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Abstract: Tree growth in high-elevation forests may increase as a result of increasing temperatures and
CO2 concentrations in the atmosphere (Ca). However, the pattern and the physiological mechanism
on how these two factors interact to affect tree growth are still poorly understood. Here, we analyzed
the temporal changes in radial growth and tree-ring δ13C for Picea and Abies trees growing in both
treeline and lower-elevation forests on the Tibetan Plateau. We found that the tree growth at the
treeline has significantly accelerated during the past several decades but has remained largely stable
or slightly declined at lower elevations. Further results based on tree-ring δ13C suggest that intrinsic
water-use efficiency (iWUE) was generally higher at the treeline than in lower-elevation forests,
although increasing trends of iWUE existed for all sites. This study demonstrated that the synergetic
effects of elevated Ca and increasing temperatures have increased tree growth at the treeline but
may not lead to enhanced tree growth in lower-elevation forests due to drought stress. These
results demonstrate the elevational dependence of tree growth responses to climatic changes in
high-elevation forests from a physiologically meaningful perspective.

Keywords: tree rings; cellulose stable isotopes; elevation; water-use efficiency; high-elevation forests;
drought stress

1. Introduction

Increases in carbon dioxide (CO2) concentrations in the atmosphere (Ca) and increasing
temperatures have significantly affected tree physiology, growth, and forest productiv-
ity [1–3]. However, predictions on how these changes will affect forest dynamics are not
easy. Many other confounding factors, such as drought and elevation, also play a role in
determining the processes and patterns of the response of forests to these climatic changes.
In particular, elevation gradients, along with which both temperature and precipitation
tend to change [4], provide a natural laboratory in which the effects of tree growth and the
underlying physiological basis can be explored in a broad climate domain [5–7].

Along an elevation gradient, the variability of tree growth and intrinsic water-use
efficiency (iWUE) in response to increasing Ca has been explored and shows complex
patterns [7–9]. On the one hand, a drought-induced decline of tree growth at lower
elevations was reported in many other regions, although an increasing trend of iWUE also
occurred [10–12]. On the other hand, tree growth has accelerated because of warming
and Ca increases in many other high-elevation forests [13–15]. Therefore, more altitudinal
surveys of radial growth variation and tree physiological responses to increased Ca and
climatic warming are needed to better understand the mechanisms that regulate tree
growth.

Tree rings offer valuable information on physiological and growth changes over
time [16,17]. Changes in δ13C can be used to reflect the variability in stomatal conductance
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(gs), photosynthetic rate (A) and iWUE [16,18]. The basal area increment (BAI) can be used
as a reliable indicator to assess the trend of tree growth [19].

Here, we measured the BAI and cellulose δ13C for tree rings from Picea and Abies
trees growing at the treeline and in the lower-elevation forests on the Tibetan Plateau.
Our research purposes were to infer any growth trends of trees around 1970 and reveal
how increasing temperatures and Ca interact to affect tree growth at the treeline as well as
lower elevation. Based on the fact that trees growing at the high-elevation cold and humid
treelines are more sensitive to increasing temperature, whereas trees growing on relatively
dry and lower elevation are limited by moisture availability [14,20], we hypothesize that
(i) tree growth is significantly enhanced at the treeline but remains stable or decreases in
lower-elevation forests experiencing warming-related drought stress; and (ii) iWUE will be
higher in lower-elevation forests than at the treeline because of higher drought stress.

2. Materials and Methods
2.1. Site Conditions and Field Sampling

The two sites at the treeline as well as the lower-elevation forests, i.e., the Gubailin
(GBL, 4450~4530 m) and the Dingjie (DJ, 3380~3920 m) are located in Changdu and Dingjie
Counties, respectively, on the Tibetan Plateau (Figure 1), where the climate is mainly
affected by the Indian summer monsoon during the summer and by westerlies during the
winter. According to the instrumental records over the period 1955–2014 from the nearest
meteorological stations, the monthly mean temperature ranges from −1 ◦C in January
to 17 ◦C in July, the total annual precipitation was 432–481 mm with most falling in the
summer, and the annual mean relative humidity was 42–50% (Figure 2).

The investigated tree species included Picea likiangensis var. rubescens Rehder &
E.H.Wilson and Abies spectabibis (D. Don) Mirb. for GBL and DJ, respectively. At GBL,
P. likiangensis var. rubescens forms pure forest stands on shady or semi-shady slopes, while
at DJ A. spectabibis is the dominant tree species mixed with other broad-leaf tree species at
their lower elevations, and they exist as a pure forest at the treeline.
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Figure 2. Climate diagrams based on the climate records from the weather stations Changdu (a) and
Rikaze (b) for the period 1955−2014. Tmean is the monthly mean temperature, Tmax is the monthly
mean maximum temperature, and Tmin is the monthly mean minimum temperature.

A horizontal plot, with a width of 30 m and a length of 60 m along the contour of the
slope, was set up for each treeline as well as the lower-elevation forest. Within each plot, all
the big trees with diameters no less than 10 cm at breast height were cored, one core per tree
at breast height. At GBL, we sampled a total of 62 spruce trees, including 29 trees from the
treeline (GBLU) and 33 from the lower-elevation forest (GBLD). At DJ, we cored 32 fir trees,
including 19 trees at the treeline (DJU) and 13 trees from the lower-elevation forest (DJD)
(Table 1). A total of 94 tree cores were sampled from two treelines and lower-elevation
forests (Table 1).

Table 1. Characteristics of sampling sites.

Site Species Latitude
(◦N)

Longitude
(◦E)

Altitude
(m)

Cores/
Trees

TRW Time
Span

Isotope Data
Time Span

GBLU PIBA 31 96.97 4557 29/29 1773–2010 1850–2010
GBLD PIBA 31 96.96 4455 33/33 1621–2010 1850–2010
DJU ABSP 27.837 87.47 3920 19/19 1780–2006 1888–2006
DJD ABSP 27.84 87.46 3410 13/13 1893–2006 1897–2006

2.2. Tree-Ring Width Methods

The tree-ring cores were air-dried indoors, mounted on wooden slots, and polished
until the tree-ring boundaries became clearly visible. Subsequently, tree rings of each
sample were cross-dated by comparing the ring patterns among samples. The cross-dated
tree-ring widths were then measured using a LINTAB 6 system at a resolution of 0.001 mm.
COFECHA software was used to quality control the cross-dating [21]. To resolve the
problem of biological decline with tree age or tree diameter and to detect tree growth
changes, tree-ring width was converted into the basal area increase (BAI, cm2 per year)
parameter, as proposed by Phipps and Whiton (1988).

BAI = π × (R2
n − R2

n − 1) (1)

where n is the year of tree-ring formation and R is the radius of the tree at year n. The
calculation of BAI was performed using the R package dplR [22].

2.3. Tree-Ring δ13C Methods

Five cores that had clear ring boundaries and an absence of missing rings were
selected from different trees in each forest stand. The annual rings from the five samples
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were then pooled by year to produce a single composite isotope series for each forest
stand. To avoid the effect of juvenile wood on the carbon isotope ratios, tree rings with
a cambial age of less than 50 years were excluded from the isotopic analysis [23]. The
wood materials were then ground with a centrifugal mill to ensure homogeneity and
efficiency of α-cellulose extraction. We extracted the wood cellulose of the annual tree rings
following regular methods [24]. To maximize the homogeneity of the α-cellulose, we used
an ultrasound unit in a hot water bath (JY92-2D, Scientz Industry, Ningbo, China) to disrupt
the cellulose at 30 ◦C [25]. The α-cellulose was then freeze-dried for 72 h using a vacuum
freeze dryer (Labconco Corporation, Kansas City, MO, USA) prior to isotope analysis. The
δ13C values were determined by an element analyzer (Flash EA 1112; Bremen, Germany)
coupled with an isotope-ratio mass spectrometer (Delta-plus, Thermo Electron Corporation,
Bremen, Germany) at the State Key Laboratory of Vegetation and Environmental Change,
Institute of Botany Chinese Academy of Sciences. The analytical errors (SD) of the isotope
measurements were less than 0.05‰ for δ13C. Calibration was performed by measuring
the International Atomic Energy Agency (IAEA) USGS-24 (graphite) and by measuring
IAEA-CH3 (cellulose). All δ13C values were expressed relative to their respective standard
(Vienna Pee Dee Belemnite for carbon isotopes) and calculated as follows:

δ13C = [(Rsample/Rstandard) − 1] × 1000‰ (2)

where R = 13C/12C, and Rsample and Rstandard are the R values of the samples and the
standard, respectively.

The ring carbon isotope fractionation sequence was then calculated using the following
equations [18]:

∆13C = (13Ca − 13Cp)/(1 + 13Cp/1000) (3)

Ci/Ca = (∆13C − a)/(b − a) (4)

where 13Cp and 13Ca are the 13C value of δ13C and the CO2 value of plant photosynthetic
products, respectively. The concentrations of CO2 in the leaves and CO2 in the atmosphere
were Ci and Ca, respectively. a and b represent the CO2 in isotope fractionation during
stomatal (4.4‰) carbon isotope fractionation and the RuBP enzyme carboxylation process
(27‰), respectively. δ13Ca and Ca were taken from McCarroll and Loader (2004) merged
with measurements (http://cdiac.ornl.gov/trends/co2/sio-mlo.html, accessed on 20 May
2020).

Then, iWUE could be estimated using Ci and Ca according to Ehleringer (1993):

iWUE = A/gs = (Ca − Ci)/1.6 (5)

where 1.6 is the ratio of diffusivities of water and CO2 in air, which is considered to be
feasible to a wide range of plant species and across a great environmental range.

2.4. Climate Variables

In addition to the climate records obtained from the nearest stations, we calculated or
retrieved some other climate variables in this study. Vapor pressure deficit (VPD), i.e., the
difference between the saturation vapor pressure (es) and the actual vapor pressure (ea), is
a major driver of stomatal activity [26]. We calculated the VPD according to the following
equation:

VPD = es − ea (6)

where es = 0.611 × 10 [17.27 × T/(237.3 + T)] and ea = (RH/100) × es. T is the monthly
mean air temperature, and RH is the monthly mean relative humidity.

Additionally, we obtained the standardized precipitation–evapotranspiration index
(SPEI) data from the CRU (Climate Research Unit, University of East Anglia) TS Version
4.01 (http://climexp.knmi.nl, accessed on 1 May 2020) to represent the water conditions of
the studied forests.

http://cdiac.ornl.gov/trends/co2/sio-mlo.html
http://climexp.knmi.nl
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Furthermore, the temporal trends of the monthly climate variables were tested using
linear regression models. In recent decades, the annual mean temperature has shown an
increasing trend in the study area, while precipitation has shown a minor decreasing trend
or no obvious trend (Supplementary Figure S1).

2.5. Growth–Climate Relationships

To assess the climate–growth relationships, Pearson’s correlation coefficients were cal-
culated between BAI and tree-ring isotopes and monthly climate variables from September
of the previous year to October of the current year for the recent decades. A piecewise struc-
tural equation meta-model (pSEM) was used to test the regulators of tree growth change at
the treeline and in the lower-elevation forests by using the piecewiseSEM package [27] in
R 4.0.4.

3. Results
3.1. Long-Term Trend of Tree Growth

In general, the BAI was lower at the treeline than at the lower elevations over the
study period, but the GBL has been lower in recent decades (Figure 3a,b). After 1970,
the BAI of GBLU and DJU increased significantly, at rates of 0.06 and 0.08 cm2 per year,
respectively, but the BAI values generally showed a slight increasing trend, at a rate of
0.03 per decade in GBLD. From 1970 to 2006, the BAI decreased significantly (Figure 3a,b).
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Figure 3. The basal area increment (BAI) series (a,b), the temporal trends of the ∆13C chronology (c,d) and the temporal
changes in intrinsic water-use efficiency (iWUE) (e,f) for each forest stand of the two treelines as well as the lower-elevation
forests GBL and DJ. The black line and gray line show the treeline and lower-elevation forest, respectively. The inserts
are the box plots for each series. Different letters demonstrate significant differences (p < 0.05) between treelines and
lower-elevation forests.
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3.2. Cellulose Stable Isotopes

In general, tree-ring ∆13C was lower at the treeline than at the lower elevations during
the study period (Figure 3c,d). However, the iWUE increased dramatically over the study
period in both treeline and lower-elevation forests (Figure 3e,f). In addition, the absolute
values of iWUE were higher at the treeline than in lower-elevation forests (Figure 3e,f).

3.3. Tree Growth–Climate Relationships

Similar growth–climate relationships were observed between the treeline and the
lower-elevation forest at GBL. The temperatures of the previous winter to the current
spring were found to be positively correlated with tree growth at GBLU, while the previous
winter temperature and current summer temperature were positively correlated with tree
growth in lower-elevation forests (GBLD); however, the previous September temperature
was significantly and negatively correlated with tree growth (Figure 4).
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Figure 4. Pearson correlation coefficients between the BAI and the climate variables from the previous September to the
current October for the periods 1955–2010 and 1956–2006 for GBL and DJ, respectively. T, monthly mean temperature; Tmin,
monthly minimum temperature; Tmax, monthly maximum temperature; P, monthly total precipitation; SPEI, standardized
precipitation–evapotranspiration index; VPD, vapor pressure deficit. The asterisk * denotes significance at p < 0.05.

At DJ, contrasting growth–climate relationships existed. April–August minimum
temperature was most strongly correlated with tree growth at the treeline (DJU). However,
the temperature showed opposing correlations with BAI during the spring and summer
of tree-ring formation. Similarly, the positive effects of VPD at the treeline turned into
negative effects in the lower-elevation forest at DJ (Figure 4).

3.4. Tree-Ring ∆ 13C Responses to Climate

The July–August temperature showed positive correlations with tree-ring isotopes at
GBLD but not at the treeline (GBLU), where only negative but relatively weak correlations
were found in April (Supplementary Figure S2). Temperature was generally negatively
correlated with tree-ring ∆13C isotopes but reached a significant level only in June and
April for minimum temperature at DJU. The positive correlations with VPD during the
previous November suggest a negative correlation between tree-ring isotopes and drought
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at that time. Similar patterns were found between climate and tree-ring ∆13C at DJD but
with clear seasonal differences (Supplementary Figure S2).

3.5. Factors Regulating the Variation in BAI and iWUE

We assessed the relationship between the iWUE and BAI. The BAI decreased signifi-
cantly or remained stable despite the iWUE significantly increasing at the lower-elevation
sites (Figure 5). In contrast, the BAI at the treeline significantly increased as the iWUE
increased (Figure 5). Considering the effects of factors on the BAI and iWUE (Table 2,
Figure 6), the pSEM showed that Tgrs, VPD, Ca and iWUE had a good fit to tree radial
growth, explaining 71% and 62% of the variation in the BAI in the treeline and the lower-
elevation forests, respectively (Figure 6). iWUE was the dominant factor of tree radial
growth and had a significantly positive effect on BAI at the treeline, and Ca (positively, +)
and Tgrs (+) drove the patterns of iWUE (Figure 6a and Table 2). At the lower-elevation
sites, although changes in iWUE were attributed to Tgrs and Ca (+), which had no positive
effects on BAI, and changes in BAI were significantly and negatively correlated with Tgrs
(Figure 6b and Table 2).
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Figure 6. The piecewise structural equation meta-model (pSEM) proposed to test the influences
of climatic factors on tree basal area increment (BAI) and water-use efficiency (iWUE) between
the treeline (a) and lower-elevation (b) plots for the two treelines as well as the lower-elevation
forests in GBL and DJ after 1970. Numbers next to each arrow show the standardized regression
coefficient (β) of each path. The thickness of arrows represents the strength of the effect, whereas
the color represents the direction of the effect (red for negative and black for positive). Solid arrows
represent a significant effect (p < 0.001), whereas dashed arrows represent a nonsignificant effect
(p > 0.05). Abbreviations: Tgrs = growing season (from April to September) mean temperature;
Ca = atmospheric CO2; VPD = growing season mean vapor pressure deficit.
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Table 2. Summary of the piecewise structural equation meta-model (pSEM) for testing the influences
of growing season (from April to September) mean temperature (Tgrs) and iWUE on basal area
increment (BAI) and the influences of growing season (from April to September) mean temperature
(Tgrs), vapor pressure deficit (VPD) and atmospheric CO2 (Ca) on water-use efficiency (iWUE). β is
the standardized regression coefficient, and S.E. is the standard error.

Site Response
Variable

Predictor
Variable β S.E. Critical

Value p-Value

Treeline

BAI Tgrs 0.6537 0.1938 6.7469 <0.001
BAI VPD −0.4339 0.1961 −5.4778 <0.001
BAI iWUE 0.3659 0.0128 4.4411 <0.001

iWUE Tgrs 0.6215 1.2916 6.1758 <0.001
iWUE VPD −0.3059 1.5057 −3.2257 <0.01
iWUE Ca 0.3443 0.0488 4.0213 <0.001

Lower-
elevation

BAI Tgrs −0.9092 0.3387 −9.0619 <0.001
BAI VPD 0.4058 0.3524 4.8106 <0.001
BAI iWUE −0.0258 0.0262 −0.2948 0.769

iWUE Tgrs 0.4557 1.19 4.3074 <0.001
iWUE VPD −0.0412 1.3873 −0.4137 0.6803
iWUE Ca 0.4094 0.045 4.5477 <0.001

4. Discussion
4.1. Climate Effects on the BAI and the Tree-Ring Isotopes

In general, low temperature limitation on tree growth occurred for trees on both
treelines. Nevertheless, high temperatures and water limitations were observed in the
two lower-elevation forests (Figure 2). High temperatures increase evaporation and thus
decrease soil water content and increase evaporation, hence reducing stomatal conductance,
photosynthesis, and tree growth [28]. We found strong moisture limitation on tree growth
at lower elevations, possibly due to the higher temperatures [29]. The weather conditions
during the growing season played a dominant role in determining the variation in tree-ring
δ13C. The stronger moisture signal reflected in ∆13C (Supplementary Figure S2) at the lower-
elevation site than that at the treeline sites further indicated that trees suffered from more
severe drought stress. In addition to soil moisture conditions, air dryness (as indicated by
the VPD) directly controls the leaf intercellular CO2 concentration (Ci) and thereby governs
∆13C [30]. Drought stress because of a limited soil water availability and high atmospheric
demand (VPD), which may inhibit xylogenesis directly by offsetting cellular metabolic
activity and cell turgor [31,32] and indirectly as drought-induced stomatal closure limits
photosynthesis and constrains the supply of carbohydrates [33,34]. Wood formation is
expected to be more sink-limited under drier and colder environmental conditions than
carbon assimilation [35]. A recent study found that the drivers of stem growth depend on
a threshold turgor pressure [36].

Our results suggested a clear increasing trend of iWUE for all the forest stands
(Figure 3). The piecewise structural equation meta-model (pSEM) further revealed that
both CO2 concentration (Ca) and the growing season temperature (Tgrs) had a significant
and positive effect on the increase in iWUE (Figure 6). The strong relationship between
Ca and iWUE could be due to either the enhanced photosynthetic rate of trees [37–39]
or decreased stomatal conductance, in the arid environment in particular, which could
result in an increase in iWUE [40–43]. Moreover, growing season temperature showed
higher influence on iWUE at the treeline than in lower-elevation forests (0.62 vs. 0.46),
possibly due to the alleviation of low-temperature limitation at the treeline. Furthermore,
the warming-related drought stress could be related to decreased stomatal conductance
and thus increased iWUE [13,44–46]. However, VPD showed a negative effect on iWUE in
this study, possibly due to the low-temperature limitation on tree growth at the treeline.
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4.2. Enhanced Tree Growth Occurred in Treelines but Not in Lower-Elevation Forests

Our results showed significant growth enhancement of trees in treelines but not in
lower-elevation forests (Figure 5), which is consistent with the expectation that treeline trees
tend to increase at cold temperature limits in forests due to climatic warming [13,14,46,47].
In this study, increasing iWUE was also observed in lower-elevation forests, where tree
growth showed a stable or decreasing trend. Among many potential reasons, a more
severe moisture deficiency induced by increasing temperatures and evaporative demand
in lower-altitude forests may limit tree growth the most [9,48]. Particularly in semiarid
regions, intensified drought limitation may offset any benefit of higher iWUE for growth,
which could be the reason for the negative relationship between BAI and iWUE [10,11].

Another interesting finding of this study is that the iWUE is generally higher for trees
at treelines than for trees in lower-elevation forests (Figure 3). The iWUE significantly
increased in all forest stands, and the lower-elevation site had consistently higher ∆13C and
lower iWUE than the treelines during the study period. Therefore, the comparison between
∆13C and BAI further revealed that a higher iWUE was likely to be a result of the increased
C assimilation rate rather than a decrease in stomatal conductance [49], suggesting that both
the increasing temperature and CO2 fertilization may have favored recent forest growth
at the treeline. High iWUE in relation to low Ci/Ca at high elevation is well known and
likely related to complex adaptation of photosynthetic biochemistry, and CO2 assimilation
rates become higher with increasing altitude from actual measures [50–53]. Conversely,
recently changed iWUE and growth indicate that low-elevation trees could be passing into
an isohydric trap in which water limitation begins to occur due to high water potentials
under a long-term high evaporation demand [54]. These results indicate that treeline trees
have a greater ability to cope with drought stress than do lower-elevation forests [55]. The
underlying mechanism for this pattern has yet to be identified.

5. Conclusions

This study provides new evidence that tree growth at treelines increases with in-
creasing temperatures and atmospheric CO2 concentrations. We also found that warming-
induced drought limitation might cause reduced tree growth despite increasing iWUE at
the lower-elevation sites. The combination of iWUE and BAI analysis further revealed
a better ability of trees at treelines to benefit from climatic warming and increasing at-
mospheric CO2 concentrations compared to trees in lower-elevation forests. Our study
provides new physiological evidence that treeline trees are likely to play an increasingly
important role in CO2 uptake in the future. This study also demonstrates the potential of
tree-ring isotopes in uncovering the mechanism underlying the differential response of tree
growth across environmental gradients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12121702/s1, Figure S1. Temporal variations in mean temperature (a), mean maximum
temperature (b), mean minimum temperature (c), total precipitation (d), SPEI (e) and VPD (f).
The regression trends and functions of each climatic variable in 1955–2013 were also provided.
Figure S2. Pearson correlation coefficients between the ∆13C chronology and the climatic variables
from September to October. * Significance level: p < 0.05. Figure S3. The piecewise structural equation
meta-model (pSEM) proposed to test the influences of climatic factors on tree basal area increment
(BAI) and water-use efficiency (iWUE) between the GBL (a) and DJ (b) plots for the two treelines as
well as the lower-elevation forest in GBL and DJ after 1970. The numbers next to each arrow show the
standardized regression coefficient (β) of each path (see Table 2 for detailed statistics). The thickness
of arrows represents the strength of the effect, whereas the color represents the direction of the
effect (red for negative and black for positive). Solid arrows represent a significant effect (p < 0.001),
whereas dashed arrows represent a nonsignificant effect (p > 0.05). Abbreviations: Tgrs = growing
season (from the current April to the current September) mean temperature; Ca = atmospheric CO2;
VPD = growing season (from the current April to the current September) vapor pressure deficit.

https://www.mdpi.com/article/10.3390/f12121702/s1
https://www.mdpi.com/article/10.3390/f12121702/s1
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