Platanus
with rain and maximum temperature and Quercus with minimum temperature (Table 3).
The weakness of the Platanus correlations could be related to the variability in pollen
records of this taxon, showing the highest coefficient of variation in MPS length, SPIn and
pollen peak over the 1993–2020 period (Figure 4).

Table 3. Spearman´s correlation test coefficients (R) applied to daily meteorological and pollen
concentration variables over the MPS in the 1993–2020 study period. Statistical significance was
considered at the 95% and 99% (** p ≤ 0.01) confidence level.

Variables Pinus Platanus Quercus

RAIN −0.338 ** −0.114 ** −0.425 **
TMAX 0.224 ** 0.146 ** 0.408 **
TMIN −0.246 ** −0.037 −0.133 **

TMEAN 0.028 0.056 0.208 **
SUN 0.294 ** 0.066 0.414 **

RAIN: daily rainfall in L/m2; TMAX: daily maximum temperature in ◦C; TMIN: daily minimum temperature in
◦C; TMED: daily mean temperature in ◦C; SUN: daily sunlight hours.

Regarding the obtained results by the applied Data Mining C5.0 decision tree algo-
rithm, we found different complexity levels in the resulting decision tree model for each
pollen type. For Pinus, the classification tree model was markedly more complex than
for the other pollen types, with nine terminal nodes. The Platanus model identified four
terminal nodes, and the Quercus model five terminal nodes. In each terminal node, the
homogeneity in the classification of elements belonging to each class (High and Low pollen
level) and the purity of each node is observable.

The Pinus C5.0 model obtained from the entire dataset used most of the available
variables, except for mean temperature. The RAIN attribute was applied to 99.37% of
cases, the SUN attribute to 59.45% of cases, the TMIN attribute to 57.64% of cases and the
TMAX attribute to 19.89% of cases in the sample. The first variable and cut-off point in the
classification tree was RAIN with a value of 0.11 L/m2, which divided the cases into node
2 and terminal node 17, with 83.90% of cases classified as Low-pollen. The SUN and TMIN
variables were subsequently used by separating the terminal nodes 16, 15 and 5, with 95%,
84.71% and 92.59% of cases, respectively, classified as Low-pollen, which showed a high
level of purity. From node 6, which uses the SUN variable with a cut-off point of 7.8 h, the
model continues the classification, leading to more mixed Low-pollen terminal nodes (the
nodes 8, 11 and 14, with 71.27%, 51.55% and 61.75% of cases, respectively, were classified in
this group). This branching also led to the two terminal nodes classified as High-pollen in
the decision tree, nodes 10 and 13, with 71.82% and 53.22% of cases classified in this group
(Figure 6).
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The Platanus C5.0 model developed from the entire dataset used three of the available
variables. The TMAX attribute was applied to 100% of cases, the TMED to 37.64% of cases
and the SUN to 28.55% of cases. The obtained decision tree was simpler than the Pinus
model, with only four terminal nodes. Two of these terminal nodes were classified as
Low-pollen, the nodes 2 and 7 with 59.96% and 64.22% of cases classified in this group,
respectively. The other two terminal nodes were classified as High-pollen, with a higher
purity degree in these nodes, showing values of 77.05% of cases classified in this group in
node 4 and 56.5% of cases in node 6 (Figure 7).
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In the case of Quercus, the obtained C5.0 model for the entire dataset used the TMAX
variable, applying it to 100% of cases, the TMIN to 52.70% of cases and the RAIN to 27.98%
of cases. The first variable used for the classification was the TMAX with a cut-off point of
21.88 ◦C, followed by the TMIN and RAIN with two successive cut-off points of 0.23 L/m2

and 5.1 L/m2. The resulting terminal nodes were classified as Low-pollen in three cases, in
nodes 2, 7 and 9, and High-pollen in nodes 5 and 8. The Low-pollen nodes 2 and 7 showed
a high purity, with 80.57% and 82.41%, respectively, of cases classified in this group, while
terminal node 9 showed a more mixed distribution, with 59.96% of cases classified in the
Low-pollen class. The High-pollen nodes 5 and 8 showed 65.70% and 66.11% of cases
classified in this group (Figure 8).
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In order to assess the accuracy of the obtained C5.0 decision tree models, we calculated
the percentage of successful predictions in the classification of cases, comparing the real
and forecast data in the confusion matrix. We observed that the validation dataset did
not show any marked over-fit of data to the training dataset, exceeding 50% in all cases.
The models developed from the entire dataset showed a high accuracy level, with a success
percentage above 60% for all pollen types and 70% on average (Table 4).

Table 4. Percentage of successful predictions obtained from the confusion matrix for each C5.0 model
of the different pollen types and datasets.

DATASET Pinus Platanus Quercus

Training 74.802 64.160 72.803
Validation 71.267 51.282 73.684

Entire 74.277 62.228 73.266

4. Discussion

Pollen presence in the atmosphere is an effective indicator of vegetal diversity in a
specific area, which can be used for the detection of species abundance and the determi-
nation of seasonal distribution. Airborne pollen concentrations in a given area are closely
related to the local distribution of flora, meteorology and climate [2]. Moreover, airborne
pollen can be used as a biosensor of the potential allergenic load in the atmosphere, being a
complimentary resource for the prevention and mitigation of allergy disorders in sensitized
populations [2]. In this sense, pollen calendars identify the main periods of potential
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allergy risk due to the location of the more probable pollination periods of the allergenic
pollen types.

The tree pollen taxa considered in this study describe the vegetal communities of the
surrounding area to the aerobiological sampler. Pinus forests are the predominant formation
in boreal, subalpine, temperate and even arid bioclimates, covering an extensive area in
the Northern Hemisphere [43,44]. The Pinus taxon is mainly represented by P. pinaster,
as well as P. sylvestris and the introduced P. radiata in Northwest Spain [43]. The Pinus
pollen is one of the most abundant airborne forest pollen taxa during spring and early
summer in different regions of the Iberian Peninsula [45]. Although this genus belongs
to the Mediterranean vegetation, it was used for land afforestation both in Eurosiberian
and Mediterranean areas due to its fast growth and resistance, being used as recovery
for deforested or fire-damaged areas and supporting ecosystem regeneration by acting as
pioneer species [46–48]. Quercus spp. forests are the predominant vegetation in Galicia,
with some differences in the main species representation depending on the specific climatic
and biogeographic characteristics of each region. The Atlantic influence on this territory
enables the presence of Q. robur in all its extensions, while the Mediterranean influence
increases and intensifies the presence of Q. pyrenaica and Q. suber. The Quercus MPS has
been described in Ourense (NW Spain) from the second fortnight of March to the end of
May or beginning of June [49]. Finally, The Platanus genus belongs to the Platanaceae family,
including eight known species, which are tall trees native to temperate and subtropical
regions of the Northern Hemisphere [50]. In nature, they frequently develop on riverbanks
and streams, being also planted as ornamental plants (hybrid Platanus x hispanica) in
pedestrian areas of many cities from Europe and North America [51]. This species is fast
growing and highly resistant to contamination, being able to accumulate pollutants in
the cortex and capture particulate matter [52–54]. Plane trees are characterized by a short
and intense flowering period from March to May [55–57], with an abundant production
of pollen grains that have been described as allergenic [55,58]. The European Academy of
Allergy and Clinical Immunology (EAACI) identified the Platanus pollen as an important
allergen source responsible for respiratory symptoms such as allergic rhinitis or allergic
rhino conjunctivitis [59,60].

The main seasonal indexes for the studied pollen types showed different results
depending on the plant species. On average, the highest Seasonal Pollen Integral over the
MPS was obtained for Quercus with 6247 pollen grains, although the maximum pollen
peak was recorded for Platanus with 732 pollen/m3. The mean length of the Platanus
pollen season was markedly lower than the Quercus type and shorter among the studied
taxa; this value points out the explosive character of the bloom period of this taxon—
very short and intense [58]. The highest CV values were found for Platanus, indicating a
markedly higher variability for pollen-related variables in this pollen type over the studied
years. The calculated trends based on the seasonal indexes showed statistically significant
linear trends (p < 0.05) for Total Pollen (SPIn). The increase in pollen production is one
of the expected climate change effects on plant behavior, leading to important health
impacts [61,62]. In relation to pollen peak (pollen/m3), or the maximum amount of daily
pollen recorded within the pollen season, we found statistically significant increasing trend
results with linear regression analysis in Platanus and Quercus, with a slope of 58 pollen
grains for Platanus and 32 pollen grains for Quercus over the considered years. In the
case of SPIn, the increased airborne pollen levels due to the influence of climate change
effects on plant phenology and pollination were also noticeable in the pollen peak of some
species. Similarly, Anderegg et al. [9] found a substantial intensification of pollen seasons
in North America over the 1990–2018 period, detecting significant temporal trends in some
pollen metrics, including daily pollen extremes, pollen season start date and length, and
seasonal and annual total pollen integral. They observed increases of 20.9% in annual
pollen integrals and 21.5% in spring (February-May) pollen integrals for the considered
period; among the studied taxa, they found that tree pollen showed the largest increases in
spring and annual integrals. By contrast, Pinus pollen did not show any significant linear
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trend in pollen peak, even though it did in the SPIn. This result could be caused by the
differential nature of this taxon since the optimum conditions for the anthesis of Pinus were
previously described as moderate temperatures and low rainfall [63,64].

Meteorological conditions exert their influence on vegetal species with differentiating
effects depending on the species, seasonality of its development and biogeographical area.
To assess this influence, we applied different statistical analyses to the available dataset
of 28 years of pollen and meteorological data. We obtained significant Spearman´s corre-
lations for all pollen types with meteorological conditions, and we found similar results
among the considered pollen taxa, such as the negative correlations with rainfall and posi-
tive correlations with maximum temperature, which were found in all cases. The negative
correlations of atmospheric pollen load with rainfall could denote the particle-deposition
effect driven by washout processes, in which raindrops attract the airborne particles by
impaction, condensation and nucleation [65]. Previous studies also pointed out negative
correlations of rainfall variables, as daily rainfall or the number of precipitation days, with
pollen concentrations [66–68]. This negative correlation indicates that the presence of rain
causes the decrease of airborne pollen grains. On the contrary, the positive correlations
detected for maximum temperature with all pollen types could denote the influence of
temperature on pollen release and dispersal processes implied in the presence of airborne
pollen grains in the atmosphere [13,66,69–71]. The minimum temperature was significantly
correlated with Pinus and Quercus, showing a negative influence. As Peternel et al. [72] in-
dicated, associated with the relevance of temperature on the pollen release and its presence
in the atmosphere, airborne pollen concentrations tend to decline as the temperature drops.
This effect was also observed in our statistical results since the minimum temperature
values showed a negative correlation with the airborne pollen load. The taxonomic charac-
teristics of the considered plant groups could be related to the obtained results in relation to
the influence of minimum temperature. According to these results, we found no significant
correlation of minimum temperature and Platanus pollen, contrary to the other two studied
pollen types, Pinus and Quercus, in which we found statistically significant negative corre-
lations (Table 3). Furthermore, in the obtained Platanus C5.0 model, minimum temperature
was not selected by the algorithm for the development of the model, while in the other taxa,
this variable was applied to 57.64% of cases in the case of Pinus, and 52.70% in the case of
Quercus (Figures 6–8). This differentiating effect of minimum temperature could be due
to the taxonomy of the considered taxa, since Pinus and Quercus pollen types encompass
multiple pollen sources and multiple plant species in the study area, with prolonged pollen
seasons partially explained by this condition, showing a negative correlation with the
minimum temperature of the cooler, early spring days. By contrast, Platanus showed a
shorter pollen season mean length over the studied pollen types, markedly lower than
Pinus and Quercus pollen seasons, being mainly represented by the ornamental plane trees
planted in the urban area. Considering the correlations found with sunlight hours, we
found positive and significant influence in both Pinus and Quercus pollen types. Previous
studies found that pollen production and release are favored by sunlight, affecting pollen
production immediately in the upcoming days [73]. Furthermore, the anther dehiscence
process is strongly linked to the properties of the atmospheric boundary layer, since sun
exposure leads to an increase in temperature, and this means a higher resonant vibration
in the anthers area. Thus, in combination with the accelerated anther desiccation due to
sunlight, promotes a hastening of pollen abscission, since it has been demonstrated that
slender stamens (as in the case of anemophilous angiosperm trees) requires a resonant
vibration to sufficiently accelerate the anther for the pollen grains ejection [74].

The resulting classification of C5.0 decision tree models showed specific influence-
models built especially for each pollen type, with different variables and key values for
the classification into the proposed categories of High and Low pollen. In the Pinus C5.0
model, the predominant variables were rainfall, sunlight and minimum temperature, which
were used at the beginning of the classification and along the development of the rest of
the branching, in a different order. In the Pinus model, the terminal nodes classified as
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Low-pollen dominated the classification tree, with only two nodes of High-pollen among
the nine terminal nodes obtained. This could denote a wider range of favorable conditions
for Low-pollen and more restrictive conditions for the occurrence of high pollen for this
taxon in the studied area. After the initial conditions described by the three first nodes,
the High-pollen terminal nodes are defined by a minimum temperature between −0.3
and 11 ◦C, and then different sunlight hours. The High-pollen terminal node 10, which
is the purest node of this type, requires a maximum temperature above 22.8 ◦C and less
than 4.2 sunlight hours. The other High-pollen terminal node is 13, defined by more than
7.8 sunlight hours and a minimum temperature below 7.8 ◦C, narrowing even more the
range of this variable from −0.3 to 7.8 ◦C for this node. These results seem to denote a non-
homogeneous behavior of this pollen type in comparison with the rest of the considered
taxa since the occurrence of High-pollen classification requires low rainfall, low sunlight
hours and a minimum temperature from −0.3 to 7.8 ◦C, suggesting that mean temperature
is not very elevated. However, these values are closely related to the hypothesis of Sharma
et al. [63] and Khanduri and Sharma [64], who pointed out that temperature values near
20 ◦C and low rainfall are the optimum conditions during the anthesis of Pinus. Thus,
in agreement with the findings of Green et al. [75], who detected that the Pinus season
started four weeks after minimum temperature values of 5–9 ◦C. This chilling, together
with low rainfall, were found to be required to overcome dormancy and promote male
strobili maturation, as previously demonstrated for flowers of several dicotyledonous tree
species such as oak, almond or peach [76–78].

The Platanus C5.0 model used as classifiers the maximum temperature, mean tempera-
ture and sunlight hours, with this order of relevance and a marked dominance of maximum
temperature. This classification tree generated a balanced distribution, with two High-
pollen and two Low-pollen terminal nodes. In the case of the High-pollen terminal nodes,
the condition of maximum temperature above 22.32 ◦C was met for both, with differences
in the successive classifying steps. The terminal node 4, which is the purest node in the
decision tree and belongs to the High-pollen type, is defined by mean temperature below
13.72 ◦C. This condition, together with the previous classification step, denotes the positive
impact of a marked daily thermal amplitude for the presence of high pollen levels in the
atmosphere. The urban heat island effect, described in many cities and towns of different
countries, modifies the physical properties and characteristics of the lower atmosphere
layers, affecting temperature, wind and rainfall patterns [14]. The diurnal temperature
range, defined as the difference between daily maximum and minimum temperature, is
usually smaller in the town center than in the surrounding suburbs, in which there are
horizontal surfaces that are damper or covered by vegetation [79]. The possible effect of
the thermal amplitude on the concentrations of Platanus airborne pollen was observable
in this study due to the range covered by the aerobiological sampler used in this research,
placed near the city center. Mimet et al. [14] found a gradient of climatic variables over
the urban heat island and small-scale urban structure that affect the flowering features of
Platanus acerifolia and Prunus cerasus. They found that the diurnal temperature range influ-
enced the flowering date and the end of the flowering cycle, acting during short periods of
three days. The other High-pollen terminal node met the conditions of mean temperature
above 13.72 ◦C and sunlight below 10.6 h. This statistical relation could be due to the
conditions that usually accompany a higher number of sunlight hours, probably causing
excessive temperature that negatively affected the Platanus pollination. Concerning the
objective of this research, the analysis of airborne pollen levels and trends of their seasonal
distribution, there are numerous studies on the impact of heat stress on pollen-pistil interac-
tions and different steps of the pollination process in angiosperms, including abnormalities
in anther morphology that limit anther dehiscence at anthesis [80]. This model showed
the relevance of temperature and sunlight for the prediction of the occurrence of different
levels of airborne pollen. As previously described, temperature and sunlight are among the
most influencing factors on pollen generation and release processes, especially temperature,
in the development of floral organs in tree species [73,81,82].
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In the case of Quercus, the obtained C5.0 model classified the sample cases into
five terminal nodes, using as classifying variables the maximum temperature with a
marked predominance, followed by the minimum temperature and rainfall in the last place.
The first division was applied with a maximum temperature of 21.88 ◦C, which generated
one of the purest nodes of the classification of Low-pollen when maximum temperature
is below this limit value. If this value is exceeded, the decision tree continues to branch,
subsequently using the minimum temperature with a cut-off point of 9.9 ◦C, and rainfall
with two different breakpoints of 0.23 L/m2 and 5.1 L/m2. If the minimum temperature
is above 9.9 ◦C, the resulting terminal node is Low-pollen, with a 59.96% purity. On the
contrary, if the minimum temperature is below 9.9 ◦C and rainfall is below 0.23 L/m2, near
to absence of precipitation, the classification model predicts a High-pollen node, which
is the terminal node 5. Considering the same minimum temperature threshold, if rainfall
is between 0.23–5.1 L/m2, the classification ends on a Low-pollen terminal node, node 7.
However, if rainfall is higher than 5.1 L/m2, the decision tree generates a High-pollen
terminal node, node 8. The role of rain in the determination of the atmospheric pollen
levels is probably related to the washout effect on airborne pollen since the High-pollen
node 5 corresponded to rainfall below 0.23 L/m2 [65,68]. On the other hand, the terminal
High-pollen node 8 used rainfall above 5.1 L/m2 for the classification. However, this
relation could be due to the simultaneous occurrence of high pollen levels during the
first days of rainy periods and not a predictable relation, since this terminal node was
composed of only 18 cases, a notable lower value than the 498 cases that form terminal
node 5. The rainfall variable was used for the classification of 27.98% of cases, while the
minimum temperature was applied to 52.70% and maximum temperature to 100% of cases,
which shows the stronger influence of this meteorological variable. As Jato et al. [49]
previously described, warm and sunny days without rainfall during the flowering period
enhance pollen release and dispersion in the atmosphere on wind-pollinated plants.

For further improvement of model accuracy and predictive ability, some methodolog-
ical aspects may be considered, such as the delimitation of pollen thresholds per pollen
type, the definition of the main pollen season, and the inclusion of real-life pollen allergic
symptoms. The REA definitions of pollen categories and thresholds used in this study
determine the limit values of atmospheric pollen content required for a small, medium or
large percentage of the susceptible population to develop pollinosis symptomatology [32].
These pollen categories are based on pollination features of the considered species, such as
their anemophilous/entomophilous character, Annual Pollen Integral (APIn) or sum of
daily pollen concentrations over the whole year, daily pollen content in the atmosphere
over the season, and their potential allergenic ability [32]. These proposed values are an
approximation for the entire Spanish territory; however, modifications of type-specific
classes and thresholds may be required at local or regional scale due to the influence of
numerous factors involved in the appearance of pollen-allergy symptoms, such as the
presence of species that might generate cross-reactions, atmospheric pollutants or specific
weather conditions. The consideration of these factors would notably enhance the obtained
results with more specific pollen thresholds adjusted to the analyzed area, with particular
bioclimatic conditions and variations from the average national values. The definition
of the main pollen season is another variable that could be of interest to consider for the
improvement of the developed models. There is a wide variability regarding the criteria
used to limit the pollen season. Jato et al. [83] tested ten different criteria to examine the
resulting changes in pollen curves. They found that the results varied for the different
pollen types and for the particular features of the sampling site, such as the number of
species included in the pollen type, pollen transport ability, meteorological conditions
or annual total pollen variability. These factors, affecting the presence of pollen in the
air should be considered for the interpretation of the aerobiological results since they are
variable in each area due to their particular characteristics. Furthermore, phenological
observations should be made to select the best criteria according to local flowering behavior.
This comparative study showed that the selected criteria for a determined study should
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not be universal in nature, but it should be adjusted as a function of the pollen type and the
regional bioclimatic characteristics. Another limiting factor that may be considered for the
improvement of the obtained models is the selected method for interpolating missing data
in the aerobiological database. In this study, we selected the linear interpolation method for
filling the pollen gaps. Linear interpolation is one of the most commonly used methods to
complete missing data, although it is more extended in other disciplines than in Aerobiol-
ogy [84]. Other interpolation methods, such as moving mean interpolation or using data of
nearby locations, are rarely applied. These two methods, together with another three (i.e.,
linear, spline and temporal series interpolation), were tested by Picornell et al. [84] for the
assessment of their accuracy and performance. These authors found that the moving mean
interpolation method obtained the highest success rate on average. They also pointed out
that errors in interpolation were greater when there were high oscillations in airborne
concentrations during consecutive days, as occurs in the pre-peak and peak periods, with
the highest interpolation errors. Errors in interpolation are also higher when gaps are
longer than 5 days, in which other methodological approaches would be advisable for
completing these periods of missing data.

The study of links between pollen and weather makes possible the detection of
potential allergy risk periods based on projected meteorological forecasts, providing a
pollen concentration prognosis for the coming days [66]. The presence of high pollen
concentrations in the atmosphere directly affects human health, as seasonal pollen levels
have been related to the appearance and worsening of respiratory diseases [73,85–88].
Furthermore, the proposed methodology is adaptable for the different biogeographical
areas, by the modification of type-specific classes and thresholds at the local or regional
scale, in accordance with the specific environmental conditions involved in the appearance
of pollen-allergy symptoms [32].

5. Conclusions

In this research, the Machine Learning algorithm ‘C5.0 decision trees’ was applied
for the classification and prediction of the occurrence of different atmospheric pollen
loads depending on the meteorological conditions. The obtained results by these models
coincided with those found by the Spearman´s correlation test since both statistical analyses
showed the strong and positive influence of temperature and sunlight on pollen release
and dispersal through the lower atmosphere layers, as well as the negative influence
of rainfall due to washout of pollen grains. The developed models can be used as an
indicator of potential allergy risk in the short term, feeding the obtained models with
weather prognostics. This information complemented pollen calendars and pollen trends
obtained from long-term study periods, which allow identifying the seasonal distribution,
timing and potential concentration of different pollen taxa recorded in the atmosphere.
Moreover, studies of the link between pollen levels and meteorology are of high interest in
the current climate change context since they could be used as guidance for the assessment
and adaptation to potential changes in plant behavior and atmospheric pollen loads driven
by climate variations.
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