
Review

Potentials of Endophytic Fungi in the Biosynthesis of Versatile
Secondary Metabolites and Enzymes

Houda Ben Slama 1 , Ali Chenari Bouket 2 , Faizah N. Alenezi 3, Zeinab Pourhassan 4, Patrycja Golińska 5 ,
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Abstract: World population growth and modernization have engendered multiple environmental
problems: the propagation of humans and crop diseases and the development of multi-drug-resistant
fungi, bacteria and viruses. Thus, a considerable shift towards eco-friendly products has been
seen in medicine, pharmacy, agriculture and several other vital sectors. Nowadays, studies on
endophytic fungi and their biotechnological potentials are in high demand due to their substantial,
cost-effective and eco-friendly contributions in the discovery of an array of secondary metabolites.
For this review, we provide a brief overview of plant–endophytic fungi interactions and we also
state the history of the discovery of the untapped potentialities of fungal secondary metabolites.
Then, we highlight the huge importance of the discovered metabolites and their versatile applications
in several vital fields including medicine, pharmacy, agriculture, industry and bioremediation.
We then focus on the challenges and on the possible methods and techniques that can be used to
help in the discovery of novel secondary metabolites. The latter range from endophytic selection and
culture media optimization to more in-depth strategies such as omics, ribosome engineering and
epigenetic remodeling.

Keywords: fungal endophytes; secondary metabolites; extracellular enzymes; biotechnological
applications; BGC activation

1. Introduction

The 21st century is distinguished by a huge increase in population growth, modern-
ization and consumerism [1,2]. These engender multiple issues, especially those caused by
massive industrial discharges and the excessive use of pesticides. Recently, scientific re-
searchers have shed light on the importance of re-establishing an eco-friendly lifestyle [3–5].

Since ancient times, plants have been extensively used for health care and remedia-
tion [6,7]. In the 20th century, scientific researchers discovered that all plants on earth have
harbored microbes since they first came into existence [8–11]. Plant–microbe interactions
range from symbiotic to pathogenic [12,13]; in the symbiotic relationship, microbes are
called ‘endophytes’. Endophytes are conventionally known as microbes existing in all
plant endospheric tissues (roots, shoots, fruits, leaves, flowers, seeds, etc.) without causing
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harmful consequences to the host plant [14–17]. These microorganisms are usually more
abundant in roots and they can be transferred horizontally and vertically [18]. Particularly,
endophytic fungi constitute an extremely large community, reaching up to three million
species worldwide [19,20]. These eukaryotic organisms are known to harbor a large variety
of secondary metabolites valuable to mankind, plants and the environment. They consti-
tute an excellent substitute for exploring whole plants, thereby gaining time, facilitating
the process of isolation and protecting the ecosystem [21,22]. The scientific community
has approved the excellent roles of the fungal bioactive compounds in several vital fields
including medicine, pharmacy, agriculture, industry and bioremediation. For instance,
medicine improved exponentially with the discovery of the antibiotic penicillin [9,23],
followed by the anticancer compound Taxol [24,25]. In addition, several industrial fields
expanded rapidly after the discovery of numerous interesting extracellular enzymes pro-
duced by fungal endophytes [26,27]. In the present review, we will give an overview
of plant–endophyte interactions; we will focus on secondary metabolites produced by
endophytic fungi and their applications in several living sectors. Finally, we will cover the
challenges and possible solutions in the discovery of novel bioactive compounds.

2. Endophyte–Host Plant Interactions

The endophyte–host interaction is often seen as a mutualistic symbiosis, whereby
the host plant provides nutrition and protection to selected endophytes and they, in turn,
promote plant growth (by producing matching or comparable compounds to the host
plant) and enhance plant resistance to biotic (phytopathogens and herbivores) and abiotic
(heavy metals, pollutants, temperature, etc.) stress factors [28–33]. Numerous studies have
documented that the presence of endophytes is believed to influence several vital activities
of the host plant, including plant growth promotion, defense responses against pathogen
attacks and remediation against abiotic stresses [5,34].

Plant–endophyte interactions can become harmful in certain cases. There are two
well-known ways for an endophyte to be or become a phytopathogen. The first way is
the existence of wounds in the plant, allowing an indiscriminate penetration of microbial
pathogens. The second way is plant atrophy or senescence, leading to the transformation
of the endophytic microbe from a non-harmful to a harmful status due to its production
of toxins engendering, in some cases, the mortality of the host plant [35]. Yan et al. [9]
mentioned that an asymptomatic association between plants and their endophytic fungi is
ensured by a balance between the antagonistic compounds produced by the endophytic
fungi and the host plant (Figure 1).
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3. Processes of Isolation and Characterization of Endophytic Fungi

The percentage of cultivable microorganisms is only about 1% compared to the whole
microbial community [36]. The process of isolation of cultivable fungal endophytes com-
prises multiple steps [37]. Briefly, the desired plant part(s) is/are washed thoroughly under
running tap water, disinfected superficially with appropriate concentrations of ethanol
and sodium hypochlorite or hydrogen peroxide and then washed multiple times with
sterile distilled water to remove disinfectants. Afterward, the plant part(s) is/are cut into
small pieces (5 mm average), which are spread on selective and non-selective growth
media supplemented with antibacterial agents to avoid the multiplication of bacteria. The
temperature of incubation is around 25 ± 2 ◦C [30,38,39]. The difference between endo-
phytic and rhizospheric fungi is difficult to define. Thus, a supplementary step is always
recommended: it comprises the incubation of the last washing water in a non-selective
growth medium. The absence of fungal growth ensures a successful sterilization. Pure
fungal isolates are obtained by sub-culturing the emergent hyphal tips, and then, they are
stored in 20–30% glycerol solution either at −20 ◦C for short-term storage or at −80 ◦C for
long-term storage [27,38]. The characterization and identification of fungal endophytes
occur morphologically, biochemically and molecularly [22]. The molecular and genomic
pathways enable the characterization of both cultivable and non-cultivable species. The
most popular endophytic fungi belong to Fusarium, Aspergillus, Penicillium, Trichoderma and
Alternaria genera [40–42]. In-depth studies of endophytic fungi enhance the knowledge of
their potential for the production of novel effective secondary metabolites, which are also
called bioactive compounds and natural products [4]. These microbial substances have
diverse chemical structures and properties, which enable them to act in a beneficial way to
host plants, the environment and humans in multiple fields [43–45].

4. History of Fungal Production of Secondary Metabolites

Bioactive secondary metabolites are natural organic and low-molecular-weight com-
pounds synthesized by almost all microorganisms and used as a means of defense against
external aggressions [46,47]. Particularly, secondary metabolites produced by endophytic
fungi possess different interesting activities applicable in several fields [48,49]. Fungi have
attracted scientific researchers since the discovery of the wonder antibiotic penicillin from
Penicillium notatum fungus back in 1928 [50,51]. In 1993, Stierle et al. discovered another
bioactive metabolite, Taxol (paclitaxel), from the endophytic fungus Taxomyces andreanae,
inhabiting the Taxus brevifolia tree. This potent drug is mainly used for chemotherapy
against cancer diseases [20,52,53]. These two lead compounds have paved the way to-
wards exploring novel drugs from endophytic fungi. Such natural products are prominent,
affordable, environmentally friendly and could be applied for commercial use [54]. The
bioprospecting of bioactive compounds from fungal endophytes expanded in the 1990s
and is still thriving. This is confirmed by hundreds of articles and patents describing novel
or existing natural products and their possible applications in multiple domains [25,41,55].
Nowadays, studies have revealed that almost 70% of the existing bioactive compounds
originate from microorganisms [52].

5. Processes of Fungal Secondary Metabolite Production

Fungal endophytes are an abundant and natural treasury of drugs with simple and
complex molecular structures. The operation of drug production is executed by the en-
dophytic fungus and influenced by the host plant and by other competing endophytes.
The biosynthetic pathways of secondary metabolites are manipulated by a group of ar-
ranged genes, named biosynthetic gene clusters (BGCs), encoding tandem enzymatic
reactions [56,57]. The acyl-coenzyme A enzyme represents the initial point of synthesis of
diverse classes of biomolecules including alkaloids, terpenoids, cyclohexanes, peptides,
polyketides, flavonoids, hydrocarbons, steroids, monoterpenoids, xanthones, tetralones,
quinones and several other compounds endowed with significant activities in vital fields
of life [8,58–62]. The regulation of fungal BGCs occurs at the transcriptional and the epi-
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genetic levels [23]. Transcriptional regulation ranges from cluster-specific regulators to
global transcriptional complexes [63]. Keller [23] suggests that up to 50% of fungal BGCs
contain a cluster-specific transcription factor recognizing palindromic motifs in cluster
gene promoters. Epigenetic regulation occurs through DNA methylation and histone acety-
lation among other epigenetic mechanisms used to control gene expression. Epigenetic
manipulation is actually an effective strategy for unlocking the chemical diversity encoded
by fungal endophyte genomes [64].

6. Biotechnological Applications of Secondary Metabolites Produced by
Endophytic Fungi

The trend of using biological (herbal and microbial) drugs encouraged the scientific
community to prospect the natural products synthesized by endophytic fungi [65,66].
These endophytes produce unique compounds and also compounds similar to those pro-
duced by their host plants making them an easy alternative to plants to avoid ecological
distortion [67]. The produced compounds may be directly or indirectly applied in sev-
eral biotechnological fields such as medicine, pharmacy, agriculture, bioremediation and
industry. Some of these natural products are discussed along with their functions in the
following sections [9,68] (Figure 2).
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6.1. Medicinal and Pharmaceutical Applications

Global human health is threatened by the development of various chronic and infec-
tious diseases, the emergence of pathogens resistant to commercial antibiotics and the harm-
ful side effects engendered by the prolonged utilization of chemical drugs [69,70]. These
shortcomings require the search for novel bioactive compounds from natural sources, such
as fungal endophytes, to develop new pharmaceutical drugs for human diseases [47,71,72].
For instance, cancer constitutes a major health problem despite the continuous develop-
ment of new medicines [73]. It is a disease caused by abnormal cell division (leading to
tumors), which could invade all human body parts and engender elevated mortality rates
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in humans all over the world. This harmful disease is reported to be the second leading
cause of death in the world, behind cardiovascular disease [20]. For instance, Taxol is a
clinically approved fungal anticancer drug blocking the proliferation and migration of
cancer cells [71–75]. Various other biological compounds, such as antibacterial, antifungal,
antidiabetic, immunosuppressant, antihypertension, antiviral, antiprotozoal, antiparasitic,
antimutagenic, insecticidal, antioxidant, anti-inflammatory, anticancer, etc., were exhibited
by endophytic fungi and constitute alternative biological remedies for several human
diseases [76–83] (Table S1).

6.2. Agricultural Applications

The plant–endophytic fungi interaction is a mutual association helping plants to cope
with both biotic and abiotic stresses [31,42,84,85], promoting plant growth by assimilat-
ing essential nutrients (potassium, nitrogen and phosphorus) and producing ammonia,
siderophores, hormones (auxins, gibberellins and cytokinins) and enzymes [12,13,17,86].
Particularly, secondary metabolites produced by beneficial fungi play a very interesting
role in protecting and ameliorating the quality and yield of agricultural crops [40,87]. In
recent years, the biocontrol of plant diseases using beneficial endophytes and their secreted
compounds has been studied intensively due to the endless benefits to plants, human
health and the environment [88–90]. Table S2 in the Supplementary Materials contains ex-
amples of novel fungal secondary metabolites applied to improve and protect agricultural
crops (Table S2).

6.3. Industrial Applications

Extracellular enzymes are the most common and searched compounds extracted
from endophytic fungi for industrial and/or commercial purposes [9]. They include chiti-
nases, cellulases, amylases, xylanases, pectinases, hydrolases, laccases, proteases, lipases,
etc. [91,92]. Enzymes are used to degrade complex compounds into small ones that are
easy to degrade or assimilate [93]. Various types of industries prefer using microbial
hydrolytic enzymes due to their high stability, broad availability, cost-effectiveness and
eco-friendliness [94,95]. For instance, protease dominates the global enzymes market and is
responsible for hydrolyzing proteins and their derivatives into simple constituents (amino
acids and oligopeptides). Fungal proteases are preferred for their high stability [92], and
thus they are mostly used in pharmaceutical, therapeutic [26,96], food [97], detergent [98],
waste management [99], leather and textile [100] industries. The cellulolytic enzyme is
used to degrade cellulose and its related polysaccharides. It is applied in the human food,
animal feed, agriculture, paper, laundry, wine and textile industries [101]. Xylanase works
in synergy with esterase to hydrolyze xylan, which is a plant polysaccharide. Such organic
carbon is mainly utilized in food-related industries (baking, drinking, etc.) [102,103]. In
addition, it has been extensively documented that bacteria and fungi appear to be the dom-
inant chitin decomposers due to the production of highly active and thermostable chitinase
enzymes [104]. The application of chitinase is concentrated in seafood industries, since
the catalyzation of chitin increases the nutritional benefits of seafood [105,106], human
health improvements, due to its antioxidant, anti-inflammatory, antimicrobial and antitu-
mor properties [107,108], and the biocontrol of phytopathogenic fungi and pests [109]. In
addition, fungal pectinase is used to hydrolyze plant pectin. This enzyme is widely known
in multiple industries for its versatile applications in fruit juice processing [110], breaking
down pectin from agronomic and industrial wastes [111], textile industries [112], paper
recycling [113] and many other applications [114]. Lipase is a serine hydrolase responsible
for breaking down fats and oils; thus, it is essential in the food industry [115]. Lipases
extracted from fungi are able to withstand extreme conditions [116]. Phytase enzyme
is used to degrade phytates. It is especially used in the environmental, nutritional, and
biotechnological fields [117,118]. Last but not least, amylase is responsible for converting
starch into different types of sugars, and amylases originating from fungi are known to be
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thermostable: this is a redeeming feature for starch-producing industries [119]. Examples
of endophytic fungal enzymatic applications in industries are illustrated in Table S3.

6.4. Bioremediation Applications

Natural source contamination is mainly caused by uncontrolled industrial discharges
and anthropogenic activities [17], leading to the accumulation of recalcitrant pollutants,
heavy metals, herbicides, pesticides, chlorinated products, etc. [120,121]. Bioremediation
has arisen in the last two decades as a biological alternative for remediating environmen-
tal pollution [122,123]. It is based on the use of bacteria and fungi and their secreted
compounds to degrade, transform or accumulate targeted pollutants, converting them
into non-toxic compounds [124–126]. Bioremediation could occur by endogenous mi-
crobes living within the contaminated area [34], or by exogenous microbes (having high
bioremediation capacities) induced artificially [27,127].

7. Challenges and Solutions to Improve Secondary Metabolite Discovery

Although the literature presents a wide variety of valuable bioactive compounds
produced by endophytic fungi [127–129] (Tables S1–S3), it has been well established that
researchers have discovered only a small portion of the real capacities of fungal endo-
phytes. The major restrictions regarding this issue have been attributed to possible diffi-
culties in microbial isolation/characterization and also BGC identification, the existence
of cryptic BGCs, low stability or instability of fungal secondary metabolites expressed
and/or the possible isolation of already known BGCs [130] (Figure 3). Depending on
each situation, several methods could be used to solve issues and speed-up the discov-
ery process, to decipher novel secondary metabolites contributing to the advancement
of numerous vital fields [131,132]. Reportedly, numerous scientists have demonstrated
the crucial role of advanced genetic, proteomic, metabolomic, bioinformatic and mass
spectrometry tools to predict, understand and manipulate the biosynthetic pathways of
natural products [133–136]. Other dereplication tools are applied to avoid the rediscovery
of known compounds [137,138]. The challenge of a cryptic gene cluster’s activation could
be realized through numerous methods, starting from a good selection of the endophytic
fungus by exploring extremophile crops in order to increase the chances of discovering
novel noteworthy drugs [51,139]. Secondly, the optimization of the culturing conditions
of the targeted endophytic fungi, by providing all essential nutrients and optimal growth
conditions, is recommended [140–142]. The co-culture fermentation is another method
based on the cultivation of two or more fungal isolates in the same culture environment to
mimic the real growth environment. The association could be symbiotic or antagonistic;
thus, it allows the production of novel compounds [143,144]. Heterologous expression is
another important strategy based on the introduction of the predicted BGC into another
potent host microbe to activate its expression. This method is recommended to allow the
expression of the cryptic BGCs in native fungi and for biomass production of bioactive
compounds [145]. Ribosome engineering is an approach well studied by Ochi [146,147]
to create a fungal mutation aiming to improve cryptic gene activation, which allows the
production of valuable bioactive molecules and antibiotics. Last but not least, the epigenetic
remodeling technique helps in modifying the biosynthetic enzyme pathways to activate
cryptic genes [148].
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8. Conclusions

This review highlighted the importance of secondary metabolites and extracellular
enzymes extracted from fungal endophytes and their crucial contribution in resolving
several human, animal and environmental issues. Thus, we started by describing the
mechanisms of interaction between plants and endophytic fungi and their influence on the
pathways and mechanisms of secondary metabolite biosynthesis. We also underlined the
essential role of using suitable fermentation equipment, advanced analytical techniques
and modern tools (omics, bioinformatics, ribosome engineering and epigenetic remodeling)
to reveal the real potential of endophytic fungi in synthesizing valuable natural products.
The future of research into fungal endophytes is full of interesting discoveries that are
sorely needed to solve human and environmental problems in an eco-friendly and cost-
effective way. Therefore, it is essential to accelerate the process of screening novel bioactive
molecules and to improve the methodologies of large-scale production.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12121784/s1, Table S1: Medicinal applications of novel secondary metabolites produced
by endophytic fungi, Table S2: Agricultural applications of novel secondary metabolites pro-
duced by endophytic fungi, Table S3: Industrial applications of extracellular enzymes produced by
endophytic fungi.
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