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Abstract: Red-heart Chinese fir is an excellent geographic provenance of Cunninghamia lanceolata,
with high-value red heartwood. However, the formation of red heartwood is usually slow. To quickly
cultivate red-heart Chinese fir, we studied perforation dyeing technology on living trees that were
7 years old and efficient in high-value red heartwood formation. Reactive dye (%), penetrant (%),
KH2PO4 (%), and pH were selected as influencing factors, and an orthogonal test (L9(3)4) was used.
The results showed that the total color difference between the experimental and CK groups ranged
from 13.74 to 26.86 NBS, which was a significant visual perception (above 12 NBS). The total color
difference before and after soaking in water for 6 h ranged from 2.30 to 5.12 NBS, which belonged
to the detectable and identifiable value of the human eye (2~5 NBS). After the injection of the dye
liquid, the wood basic density (WBD) was significantly affected after one year. After a comprehensive
analysis of wood color difference, colorfastness, and WBD of the orthogonal test, the best dyeing
process of juvenile red-heart Chinese fir was reactive dye: 0.8%, penetrant: 0.05%, KH2PO4: 0.3%,
and pH: 3.5. The results of this study can provide a reference to improve the value of red-heart
Chinese fir, a fast-cultivated, high-value decorative wood material.

Keywords: dyeing technology of living trees; fuzzy comprehensive evaluation; reactive dye; red-heart
Chinese fir; wood basic density

1. Introduction

Wood is one of the most widely used of the four major materials (steel, cement,
wood, and plastic), and its annual consumption is equivalent to the sum of the other three
materials [1–3]. With the development of the economy and the increase in population, the
market demand for wood products is also increasing [4]. The cultivation of artificial forest
wood can effectively alleviate this problem [5]. Chinese fir (Cunninghamia lanceolata (Lamb.)
Hook) is one of the most commercially important coniferous species, and is primarily
distributed in southern China [6]. This conifer has produced many cultivars in large
long-term production experiments. The wood of red-heart Chinese fir is also considered
a high-value decorative material [7]. The basic density and fiber crystallization degree of
red-heart fir are both greater than those of ordinary fir [8,9], and the price of its wood is
also approximately 20% higher than that of ordinary fir [10], so red-heart Chinese fir is
deeply loved by farmers and consumers. However, the resources of red-heart Chinese fir
are limited and cannot meet the demand for high-value decorative wood materials [11]. To
increase the resources of red-heart Chinese fir and cultivate high-value decorative wood
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materials, artificial promotion of heartwood formation has become one of the methods of
directional cultivation. Through wood dyeing technology, the yield of red-heart Chinese fir
can be improved. Dyeing technology will be applied to simulate ordinary or low-quality
wood to precious wood [12–14]. Through dyeing technology, the natural texture of the
wood is highlighted and emphasized, visual aesthetic characteristics are displayed [15],
inherent defects of wood are masked, surface properties of wood are modified, and the
apparent value of wood itself is improved [16].

There are many methods of wood dyeing; according to the treatment form, they can be
divided into scraps dyeing, single-plate dyeing, solid wood dyeing, standing wood dyeing,
and so on [17]. Scraps dyeing generally refers to the dyeing treatment of broken wood
pieces. Single-plate dyeing is a variety of thin wood or rotary plate dyeing processing
methods, and the thickness is generally 0.2 to 1.0 mm. The dyed single plate can be used
for the production of plywood, furniture veneer and composite solid wood floorboard, and
decorative materials. Solid wood staining is the other wood or log staining. Compared with
the previous wood forms, the thickness of this wood is large, and it is difficult to stain it
evenly under conventional conditions. Therefore, generally in high-temperature, vacuum,
high-pressure, and other conditions, the use of impregnated or cooking dyeing methods
for dyeing material are mainly used for furniture production and interior decoration or cut
thin wood. Standing wood dyeing is used to inject the dye solution from the base of the
trunk into the growing living tree, or just-cut trees that still have vitality, so that the dye
solution is transported to various parts through the capillary of wood, which is suitable for
small wood with more sapwood [18,19]. On the other hand, living-tree perforation dyeing
technology has the characteristics of simple equipment, convenient operation, no pollution
to the environment, and energy savings.

Research on the dyeing technology of living trees first began in Japan, which first
used fluid flow to conduct dyeing experiments on trees [20]. In 1999, Zhao [21] applied
for the patent “Method of Vertical Wood Dyeing” and successfully realized the dyeing of
single-color dyeing and red-blue multicolor dyeing. In 2008, Chen et al. [22] first analyzed
and obtained the optimal technological ratio of the two dyes, which laid the foundation
for living wood dyeing. In 2000, Xiong et al. [23] adopted reactive (KN-3G) dye, and
found that among the four factors of reactive dye %, pH, dyeing time, and penetrant
%, the pH had the greatest influence on the dyeing rate and color difference. With the
continuous development and maturity of dyeing technology, scholars have explored the
best effects of dyeing, and have paid more attention to exploring the influence of dyeing-
solution injection on wood growth and physiological activities. In 2017, when Cao et al. [24]
conducted live wood dyeing, they found that after the dye fluid was injected into the tree,
the maximum liquid flow rate, net photosynthetic rate, air penetrant, and transpiration
rate of the trunk were significantly lower than those of the CK group, and the dye liquid
conducted longitudinally in both directions along the trunk. Subsequently, Fan et al. [25,26].
analyzed in detail the changes in photosynthetic physiology and trunk fluid flow after
the introduction of dye fluid, and discussed the relationship between these physiological
changes and the amount of dye.

Although some achievements have been made in the perforation dyeing technology
of living trees, the results have been mainly concentrated on broad-leaved small-diameter
trees. Although the growth status and physiological activity of living wood have been
studied, long-term observations of the influence of dyeing solution on the growth of living
trees are lacking. In addition, it can be found from the above studies that the main factors
affecting the dyeing of living trees include the type of tree, concentration, pH value, and
the type of test materials. The main purposes of this study were: (1) to compare the
color difference and colorfastness before and after the different dyeing treatments; (2) to
determine the effect of different treatments on wood basic density after 1 year of dyeing;
and (3) to determine the best living tree dyeing technology on red-heart Chinese fir for
the color difference, colorfastness, and basic density using a comprehensive evaluation
method.
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2. Materials and Methods
2.1. Site Description

The study was conducted at Chenshan Forestry Farm (27◦04′-27◦36′ N, 114◦00′–
114◦47′ E; 110–1300 m ASL) in Anfu County, Jiangxi Province. The study area is char-
acterized by a subtropical humid climate, with an average annual temperature of 17.7 ◦C
(the average January and July temperatures are 5.9 and 28.9 ◦C, respectively), average
annual precipitation of 1663 mm, average sunshine duration of 1649 h, and an average
annual frost-free period of 279 d (based on data from 1970 to 2018). The pH value of the
surface soil (0–10 cm) is approximately 4.27 [27]. A 7-year-old juvenile red-heart Chinese
fir in Chenshan Forestry Farm, Jiangxi Province was selected as the sample. Chenshan
Forestry Farm is well known for its resources of red-heart Chinese fir. The understory
consisted mainly of Sapium sebiferum, Vernicia fordii, Phyllostachys edulis, and Choerospondias
axillaris [28].

2.2. Dye Selection

Synthetic dyes commonly used in wood dyeing include direct dyes, acid dyes, basic
dyes, and reactive dyes [29]. We added reactive dyes to the dyes because the reactive
dyes have better water resistance and light resistance, which is beneficial to living wood
dyeing [30,31].

To improve the dyeing effect, we needed to mix some additives with the dyes. Dyeing
auxiliaries are commonly used according to their uses, including as a permeating agent,
promoting agent, leveling agent, and fixing agent [32]. The effect of penetrant on living
wood dyeing is more significant, so it was added to the dyes.

The study area is at a low latitude and lacks available phosphorus [33]. Soil phospho-
rus is an important factor that restricts the rapid growth and high yield of artificial forests
in southern China, and even affects the balance and stability of ecosystems [34]. Therefore,
we added different concentrations of KH2PO4 to the dyes.

The pH of a dyeing solution will affect the time and color difference of wood dye-
ing [35]. The pH of active dyes is generally between 9 and 10 [36]. When the pH value of
the dye solution is small, the wood dyeing time is short, the dye is evenly distributed and
stable in the wood, and the color difference before and after dyeing is small. When the pH
of the dyeing solution is high, the dyeing time is relatively long, and the color difference of
wood before and after dyeing is large, but the colorfastness is unstable.

The mass fraction, permeability, and pH value of reactive dyes were taken as the
influencing factors and treated by orthogonal experiments, which are shown in Table 1. We
established the L9(3)4 orthogonal experimental, which included 4 influencing factors all
with 3 concentration levels. In the experiment, there were 9 treatments with 3 replicates per
treatment, and the control group used distilled water. According to the orthogonal table,
the experimental treatment could be distributed evenly, and the number of experiments
could be reduced [37]. The best dyeing process combination for red-heart Chinese fir live
dyeing was confirmed by orthogonal testing.
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Table 1. L9(3)4 orthogonal experimental table.

Process Number Reactive Dye (%) Penetrant (%) KH2PO4 (%) pH

1 0.2 0.01 0.1 3.5
2 0.2 0.05 0.2 4.5
3 0.2 0.10 0.3 5.5
4 0.5 0.01 0.2 5.5
5 0.5 0.05 0.3 3.5
6 0.5 0.10 0.1 4.5
7 0.8 0.01 0.3 4.5
8 0.8 0.05 0.1 5.5
9 0.8 0.10 0.2 3.5

CK 0 0 0 0

The three levels of the four influencing factors were used in the orthogonal test L9(3)4 with 3 replicates per
treatment, and CK (the control group) used distilled water. The three levels of reactive dye were 0.2%, 0.5%, and
0.8%. The three levels of penetrant were 0.01%, 0.05%, and 0.10%. The three levels of KH2PO4 were 0.1%, 0.2%,
and 0.3%, and the three levels of pH were 3.5, 4.5, and 5.5.

2.3. Dyeing Method

Three replicates (i.e., 3 trees) were set for each treatment in the orthogonal test table;
each tree was equipped with 2000 mL of dye fluid in the infusion bag, and three blanks
(distilled water) controls were set. Before dye injection, each of 300 Chinese fir trees in the
sample plot was measured first, and 30 Chinese fir trees with the same age, healthy growth,
and terrain conditions were selected. When injecting, we drilled a hole in the north and
south direction of the trunk 15 cm away from the ground, avoiding the damaged parts of
the trunk. The hole diameter was about 0.5 cm, and the hole was deep into the middle of
the trunk. We installed the dyeing infusion device, and the gap between the orifice and the
infusion needle was sealed with tree callus to prevent the entry of bacteria. After one year
of the experiment, the three indexes of the color difference, colorfastness, and basic density
were determined by cutting the sample wood.

2.4. Measurement Indexes and Experimental Methods
2.4.1. Color Difference Measurement

The color was determined using the CIE1976 (L*, a*, b*) surface color system [38]. The
brightness index (L*), red-green axis color index (a*), and yellow-blue axis color index (b*)
of the dyed red-heart Chinese fir wood were measured with a color spectrum colorimeter
(CS-200). The color difference was determined by the average value of ∆L*, ∆a*, and ∆b*
(Formulas (1)-(3)). The total color difference (∆E*) was calculated between the control
group and different dyeing treatments after perforation dyeing for 1 year (Formula (4)).
Color difference units used were NBS units, which were established by the National Bureau
of Standards. When the color difference ∆E* = 1, it is called one NBS unit [39].

∆L∗ = L1
∗ − L0

∗ (1)

∆a∗ = a1
∗ − a0

∗ (2)

∆b∗ = b1
∗ − b0

∗ (3)

∆E∗ =
√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (4)

where ∆L* is the brightness difference (a greater positive value means brighter, and a
greater negative value means darker); ∆a* is the red-green axis color difference index (the
larger the positive value, the deeper red; and the larger the negative value, the deeper
green); ∆b* is the yellow-blue axis color difference index (the larger the positive value, the
more yellow; and the larger the negative value, the deeper the blue); and ∆E* is the total
color difference (the larger the value, the greater the color change).
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2.4.2. Colorfastness and Wood Basic Density (WBD) Measurement

Small pieces of wood boards with dimensions of 5 cm (length) × 4 cm (width) × 2 cm
(thickness) were sawed to determine the colorfastness. Each wood board was soaked in
water for 6 h. Three points were selected on each wood board to measure the L*, a*, and b*.
The colorfastness was determined by the color difference of the average value of ∆L*, ∆a*,
and ∆b* before and after soaking in water.

Wood regular density was divided into four kinds, and the wood basic density (WBD)
and wood air-dry density are commonly used. WBD is one of the most crucial wood
properties in trees, and mainly determines the end use of wood for the industry. Wood
air-dry density is suitable for measuring the density of wood in dry air for a long time [40].
The test object was Chinese fir in the natural environment, so it was more suitable for
measuring the basic density. The WBD of samples was determined by following per under
GB/T 1933–2009 [41], and 3 replicates were taken for each group of treated samples.

2.5. Data Analysis

The combined entropy value method and fuzzy comprehensive evaluation method
were carried out in the R package 4.0.3 [42], which was used to comprehensively evaluate
the best process of the perforation dyeing technique on living red-heart Chinese fir.

2.5.1. Establishment of the Evaluation Set

Three indexes of color difference, colorfastness, and basic density of dyed Chinese fir
were obtained by orthogonal testing, and the evaluation matrix of dyeing was established.
The mean qik (Formula (5)) of the corresponding index at each level of each factor was first
calculated according to the literature [43]:

qik =

3
∑

k=1
xij(k)

3
(5)

where i = 1, 2, 3, 4 indicates the influencing factors in orthogonal test, namely reactive
dye %, penetrant %, KH2PO4, and the pH value; j = 1, 2, 3, . . . 9 indicates the number of
orthogonal tests, for a total of 9 tests; k = 1, 2, 3, . . . 9 indicates the concentration level of
each influence factor; and xij(k) is the original value of an evaluation index at the k level of
the i factor and j processing number.

Since the stipulation of fuzzy mathematics, the evaluation indexes should be evaluated
comprehensively according to the principle of “selecting the best”, so the side-effect indexes
in the evaluation indexes should be changed incrementally to make them meet the evalua-
tion requirements. Among the three evaluation indexes selected in this study, colorfastness
is a negative action index, which was treated incrementally as follows (Formula (6)):

q′ik =
1

qik
(6)

where y after the increment transformation satisfies the increment condition, but is still a
normal set. It is blurred to eliminate its dimension, and each element in the ordinary set is
the weighted average (Formula (7)):

rik =
qik

3
∑

k=1
qik

(7)

2.5.2. Determination of Evaluation Indicators

In the comprehensive evaluation of multiple indexes, the main methods to determine
the weight of indexes include the subjective weight method and the objective weight
method [44]. Entropy is a measure of uncertainty [45]. In the comprehensive evaluation of
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multiple indexes, the entropy value can be used as the basis to determine the weight of
indexes, which makes up for the defect of not considering the data characteristics when
using principal component analysis to determine the weight [46,47]. This study used the
entropy method to determine the weight of the index.

2.5.3. Fuzzy Matrix Synthesis

Combining the dimensionless evaluation matrix R of each evaluation index under
different influencing factors with the weight vector A of each evaluation index obtains the
final evaluation result vector B. After normalizing the data in result vector B (Formula (8)),
the optimal concentration of each influencing factor was selected:

B = A× R =
(

W1 W2 W3
)
×

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 =
(

B1 B2 B3
)

(8)

where B1, B2, and B3 are the comprehensive evaluation values of different evaluation
indexes under three different concentrations of a certain influencing factor, and the largest
is the best concentration of this factor.

3. Results
3.1. Effects of Dyeing Factors on Color Difference

The color difference of red-heart Chinese fir wood before and after dyeing represented
the total color difference (∆E1*). As shown in Figure 1, the total color difference (∆E1*) of
the 9 groups was different. The better the dyeing effect was, the greater the color difference
value. As shown in Table 2, the differences of the 9 experimental treatments were obtained
by ANOVA, and the lightness difference (∆L*) between the experimental and CK groups
was negative, indicating that the lightness of the dyed wood decreased and the wood color
darkened. The red-green axis color difference index (∆a*) was positive. The yellow-blue
axis color difference index (∆b*) changed little, indicating that the wood color was a deeper
red after dyeing. The total color difference (∆E1*) range between the experimental and
CK groups was 13.74~26.86 NBS, which was a very significant visual perception (up to
12 NBS) [48]. NBS, the unit of color difference, was established by the National Bureau
of Standards. When the color difference ∆E1* = 1, it was called one NBS unit. The results
showed that the liquid dyeing effect was better in the red-heart Chinese fir wood, and the
wood color turned an obvious red.

Table 2. Color difference indexes of red-heart Chinese fir wood with different dyeing treatments.

Process
Number L* a* b* ∆L* ∆a* ∆b* ∆E1*

1 71.07 ± 1.95 18.01 ± 2.89 14.32 ± 0.94 −9.76 ± 1.74 12.17 ± 2.94 −1.18 ± 1.03 15.81 ± 3.12 c
2 72.49 ± 1.77 16.93 ± 3.30 12.02 ± 1.44 −8.33 ± 1.79 11.10 ± 3.42 −3.47 ± 1.55 14.51 ± 3.63 bc
3 71.97 ± 3.80 15.53 ± 5.11 15.88 ± 1.82 −8.85 ± 3.50 9.69 ± 5.15 0.39 ± 1.68 13.88 ± 5.50 abc
4 73.57 ± 4.25 16.69 ± 3.80 12.17 ± 0.41 −7.25 ± 4.19 10.86 ± 3.93 −3.32 ± 0.65 13.74 ± 5.40 abc
5 67.59 ± 4.88 22.82 ± 6.05 11.08 ± 0.63 −13.23 ± 7.54 16.98 ± 6.00 −4.42 ± 0.79 22.23 ± 6.94 abc
6 69.67 ± 4.70 13.73 ± 6.04 18.67 ± 1.40 −11.15 ± 4.48 7.90 ± 6.13 3.17 ± 1.33 14.70 ± 6.88 abc
7 65.16 ± 2.83 23.71 ± 4.12 12.29 ± 0.76 −15.66 ± 3.12 17.87 ± 4.30 −3.20 ± 2.23 24.09 ± 5.21 abc
8 65.24 ± 1.83 26.94 ± 2.88 11.45 ± 0.54 −15.59 ± 1.11 21.11 ± 2.80 −4.05 ± 0.49 26.66 ± 2.80 ab
9 63.17 ± 5.65 25.43 ± 6.33 11.04 ± 2.11 −17.65 ± 5.44 19.59 ± 6.42 −4.46 ± 2.22 26.86 ± 8.54 a

Note: L*, brightness index of dyed red-heart Chinese fir wood; a*, color indexes at the red-green axis; b*, color indexes at the yellow-blue
axis; ∆L*, lightness difference; ∆a*, red-green axis color difference index; ∆b*, yellow–blue axis color difference index; ∆E1*, the total color
difference of red-heart Chinese fir wood before and after dyeing; ±, standard deviation; c, bc, abc, ab, a, results of ANOVA.
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Figure 1. Dyed Chinese fir under different dyeing treatments. Note: After dyeing treatment, the
color of wood in the experimental group 1-9 was significantly redder than that in CK.

Through extreme differential analysis of each color difference index (Table 3), we
found that the four factors had the following effects on the total color difference (∆E1*)
after dyeing: reactive dye % (A) > pH value (D) > penetrant % (B) > KH2PO4% (C).

As shown in Figure 2, the change in the total color difference (∆E1*) was not due to
a single cause, but the reactive dye %, penetrant %, KH2PO4%, and pH factors worked
together to produce interactions. Among them, the reactive dye % had significant effects
on the brightness index difference (∆L*), (∆a*), (∆b*), and total color difference (∆E1*). The
change in concentration had the greatest influence on the total color difference (∆E1*). The
total color difference (∆E1*) of dyed Chinese fir was used as the evaluation index. The best
dyeing process for Chinese fir live dyeing was A3B2C3D1, which meant the best formula
was: mass fraction of reactive dye: 0.8%; mass fraction of penetrant: 0.05%; mass fraction
of KH2PO4: 0.3%; and pH: 3.5.

Table 3. Range analysis of the color difference indexes of dyed red-heart Chinese fir wood.

Four Factors
Levels ∆L* ∆a* ∆b* ∆E1*

Code Factors

A Reactive dye (%)

0.2% −8.98 10.99 −1.42 14.73
0.5% −10.54 11.91 −1.52 16.89
0.8% −16.30 19.52 −3.90 25.87

R 7.32 8.53 2.48 11.14

B Penetrant (%)

0.01% −10.89 13.63 −2.57 17.88
0.05% −12.38 16.39 −3.75 21.13
0.10% −12.55 12.39 −2.41 18.48

R 1.66 4.00 1.34 3.25

C KH2PO4 (%)

0.1% −12.16 13.73 −0.68 19.06
0.2% −11.08 13.85 −3.75 18.37
0.3% −12.58 14.85 −2.41 20.06

R 1.50 1.12 3.07 1.70

D pH

3.5 −13.55 16.25 −3.35 21.64
4.5 −11.71 12.29 −1.17 17.76
5.5 −10.56 13.89 −2.33 18.09
R 2.98 3.96 2.18 3.87
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Table 3. Cont.

Four Factors
Levels ∆L* ∆a* ∆b* ∆E1*

Code Factors

Sort Factors A > D > B > C A > B > D > C C > A > D > B A > D > B > C

Note: ∆L*, lightness difference; ∆a*, red–green axis color difference index; ∆b*, yellow–blue axis color difference index; ∆E1*, the color
difference of red-heart Chinese fir wood before and after dyeing; R, range.
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Figure 2. Effects of four factors (all with three levels) on ∆E1*. ∆E1* is the total color difference (NBS).
NBS is the unit of color difference, established by the National Bureau of Standards. When the color
difference ∆E1* = 1, it is called one NBS unit. A is reactive dye (%) with three levels of 0.2% (A1), 0.5%
(A2), and 0.8% (A3). B is penetrant (%) with three levels of 0.01% (B1), 0.05% (B2), and 0.10% (B3). C is
KH2PO4 (%) with three levels of 0.1% (C1), 0.2% (C2), and 0.3% (C3). D is pH with three levels of
3.5 (D1), 4.5 (D2), and 5.5 (D3). The y~AIA, y~BIB, y~CIC, and y~DID represent the leading factors in
the interaction. A3B2C3D1 was the best formula.

3.2. Effect of the Dyeing Factors on the Colorfastness

The color difference of red-heart Chinese fir-dyed wood before and after soaking
in water indicated its colorfastness (∆E2*). The smaller the color difference was, the
fewer dyes precipitated from the wood during water immersion and the higher the water
colorfastness of the dyeing material. As shown in Table 4, the differences of the nine
experimental treatments were obtained by ANOVA; and the brightness difference (∆L*)
was positive, and the red-green axis color difference index (∆a*) was negative and decreased
with increasing reactive dye %. The yellow-blue axis color difference index (∆b*) was not
obvious, indicating that the dyeing material became bright, red became lighter, and the
color brightness decreased. The colorfastness difference (∆E2*) of wood before and after
soaking in water for 6 h ranged from 2.30 to 5.12 NBS, which belonged to the detectable
and identifiable value of the human eye (2~5 NBS).
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Table 4. Color change of dyed red-heart Chinese fir wood before and after soaking in water for 6 h.

Treatment
Number

Before Soaking After Soaking Color Parameter
Difference Total Color Difference

L* a* b* L* a* b* ∆L* ∆a* ∆b* ∆E2*

1 70.07 ±
2.32

20.36 ±
2.47

13.13 ±
1.84

71.00 ±
2.40

18.51 ±
2.59

13.09 ±
1.79

0.92 ±
1.34

−1.84 ±
1.56

−0.04 ±
0.66

2.61 ±
1.50 c

2 71.77 ±
3.02

16.49 ±
1.79

16.24 ±
1.78

72.05 ±
2.55

15.06 ±
2.38

15.73 ±
1.77

0.28 ±
1.39

−1.43 ±
0.89

−0.51 ±
1.34

2.30 ±
1.26 bc

3 67.52 ±
2.01

18.64 ±
2.35

16.08 ±
2.55

68.12 ±
3.01

16.78 ±
2.78

16.43 ±
1.90

0.61 ±
1.46

−1.87 ±
0.95

0.35 ±
1.26

2.72 ±
1.09 abc

4 73.57 ±
5.89

16.83 ±
4.98

13.64 ±
0.93

74.57 ±
5.09

14.53 ±
4.00

13.74 ±
1.03

0.99 ±
0.99

−2.30 ±
1.14

0.10 ±
0.43

2.63 ±
1.41 abc

5 65.11 ±
4.78

24.64 ±
5.97

12.40 ±
1.02

67.01 ±
4.36

22.62 ±
5.57

13.82 ±
1.51

1.91 ±
1.88

−2.02 ±
1.51

1.42 ±
1.07

3.53 ±
1.81 abc

6 60.60 ±
1.20

20.22 ±
0.88

13.81 ±
2.22

62.41 ±
1.65

18.30 ±
0.72

15.77 ±
2.18

1.81 ±
2.18

−1.93 ±
1.18

1.96 ±
1.95

3.84 ±
2.47 abc

7 61.93 ±
2.79

25.18 ±
3.50

15.63 ±
1.88

65.12 ±
3.95

22.13 ±
3.67

15.59 ±
2.00

3.18 ±
1.69

−3.05 ±
1.26

−0.03 ±
2.44

5.12 ±
1.64 abc

8 64.36 ±
2.62

26.56 ±
4.98

13.55 ±
1.75

65.90 ±
3.24

23.81 ±
4.24

13.90 ±
0.81

1.54 ±
2.11

−2.74 ±
2.01

0.35 ±
1.87

4.22 ±
2.06 ab

9 62.28 ±
6.53

24.42 ±
6.15

12.75 ±
1.71

65.35 ±
5.18

22.71 ±
5.75

13.39 ±
1.15

3.08 ±
1.80

−1.71 ±
0.95

0.64 ±
1.90

4.01 ±
2.12 c

Note: L*, brightness index of dyed red-heart Chinese fir wood; a*, color indexes at the red-green axis; b*, color indexes at the yellow-blue
axis; ∆L*, lightness difference; ∆a*, red–green axis color difference index; ∆b*, yellow–blue axis color difference index; ∆E2*, total color
difference of red-heart Chinese fir dyed wood before and after soaking in water for 6 h; ±, standard deviation; abc, results of ANOVA.

According to the range analyzed of the colorfastness difference (∆E2*) before and after
soaking in water (Table 5), we found that the four factors had the following effects on the
total colorfastness of dyed red-heart Chinese fir: reactive dye % (A) > KH2PO4% (C) > pH
value (D)> penetrant % (B). The colorfastness difference (∆E2*) of dyed red-heart Chinese
fir was used as the evaluation index. The best dyeing process for Chinese fir live dyeing
was A1B2C2D3. This meant that the best formula was as follows: mass fraction of reactive
dye of 0.2%, mass fraction of penetrant of 0.05%, mass fraction of KH2PO4 of 0.2%, and pH
value of the dyeing solution of 5.5.

The variance analysis (Table 6) that was conducted for the color difference (∆E2*) of
the dyed material before and after soaking in water found that the reactive dye % had
a very significant effect on the colorfastness of Chinese fir wood (p < 0.001), while the
penetrant%, KH2PO4%, and the pH value did not affect the colorfastness of dyed red-heart
Chinese fir wood (p > 0.05).

Table 5. Range analysis of color difference of dyed red-heart Chinese fir wood before and after
soaking in water for 6 h.

Horizontal Analysis
Factors

A B C D

X1 2.55 3.45 3.56 3.38
X2 3.33 3.35 2.98 3.75
X3 4.45 3.52 3.79 3.19
R 1.91 0.17 0.81 0.57

Sort Factors A > C > D > B
Excellence Level A1 B2 C2 D3

Note: X1, X2, X3, mean values of the first, second, and third levels of different factors, respectively; A, reactive
dye (%); B, penetrant (%); C, KH2PO4 (%); D, pH; R, range; A1, reactive dye at a level of 0.2%; B2, penetrant at a
level of 0.05%; C2, KH2PO4 at a level of 0.2%; D3, pH at a level of 5.5.
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Table 6. Variance analysis of the color difference of dyed red-heart Chinese fir wood before and after soaking in water for 6 h.

Source of the Variance Degree of Freedom Sum Squares of Mean
Deviation Mean Square F p

Reactive dye (%) 2 65.899 32.95 10.282 0.000 ***
Penetrant (%) 2 0.455 0.227 0.071 0.932
KH2PO4 (%) 2 11.985 5.992 1.87 0.160

pH value 2 4.962 2.481 0.774 0.464
Error 18 288.421 3.205
Total 26 372.509

Note: ***, the significant difference (p < 0.05)

3.3. Effect of Dye Fluid on Wood Basic Density

The WBD of the experimental and CK groups is shown in Figure 3. In the nine
groups of dyeing treatment for the orthogonal tests, only treatment No.1 (reactive dye 0.2%,
penetrant 0.01%, KH2PO4 0.1%, pH value 3.5, WBD 0.327 g/cm3), treatment No.4 (reactive
dye 0.5%, penetrant 0.01%, KH2PO4 0.2%, pH 5.5, WBD 0.316 g/cm3) and No.6 (reactive
dye 0.5%, penetrant 0.1%, KH2PO4 0.1%, pH 4.5, WBD 0.312 g/cm3) had significant effects.
These three groups were significantly higher than that of the CK group, which was 19.4%,
15.2%, 9.3%, and 9.1% higher than that of the CK group. There was no significant difference
in the basic density between the experimental and CK groups. The average WBD in the
experimental groups was 5.9% higher than that of the CK group after one year.
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Through the range differential analysis (Table 7), we found that the range of the WBD
of the A, B, C, and D factors was 0.025, 0.037, 0.009, and 0.023, respectively. That is, the order
of the influence effect of the four factors on the WBD of dyed tree wood was penetrant %
(B) > reactive dye % (A) > pH (D) > KH2PO4% (C).

Table 7. Range analysis of the wood basic density of dyed red-heart Chinese fir wood.

Horizontal Analysis
Factors

A B C D

X1 0.296 0.306 0.296 0.301
X2 0.300 0.269 0.288 0.278
X3 0.275 0.296 0.287 0.292
R 0.025 0.037 0.009 0.023

Sort Factors B > A > D > C
Note: X1, X2, X3, mean values of the first, second, and third levels of different factors, respectively; A, reactive
dye (%); B, penetrant (%); C, KH2PO4 (%); D, pH; R, range.
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According to Figure 4, the basic density of dyed red-heart Chinese fir wood decreased
with the mass fraction of reactive dye, and the basic density of all three concentrations was
higher than that of the mass fraction of penetrant and the pH value, but decreased with the
increase in the mass fraction of KH2PO4. The basic density of dyed red-heart Chinese fir
trunks was used as the evaluation index. The best dyeing process for red-heart Chinese fir
live dyeing was A2B1C1D1, which meant the best formula was: mass fraction of reactive
dye of 0.5%, mass fraction of penetrant of 0.01%, mass fraction of KH2PO4 of 0.1%, and pH
value of dyeing solution of 3.5.
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Chinese fir wood after one year. A is reactive dye (%) with three levels of 0.2% (A1), 0.5% (A2), and
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3.4. Comprehensive Evaluation of the Dyeing Process

Table 8 lists the best process of dyeing and the evaluation index by color difference,
colorfastness, and basic density. The results showed that the best level combination was
different under each evaluation index.

Table 8. The best combination of dyeing solutions under different evaluation indexes and the order of four factors.

Evaluating Indicator
Optimum Combination

Sort Factors
Reactive Dye (%) Penetrant (%) KH2PO4 (%) pH

Wood color difference A3 (0.8) B2 (0.05) C3 (0.3) D1 (3.5) A > D > B > C
Wood colorfastness A1 (0.2) B3 (0.10) C2 (0.2) D3 (5.5) A > C > D > B
Wood basic density A2 (0.5) B1 (0.01) C1 (0.1) D1 (3.5) B > A > D > C

Note: A is reactive dye (%) with three levels of 0.2% (A1), 0.5% (A2), and 0.8% (A3). B is penetrant (%) with three levels of 0.01% (B1), 0.05%
(B2), and 0.10% (B3). C is KH2PO4 (%) with three levels of 0.1% (C1), 0.2% (C2), and 0.3% (C3). D is pH with three levels of 3.5 (D1), 4.5 (D2),
and 5.5 (D3).

To further evaluate the best dyeing process of red-heart Chinese fir live dyeing,
according to the formula, the evaluation matrices RA, RB, RC, and RD of four influencing
factors including the mass fraction of reactive dye, the mass fraction of penetrant, the mass
fraction of KH2PO4, and the pH value, the weight of each index was obtained, respectively:
the weight of basic density was 0.3048, the weight of total color difference was 0.5210, and
the weight of total colorfastness was 0.1742.

According to the weight of each evaluation index, the largest weight was ∆E1*. If
only the dyeing effect was considered, the best dyeing process for red-heart Chinese fir
live dyeing was A3B2C3D1. The mass fraction of reactive dye was 0.8%, the mass fraction
of penetrant was 0.05%, the mass fraction of KH2PO4 was 0.3%, and the pH value of the
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dyeing solution was 3.5. We combined all the indicators and normalized them to obtain
BA, BB, BC, BD:

BA = (0.3115, 0.3152, 0.3733)
BB = (0.3270, 0.3452, 0.3278)
BC = (0.3318, 0.3338, 0.3344)
BD = (0.3601, 0.3113, 0.3582)

In the BA group, since BA3 (0.3733) > BA2 (0.3152) > BA1 (0.3115), the mass fraction
of reactive dye selected was the third level (0.8%); the mass fraction of the penetrant took
the second level (0.05%), the mass fraction of KH2PO4 was 0.3%, and the pH value was
the first level (3.5). Based on a fuzzy comprehensive evaluation, three indexes, including
the color difference (∆E1*), basic density, and the colorfastness difference (∆E2*), the best
dyeing process combination for red-heart Chinese fir live dyeing was A3B2C3D1: the mass
fraction of reactive dye was 0.8%, the mass fraction of penetrant was 0.05%, KH2PO4 was
0.3% and the pH value was 3.5.

4. Discussion
4.1. Effects of Dyeing Factors on the Color Difference

In this study, the variation range of lightness (L*) of dyed wood was 63.17~73.57 NBS,
the variation range of the red-green axis color index (a*) was 13.73~26.94 NBS, and the
variation range of the yellow-blue axis color index (b*) was 11.04~18.67 NBS. Compared
with the range of lightness (L*) values (63.11~82.87 NBS), the range of the red-green axis
color index (a*) (6.38~13.10 NBS), and the range of the yellow-blue axis color index (b*)
(14.18~24.30 NBS), which were measured by Chen [49] et al., there was little difference
in lightness. The color index of the red-green axis was much greater than that of natural
heartwood, and the value of the yellow-blue axis was slightly lower, which indicated that
the dyed red-heart Chinese fir was darker than that of the natural heartwood, and the
dyeing effect on red-heart Chinese fir live wood was better. According to the test results,
the reactive dye had a significant influence on the total color difference (∆E1*) of the dyeing
material, and it also increased with increasing reactive dye %(∆E1*). The results were the
same as those obtained by Xing et al. [50] and Li et al. [51] for dyeing poplar and basswood
with acid dyes and reactive dyes.

This was mainly because after dye injection, the red-heart Chinese fir depended on
its tracheid to carry out vertical infiltration into the equiaxial tissues, which accounted
for more than 90% of its total volume [52–54], and the infiltration path was small and
there were many obstacles [55]. With the increase in reactive dye content injected into
red-heart Chinese fir, the probability of dye breaking through the intermolecular coulombic
force and contacting the wood surface fiber increased under the action of a penetrating
agent [18,56,57]. In addition, penetrants can also improve the activity of polar molecules
in the internal tissue of wood and weaken the selectivity of the internal tissue of wood,
resulting in an increase in dye molecules in wood and wood adsorption, increasing the
color difference of wood [58,59].

4.2. Effect of the Dyeing Factors on Colorfastness

Colorfastness is a measure of the strength of dye molecules to bind with wood. It
is an important index to test the colorfastness of dyed wood and an important index to
measure the dyeing performance of wood. In our research, the color difference of dyed
wood before and after soaking in water was 2.30~5.12 NBS, which belonged to the range of
perceptible and recognizable by the human eye. Hu et al. [60] used three kinds of reactive
dyes to dye cellulose and lignin from common tree species in Fujian and found the same
result. They found that when the wood was stained with reactive dyes, reactive groups
in the dye molecules reacted with the wood to form stable chemical bonds. Reactive dyes
are considered one of the most stable dyes [61]. The dye molecules can penetrate the
intercellular layer through holes in the cell wall of wood, form covalent bonds with the
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active groups contained, and become a part of the fiber molecules; thus, the dyeing material
has a high water resistance [62,63].

Gu et al. [64] and Gao [65], after the same experiment, found that dye pH affected the
dispersion degree of acid dyes in water, and the combination of wood and speed, when the
pH of dye solution was small, short of wood dyeing time and dye distribution uniformity
and stability in the wood, and before and after dyeing color difference, was small, as low
pH can cause corrosion of wood. The pH of the dye was high and the dyeing time was
relatively long. It could be seen that pH influenced colorfastness.

4.3. Effect of the Dyeing Fluid on WBD

After 1 year of dyeing treatment, the average basic density of the nine experimental
groups was 5.9% higher than that of the CK group. The penetrant had the most significant
effect on the basic density of dyed fir wood, because the penetrant was a nonionic surface
reactive agent that reduced the surface tension of the dye solution and increased the
wettability of the dye solution at the wood interface. This was the same as the research
results of the rapidly growing Chinese fir dyeing process by single-factor and multifactor
orthogonal tests with acidic dyes by Ma et al. [59], who found that the penetrant could
increase the permeability of the dye. Moreover, penetrants can improve the activity of
the internal tissues of polar molecules and reduce the absorptive capacity of the internal
tissues of wood, which can significantly improve the ability of water and dye in wood
impregnation and promote more dye in the wood-dyeing fluid [66].

KH2PO4 was added to the dye solution to alleviate the problem of phosphorus de-
ficiency during the growth of red-heart Chinese fir. In the experiment, the basic density
of dyeing red-heart Chinese fir was considered as the evaluation index. KH2PO4 had a
slight effect on the basic density of dyed red-heart Chinese fir, which may have been due to
the influence of other factors, resulting in the effect of dyeing solution KH2PO4 not being
significant.

5. Conclusions

Based on the results, we compared the color difference (∆E1*) and colorfastness (∆ E2*)
before and after the different dyeing treatments, and there was a significant improvement.
After dyeing for 1 year, the effects of different treatments on the basic density of wood
was also significantly improved. According to the fuzzy comprehensive evaluation of
these three indicators, the best dyeing process combination for red-heart Chinese fir live
dyeing was: reactive dye of 0.8%, penetrant of 0.05%, KH2PO4 of 0.3%, and pH value of 3.5.
Through studying the perforation dyeing technology on living trees, the results will play a
theoretical guiding role in the fast-cultivated, high-value decoration of red-heart Chinese
fir and the cultivation of varieties.
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