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Abstract: Soil organic carbon (SOC) simply cannot be managed if its amounts, changes and loca-
tions are not well known. Thus, evaluations of the spatio-temporal dynamics of SOC stock under
future climate change are crucial for the adaptive management of regional carbon sequestration.
Here, we evaluated the dynamics of SOC stock to a 60 cm depth in the middle Qilian Mountains
(1755–5051 m a.s.l.) by combining systematic measurements from 138 sampling sites with a machine
learning model. Our results reveal that the combination of systematic measurements with the ma-
chine learning model allowed spatially explicit estimates of SOC change to be made. The average
SOC stock in the middle Qilian Mountains was expected to decrease under future climate change,
while the size and direction of SOC stock changes seemed to be elevation-dependent. Specifically,
in comparison with the 2000s, the mean annual precipitation was projected to increase by 18.37,
19.80 and 30.80 mm, and the mean annual temperature was projected to increase by 1.9, 2.4 and
2.9 ◦C under the Representative Concentration Pathway (RCP) 2.6 (low-emissions pathway), RCP4.5
(low-to-moderate-emissions pathway), and RCP8.5 (high-emissions pathway) scenarios by the 2050s,
respectively. Accordingly, the area-weighted SOC stock and total storage for the whole study area
were estimated to decrease by 0.43, 0.63 and 1.01 kg m–2 and 4.55, 6.66 and 10.62 Tg under the RCP2.6,
RCP4.5 and RCP8.5 scenarios, respectively. In addition, the mid-elevation zones (3100–3900 m),
especially the subalpine shrub-meadow Mollic Leptosols, were projected to experience the most
intense carbon loss. However, the higher elevation zones (>3900 m), especially the alpine desert zone,
were characterized by significant carbon accumulation. As for the low-elevation zones (<2900 m),
SOC was projected to be less varied under future climate change scenarios. Thus, the mid-elevation
zones, especially the subalpine shrub-meadows and Mollic Leptosols, should be given priority in
terms of reducing CO2 emissions in the Qilian Mountains.

Keywords: soil organic carbon; climate change; subalpine shrub-meadow zone; machine learning;
the Qilian Mountains

1. Introduction

In alpine regions, elevation-dependent warming probably results in a higher temper-
ature increase over higher elevation regions. Consequently, the patterns and dynamics
of soil organic carbon (SOC) in alpine ecosystems are being markedly reshaped [1–3]. In
addition, a large amount of SOC is stored in alpine ecosystems due to the cold and humid
climate conditions, thus even small changes in temperature and precipitation could greatly
affect SOC stock dynamics [4–6]. However, the size and direction of SOC dynamics under
future climate change scenarios in alpine regions are still scarcely understood due to limited
site-level measurements under such harsh environments and complex topography [7,8].
Thus, a comprehensive evaluation of the spatio-temporal patterns of SOC stocks in alpine
regions may enable us to better understand the carbon–climate feedback [9–11]. This
knowledge will help us to take dedicated adaptive measures to improve the soil carbon
stock in alpine regions under future climate change [12,13].
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The quantification of the spatio-temporal patterns of SOC stocks under future climate
change scenarios mainly relies on model simulations, including process-based biogeochem-
ical models and data-driven empirical models [14,15]. Soil carbon models currently in
use mainly include the CENTURY model, the Rothamsted Carbon (RothC) model, the
Denitrification-Decomposition (DNDC) model, and the Carbon and Nitrogen Dynamics
(CANDY) model [6]. Most soil carbon models were suitable for single-point or typical
ecosystem simulations, and could be used to simulate higher-resolution SOC dynam-
ics at regional or watershed scales with the help of GIS techniques. This was the case
in Caddeo et al. [16], who simulated the SOC dynamics of Italian forest and farmland
ecosystems under the Representative Concentration Pathway (RCP) 4.5 (low-to-moderate
emission pathway) and RCP8.5 (high emission pathway) scenarios from the 2000s to the
2100s by the CENTURY 5.0 model and GIS techniques at a 500 m resolution, and they
found that the SOC was projected to experience a moderate carbon loss. In general, the
mechanisms of process-based models are clear, and thus the simulation accuracy at site
level is quite high [17]. However, for large-scale simulations, tremendous grid inputs in
process-based models may result in massive calculation resources consumption, especially
at higher resolutions [18].

Data-driven empirical models were also applied to simulate SOC across temporal
scales by developing the predictive relationships between SOC and spatially varying
environmental covariates including topographic, climatic, vegetative, geographic and
pedological factors [19,20]. The basis of data-driven empirical models in simulating SOC
temporal dynamics is the space-for-time substitution (SFTS) assumption [14,21,22], i.e., the
data-driven empirical models being established between SOC measurements and spatially
varying environmental covariates at current periods could be extrapolated to future SOC
estimation by substituting the current covariates with that of future periods. In the past
few decades, with the rapid development of satellite remote sensing and machine learning
techniques, a large number of the latest machine learning algorithms and spatial-explicit
environmental covariates have been employed to build empirical models for regional SOC
mapping [23]. These advances enabled the SFTS approach to be successfully applied in
mapping SOC dynamics over time [24,25].

The Qilian Mountains, as a typical semiarid alpine region in northwestern China, are
of great importance in supplying water resources for the Hexi Corridor [26]. Previous
research indicated that the soils in the Qilian Mountains are characterized by very high
standing organic carbon stock, especially in the forests, shrublands and meadows [8,13].
The climates in the Qilian Mountains have experienced cold-to-warm (0.3 ◦C 10a–1) and
dry-to-wet transformations (15.4 mm (10a)–1) over the past four decades [27]. Temperature
increase may accelerate the decomposition rate of SOC, while precipitation increase is likely
to stimulate vegetation productivity and subsequently enhance litter inputs from plants to
soils, especially in mid- and low-elevation zones in the Qilian Mountains, where ecosystem
productivity is mainly shaped by soil water availability [28]. The contrary effects between
temperature and precipitation may lead to diverse responses of SOC to climate change in
different elevation zones. However, knowledge concerning the SOC dynamics in the Qilian
Mountains is still very scarce, especially the co-effects of climate warming and wetting
on SOC.

Considering the diverse heat and water conditions as affected by elevation in the
Qilian Mountains [29], we hypothesized that the size and direction of SOC changes may
be elevation-dependent, i.e., the SOC in different elevation zones responded diversely
to climate change. To test this hypothesis, we combined systematic measurements from
138 sampling sites with a machine learning technique to build a data-driven empirical
model, and further explored the spatial-temporal dynamics of SOC in the Qilian Moun-
tains under three climate change scenarios. The primary objectives of this study were to:
(1) characterize the patterns of climate and vegetation changes, (2) predict the SOC in the
2050s under different climate change scenarios, and (3) to quantify the responses of SOC to
climate change along the elevation gradient.
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2. Materials and Methods
2.1. Study Area

The study was carried out in the middle Qilian Mountains, i.e., the Yingluoxia basin
(37.75◦–39.09◦ N, 98.57◦–101.18◦ E) in the upper reaches of the Heihe River basin (Figure 1).
The Yingluoxia basin extends over an area of 10,500 km2, with an average elevation of
3658 m (1755–5051 m a.s.l.). The area-weighted mean annual temperature and precipitation
were –3.3 ◦C and 345.0 mm, respectively, with a lapse rate of 0.58 ◦C and an increase
rate of 15.5 to 22.1 mm per 100 m at the vertical direction, respectively [13]. In the study
area, elevation markedly shaped the spatial patterns of precipitation and temperature,
which further stratified vegetation zones along the elevation gradient. In addition, due
to the aspect-induced microclimates at local scales, the vegetation type exhibited strong
aspect-induced variation within the same elevation zone, e.g., the shrubs and forests
tended to occupy the north-facing hillslopes, while steppes were mainly distributed on the
south-facing hillslopes [30].
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Overall, from summit to piedmont plain, the main vegetation types included alpine
desert, alpine meadow, subalpine shrub, subalpine meadow, montane forest, montane
shrub, montane meadow steppe, montane steppe, and montane desert steppe. Correspond-
ingly, the main soil types were classified as alpine frigid desert soils, alpine meadow soils,
subalpine shrubby meadow soils, subalpine meadow soils, gray cinnamon, chernozems,
kastanozems, and sierozems according to the Chinese soil genetic classification [31], which
were roughly referred to as Glacic Cryosols, Leptosols (Gelic), Eutric Leptosols, Mollic
Leptosols, Greyzemic Umbrisols, Haplic Chernozems, Haplic Kastanozems, and Haplic
Calcisols according to the World Reference Base for Soil Resources (WRB) [32]. For middle-
and high-elevation zones, soil depths generally ranged from 20 to 60 cm, and there were
clear rock compositions in deeper soil layers. Considering the fundamental functions
for regional ecological security, the Qilian Mountains were classified as a national nature
reserve and a national park in 1980 and 2017, respectively [33]. Thus, the anthropogenic dis-
turbances were relatively limited, and vegetation and soil dynamics were mainly controlled
by climate change.

2.2. Site-Level Measurements

We conducted soil sampling campaigns along the topography and vegetation type
gradients in the study area from 2012 to 2015 during the growing seasons (Figure 1). In
total, 138 sampling sites were investigated, and 138, 133, 117 and 91 composite soil samples
were obtained for soil depths of 0–10, 10–20, 20–40 and 40–60 cm, respectively, and the
topographic, geographic and vegetative variables for each sampling site were recorded.
SOC concentration and bulk density were determined by the wet Walkley–Black method
and the core ring method, respectively. Detailed field investigation and sample analysis
processes can also be found in Zhu et al. [13]. The SOC stock was calculated using the
following equation according to Ding et al. [5]:

SOCS =
k

∑
i=1

BDi × Di × SOCCi ×
(1 − Ci)

100
(1)

where SOCS is the SOC stock (kg m–2), BDi is the bulk density (g cm–3), Di is the soil
thickness (cm), SOCCi is the SOC concentration (g kg–1), k is the number of layers divided
in a soil profile, and Ci is the volume percentage of the gravel > 2 mm in diameter at layer i.

2.3. Model Predictors

It has been suggested by previous studies that the topographic, climatic, pedological
and vegetative variables are good predictors in modelling SOC spatial distribution across
the Qilian Mountains [13,34]. Generally, the environmental covariates used for modelling
SOC were highly self-correlated, and redundant inputs probably lowered model computa-
tional efficiency, especially at a high spatial resolution. Thus, only ten covariates, i.e., the
elevation, aspect, slope gradient, topographic position index (TPI), longitude, latitude, tem-
perature, precipitation, soil type, and normalized difference vegetation index (NDVI), were
finally employed to develop the data-driven prediction model for SOC. Topography and
locations were assumed to be stable at the time scale, whereas temperature, precipitation
and NDVI varied on a decadal basis. Mean annual temperature and precipitation datasets
from WordClim (https://worldclim.org/ (accessed on 20 February 2021)) were available
at a 1 km resolution for the 2000s (1970–2000) and the 2050s (2041–2060). The future cli-
mate data of the 2050s were the averages of five global climate models (GCMs), i.e., the
BCC-CSM1-1 [35], NorESM1-M [36,37], HadGEM2-AO [38], IPSL-CM5A-LR [39] and GISS-
E2-R [40], and data under the RCP2.6 (low emission pathway), RCP4.5 (low-to-moderate
emission pathway) and RCP8.5 (high emission pathway) scenarios were employed for
SOC dynamics prediction. The elevation, aspect, slope and TPI were derived from the
ASTGTM 30 m digital elevation model (DEM) using ArcGIS 10.2 (ESRI Inc., RedLands, CA,
USA) and SAGA GIS (http://www.saga-gis.org/ (accessed on 13 February 2021)). The soil
type data at a 1 km resolution were derived from the Harmonized World Soil Database

https://worldclim.org/
http://www.saga-gis.org/
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(HWSD 1.2) product (https://www.fao.org/soils-portal/data-hub/en/ (accessed on 27
Novmber 2021)), and was reclassified according to the international standard soil classifica-
tion WRB [32]. In addition, we obtained the vegetation type map at a 1:100,000 scale for
the upper reaches of the Heihe River basin from the National Tibetan Plateau Data Center
(http://www.tpdc.ac.cn/ (accessed on 23 February 2021)).

2.4. Data-Driven Model

We employed a machine learning technique, i.e., the random forest algorithm [41], to
construct a data-driven model which could simulate the nonlinear relationships between
site-level SOC stock and time-stable (e.g., elevation, aspect, slope, TPI, longitude, latitude)
as well as time-varying covariates (e.g., temperature, precipitation and NDVI). During the
training, we set the number of trees (ntree) to 1000 and the minimum size of terminal nodes
(nodesize) at 5, according to previous studies focusing on SOC mapping in the middle
Qilian Mountains with the random forest algorithm [13,42]. To minimize the uncertainty in
extracting NDVI values from raster products for each of the sampling sites, we employed
the averages of 30 m monthly NDVI layers (20 images in total) during the growing seasons
(from May to September) of 2012–2015 (i.e., the soil sampling period). In addition, the
temperature and precipitation values for each sampling site were not extracted from the
raster products at a resolution of 1 km, and this was mainly because the climate in the
Qilian Mountains was markedly shaped by elevation, and direct extraction from coarse
resolution climate products may bring high levels of uncertainty to the simulation of
carbon–environment relationships. We finally calculated mean annual precipitation and
temperature at each sampling site according to the multiple linear regression equations
expressed as functions of elevation, longitude, and latitude, as shown by Zhao et al. [43,44].
It should be noted that although Zhao et al. [43] also demonstrated that ordinary kriging
(OK) yielded smaller prediction errors in growing-season temperature simulation than
multiple linear regression did, we still employed the regression method to estimate the
site-level annual temperature and precipitation. This was mainly because the OK method
was more suitable for climatic variables interpolation in plains or regions with large spatial
extents, while it was less suitable in mountainous regions where climates could vary
sharply along the elevation gradient within a very short distance.

The ‘randomForest’ package was employed to conduct the data-driven model by
the R language (R version 3.5.1, R Development Core Team, 2018). To further validate
the accuracy of the random forest algorithm in modelling the non-linear relationships for
site-level measurements, the ten-fold cross-validation procedure was conducted, and the
coefficient of determination (R2) and root mean square error (RMSE) were used to indicate
the performance of the model. For details about the ten-fold cross-validation procedure and
statistics calculation, see Zhu et al. [13]. It should be noted that soil depth in Glacis Cryosols
was generally less than 20 cm, and thus the SOC stock in this soil was only modeled and
projected with measurements from depths pf 0–20 cm. For other soils, we modeled SOC
dynamics at a depth of 60 cm. The final SOC maps were actually produced by merging the
0–20 cm SOC stock in Glacis Cryosols and the 0–60 cm SOC stock in other soil types.

2.5. SOC Prediction

The data-driven model that simulated the non-linear relationships between SOC and
environmental variables at a spatial scale was further used to project the SOC changes over
time, and such an approach is called space-for-time substitution. However, the efficiency
of this approach largely relies on the extents of environmental gradients of site-level
measurements, i.e., the values of SOC and other environmental covariates should cover
wide varying ranges. The huge elevation range (>3000 m) in the study area markedly
shaped the water and heat conditions, and created diverse vegetation communities and
soil types, thus making the Qilian Mountains an ideal region to conduct the space-for-
time substitution procedure for SOC dynamics modelling. To create spatially explicit
estimates of the SOC stock for both the 2000s (regarded as the baseline period) and the

https://www.fao.org/soils-portal/data-hub/en/
http://www.tpdc.ac.cn/
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2050s as affected by climate change, the data-driven model was rerun for the study area
using the same topographic and geographic and pedological raster layers except for
temperature, precipitation and NDVI data. The climate datasets for the 2000s and the
2050s were derived from the same source (i.e., the WorldCim datasets) so as to make the
predictions comparable.

The soil type will most likely not change within 30 to 50 years, while the vegetation
community and species composition may change significantly over time, especially for
steppes and meadows. Thus, the vegetation type maps for the study area by the 2050s
under the three RCP scenarios were also predicted. In this study, we developed predictive
relationships between vegetation type map and climatic, topographic, and geographic
covariates using a random forest model. The vegetation type was coded as 1 to 10 ac-
cording to elevation before further modelling, which subsequently represented montane
desert steppe, montane steppe, montane meadow steppe, montane shrub, montane forest,
subalpine meadow, subalpine shrub, subalpine meadow, alpine desert and no vegetation.
The predictive relationships were modeled based on all 10,500 grid cell attributes extracted
from the vegetation type and other covariates (i.e., temperature, precipitation, topography
and locations) maps at a resolution of 1 km × 1 km. Then, the vegetation type maps for
the 2000s and the 2050s under the three RCP scenarios were subsequently modeled by the
predictive relationships combined with covariates during corresponding periods. Similar
procedures were also employed to estimate NDVI in 2050s. Specifically, we used NDVI
averages of 1990–2000 for the 2000s, and calculated NDVI changes until the 2050s, which
were then added to the NDVI spatial layer of the 2000s to obtain the NDVI for the 2050s.
It should be noted that the vegetation type maps for different periods were also used as
environmental covariates in projecting NDVI changes over time.

We also calculated the difference between the SOC stock of the 2000s and 2050s
under different climate change scenarios for each 1 km × 1 km pixel, and further obtained
the spatial distribution of SOC stock changes. In addition, we overlaid the vegetation
type maps of both the 2000s and the 2050s and the soil type map over the SOC maps to
summarize the means and standard deviations of SOC changes for different vegetation
and soil types.

3. Results
3.1. Future Climate and Vegetation Change Characteristics

The climate in the middle Qilian Mountains was expected to getting warmer and
wetter from the 2000s to the 2050s (Figures 2 and 3). Specifically, the area-weighted
temperature was −3.3 ◦C for the 2000s, while increased by 1.9 ◦C, 2.4 ◦C and 2.9 ◦C to
the 2050s under the RCP2.6, RCP4.5 and RCP8.5 scenarios, and higher elevation regions
seemed to be characterized by a slightly larger increase in comparison with the lower
elevation zones, especially under the RCP8.5 scenario (Figure 4). As for the precipitation,
it was 344.70 mm in the 2000s, while it increased by 18.37, 19.80 and 30.80 mm to the
2050s under the three scenarios, and precipitation in higher elevation regions tended to
experience greater increases (Figure 5). The vegetation type distribution tended to be less
varied over time (Figure 6). The area of subalpine meadow, montane shrub and montane
forest increased by 199.29, 40.46 and 3.47 km2, respectively, from the 2000s to the 2050s,
while the area of alpine meadow and alpine desert shrank by 124.37 and 57.69 km2 under
the RCP2.6 scenario, respectively. By contrast, the spatial distribution of NDVI varied
significantly from the 2000s to the 2050s (Figure 7), and NDVI was estimated to increase
in high-elevation zones while decrease in mid-elevation zones (Table 1). Overall, the
mean NDVI in the 2050s was 0.500, 0.507 and 0.492 under the RCP2.6, RCP4.5 and RCP8.5
scenarios, which was higher than that in the 2000s by 0.012, 0.019 and 0.004, respectively.
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3.2. SOC Prediction under Different Climate Change Scenarios

The data-driven model based on the random forest algorithm could accurately sim-
ulate the non-linear relationships between SOC stock and temperature, precipitation,
vegetation, terrain attributes, soil type and geographic positions, with a slope of 0.77 and
an intercept of 5.64 kg m–2 between the measured and predicted values for the test datasets
(Figure 8). The ten-fold cross-validation results further show that the R2 and RMSE values
of the model were 0.78 and 5.10 kg m−2, respectively (Table 2). The estimated SOC stock
maps demonstrated large heterogeneity of SOC in alpine regions, ranging from 0 to 38.97
kg m−2 in the 2000s, and 0 to 38.77 kg m−2, 0 to 38.62 kg m−2 and 0 to 36.27 kg m−2 in the
2050s for the RCP2.6, RCP4.8 and RCP8.5 scenarios, respectively (Figure 9). In addition, the
spatial patterns of SOC stock as predicted by the model were closely related to elevation in
both the 2000s and the 2050s, i.e., the SOC stock in mid-elevation zones was significantly
higher than that in lower and higher elevation zones (Figure 9).
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Table 1. Change in the area of different vegetation types under different climate change scenarios.

Vegetation Type
Area (km2) Change in Area (km2)

2000s 2050s (RCP2.6) 2050s (RCP4.5) 2050s (RCP8.5)

Montane desert steppe 101 −10 −15 −24
Montane steppe 745 13 12 18

Montane meadow steppe 267 −29 −18 −34
Montane shrub 447 40 37 56
Montane forest 776 32 63 100

Subalpine meadow 1564 199 216 250
Subalpine shrub 1002 −63 −37 234
Alpine meadow 3676 −124 −185 −577

Alpine desert 1875 −57 −72 −22
No vegetation 46 0 0 0
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Table 2. Evaluation of the performance of random forest model in predicting SOC stock.

Statistics Minimum 1st Quartile Median Mean 3rd Quartile Maximum Standard Deviation

R2 0.73 0.77 0.78 0.78 0.80 0.82 0.02
RMSE 4.70 5.00 5.06 5.10 5.26 5.50 0.19
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3.3. Elevation-Dependent SOC Dynamics in the Qilian Mountains

The area-weighted SOC stock was predicted to decrease significantly from the 2000s
to the 2050s, with a loss of 0.43, 0.63 and 1.01 kg m–2 carbon (i.e., 4.55, 6.66 and 10.62 Tg for
SOC storage over the basin) under the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively
(Tables 3 and 4). However, the direction of SOC changes varied a lot at the basin scale,
i.e., SOC losses mainly occurred at the mid-west and east parts of the basins (Figure 10).
Further analysis showed that the size and direction of SOC changes seemed to be elevation-
dependent (Figure 11). As for the RCP2.6 scenario, the SOC stock increased in regions with
an elevation <3100 m or >3900, while it decreased at 3100–3900 m and varied less below
2900 m. Similar distribution patterns for SOC dynamics along the elevation gradient were
also found under the RCP4.5 and RCP8.5 scenarios.

Table 3. Summary of SOC stock changes by vegetation types under different climate change scenarios
from the 2000s to the 2050s.

Vegetation Types
SOC Stock (kg m−2) SOC Stock Changes (kg m−2)

2000s RCP2.6 RCP4.5 RCP8.5

Montane desert steppe 14.89 0.06 0.00 −0.01
Montane steppe 19.62 −0.40 −0.35 −0.39

Montane meadow steppe 25.61 −0.69 −0.64 −0.61
Montane shrub 24.72 −0.89 −0.71 −0.96
Montane forest 24.99 −0.93 −1.10 −1.26

Subalpine meadow 28.21 −2.85 −3.24 −3.64
Subalpine shrub 31.37 −2.46 −3.04 −3.30
Alpine meadow 23.91 0.87 0.57 0.08

Alpine desert 8.45 0.73 0.96 1.00
No vegetation 16.73 0.15 0.01 −0.29

Total 22.23 −0.43 −0.63 −1.01
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Table 4. Summary of SOC stocks and storage changes by vegetation types under different climate change scenarios from
the 2000s to the 2050s.

Vegetation Types
Area
(km2)

SOC Storage
(Tg)

SOC Storage Changes
(Tg)

2000s RCP2.6 RCP4.5 RCP8.5 2000s RCP2.6 RCP4.5 RCP8.5

Montane desert steppe 101.14 90.65 86.16 77.17 1.51 0.01 0.00 0.00
Montane steppe 745.45 758.19 757.44 762.68 14.63 −0.30 −0.26 −0.30

Montane meadow steppe 267.46 238.24 248.73 233.00 6.85 −0.17 −0.16 −0.14
Montane shrub 446.52 486.98 483.98 503.46 11.04 −0.43 −0.35 −0.48
Montane forest 776.17 807.63 839.10 875.81 19.40 −0.75 −0.93 −1.11

Subalpine meadow 1563.57 1762.86 1780.09 1813.81 44.11 −5.03 −5.76 −6.60
Subalpine shrub 1001.68 939.49 964.97 1236.18 31.42 −2.31 −2.93 −4.08
Alpine meadow 3676.31 3551.94 3491.26 3099.43 87.90 3.11 2.00 0.25

Alpine desert 1875.24 1817.55 1802.57 1852.76 15.84 1.32 1.72 1.86
No vegetation 46.45 46.45 45.70 45.70 0.78 0.01 0.00 −0.01

Total 10,500.00 10,500.00 10,500.00 10,500.00 233.46 −4.55 −6.66 −10.62
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Figure 11. SOC stock changes along the elevation gradient from the 2000s to the 2050s under the
RCP2.6, RCP4.5 and RCP8.5 scenarios.

SOC changes also varied significantly with vegetation and soil types. The subalpine
meadow was estimated to experience a decrease of 2.85, 3.24 and 3.64 kg m–2 for SOC stock
(i.e., 5.03, 5.76 and 6.60 Tg for SOC storage) under the RCP2.6, RCP4.5 and RCP8.5 scenarios,
respectively (Tables 3 and 4). However, the alpine desert tended to significantly accumulate
organic carbon in soils, reaching 0.76, 0.99 and 1.06 kg m–2 for SOC stock, and 1.32, 1.72
and 1.86 Tg for SOC storage. As for soil types, the SOC stock in the Eutric Leptosols was
expected to be characterized by the largest decrease, reaching 1.90, 1.96 and 2.38 kg m–2 for
the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively (Table 5). Nevertheless, the largest
total amount of carbon loss was contributed by the Mollic Leptosols, which were projected
to lose 4.15, 5.33 and 6.71 Tg of carbon under the three scenarios by the 2050s. By contrast,
the Glacic Cryosols were estimated to significantly accumulate organic carbon, reaching
0.83, 0.95 and 0.84 kg m–2 for SOC stock, and 1.60, 1.83 and 1.62 Tg for SOC storage by the
2050s under the three scenarios (Table 5).
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Table 5. Summary of SOC stocks and storage changes by soil types under different climate change scenarios from the 2000s
to the 2050s.

Vegetation Types Area
(km2)

SOC
(2000s)

SOC Changes
(RCP2.6)

SOC Changes
(RCP4.5)

SOC Changes
(RCP8.5)

Stock
(kg m−2)

Storage
(Tg)

Stock
(kg m−2)

Storage
(Tg)

Stock
(kg m−2)

Storage
(Tg)

Stock
(kg m−2)

Storage
(Tg)

Glacic Cryosols 1923.19 12.45 23.94 0.83 1.60 0.95 1.83 0.84 1.62
Leptosols (Gelic) 4083.13 23.89 97.54 −0.11 −0.44 −0.33 −1.35 −0.85 −3.48
Eutric Leptosols 685.52 29.38 20.14 −1.70 −1.16 −1.96 −1.35 −2.38 −1.63
Mollic Leptosols 2827.47 25.71 72.69 −1.47 −4.15 −1.89 −5.33 −2.37 −6.71

Greyzemic
Umbrisols 433.04 24.81 10.75 −0.80 −0.35 −0.82 −0.36 −0.83 −0.36

Haplic Chernozems 53.94 20.21 1.09 0.00 0.00 0.05 0.00 0.00 0.00
Haplic Kastanozems 403.82 14.89 6.01 −0.15 −0.06 −0.27 −0.11 −0.16 −0.07

Haplic Calcisols 89.90 14.57 1.31 0.06 0.01 0.00 0.00 0.00 0.00
Total 10,500.00 22.23 233.46 −0.43 −4.55 −0.63 −6.66 −1.01 −10.62

4. Discussion
4.1. SOC Prediction

Considering the ideal performance of the random forest algorithm in capturing the
non-linear relationships between the SOC and other environmental covariates, we em-
ployed this algorithm to construct the data-driven model for future SOC dynamics pro-
jection based on the space-for-time substitution method [45,46]. Similar method was also
employed by Gray et al. [14] and Adhikari et al. [24]. However, it should be noted that
although land use change was also an important variable in modelling SOC dynamics in
previous studies [16,21,47], we did not include it in the model for this study. This was
mainly because the anthropogenic disturbances were relatively limited after the National
Nature Reserve of the Qilian Mountains was established in 1988, and the human-induced
land use change was not intense [48]. Furthermore, the vegetation activity in alpine regions
was mainly affected by precipitation and temperature [27], and its effect on SOC dynamics
was also considered in the model by using the dynamic NDVI datasets as model inputs in
SOC projection.

SOC changes over time may also be affected by other environmental factors such
as nitrogen deposition, climate extremes, CO2 enrichment, and ecological restoration
practices [22]. However, in regions such as the middle Qilian Mountains characterized
by a semiarid alpine climate, water and heat conditions may be the dominant factors
affecting ecosystem productivity over time, in comparison with factors such as nitrogen
deposition, climate extremes, and CO2 enrichment. As for ecological restoration practices,
the complex topography and limited accessibility made it impossible to conduct large-scale
reforestation or oversowing in high-elevation zones. Hence, current ecological restoration
practices in the middle Qilian Mountains mainly seek to maintain the authenticity of zonal
ecosystems through excluding human disturbances [8,33]. In addition, the objective of
this study was to determine the potential responses of the SOC temporal dynamics to
future climate change scenarios. Although omitting these factors in modelling may lend
uncertainty to these predictions to some degree [23,24,49], we believed that our results
about SOC changes in response to future climate change were instructive for future carbon
management in the Qilian Mountains. Overall, the sharp changes in precipitation and
temperature and limited anthropogenic disturbances in the Qilian Mountains enabled us
to use the space-for-time substitution method to model SOC dynamics over time with the
carbon–environment relationships derived at the spatial scale. In this study, the ten-fold
cross-validation presented a quite high R2 value of 0.74 for the test dataset, which was
slightly higher than that of previous studies focusing on modelling the spatio-temporal
patterns of SOC in nearby regions [5,22,34]. Thus, our results indicate that the combination
of systematic measurements with the machine learning model allowed spatially explicit
estimates of SOC changes to be made.
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4.2. Elevation-Dependent SOC Dynamics

Our model suggests that the SOC stock in the middle Qilian Mountains is expected to
experience overall losses under the three climate change scenarios. Our results coincide
with those from previous studies [24,50]. However, as we hypothesized, we found that
the size and direction of SOC changes seemed to be elevation-dependent, i.e., the SOC
stock decreased significantly in mid-elevation zones, while it increased in high-elevation
zones and varied less in low-elevation zones in the study area. Similar results were also
demonstrated by Chen et al. [2], who found that soils in the Yunnan province experienced
intense carbon losses at 3000–3500 m while significant accumulation above 4500 m during
the period of 1986–2015. In addition, Ding et al. [51] found that soils of alpine grasslands of
the Tibetan Plateau (>4000 m) were also characterized by significant carbon accumulation
from the 2000s to the 2010s. It was widely acknowledged that the increase in temperature
could stimulate the activity of soil microorganisms, thus accelerating the loss rate of
carbon from the soil into the atmosphere [20,52,53]. However, for high-elevation zones, the
increase in temperature could also enhance the accumulated temperature, which prolongs
the growing season and further stimulates the vegetation productivity. These effects finally
lead to increased carbon inputs into soils from both aboveground biomass and roots. As a
result, the warming-induced enhancement in productivity may offset the potential decrease
in SOC as affected by increased microbial activities in high-elevation zones. Furthermore,
considering the arid climate conditions in the middle Qilian Mountains, the increase in
precipitation under the three climate change scenarios could significantly enhance the
ecosystem net primary production, which also contributes to carbon accumulation in
alpine soils.

The mid-elevation zones, which were mainly occupied by subalpine shrubs, subalpine
meadows, and montane forests, were predicted to experience the most intense carbon
losses under future climate change scenarios. Presumably, this was associated with the
high initial standing SOC stock in the three vegetation types, which were larger than
24 kg m−2 (Table 3). Crowther et al. [54] demonstrated that the effect of warming on
SOC losses depend on the initial standing carbon stock and considerable carbon losses
occurred in soils with high carbon stock, based on assembling data from field experiments
in the Northern Hemisphere. In this study, due to the very high SOC values of alpine
ecosystems, increased temperature will strongly enhance the activity of microorganisms,
leading to accelerated SOC decomposition and intense carbon losses. In addition, as
the water and heat conditions in the mid-elevation zones were relatively favorable, both
vegetation productivity and SOC stock were at a very high level, and a large amount of
humus was accumulated in topsoils. In this case, the effects of precipitation change on
vegetation productivity were less significant in comparison with those in low-elevation
zones, where the vegetation growth was strongly affected by water conditions. As a result,
the positive effects of wetting were much trivial in comparison with those of warming in
the mid-elevation zones. Our results are similar to the findings of Prietzel et al. [50] in
the German Alps, who demonstrated that warming significantly accelerated the release
of carbon from soils with a high initial carbon content, especially for forest soils. In this
study, the low-elevation zones were characterized by a relatively high temperature and
limited precipitation, and thus water availability was the dominant environmental factor
affecting vegetation productivity. The positive effects of precipitation increase may offset
the negative effects induced by warming, and thus the SOC stock changes in low-elevation
zones were relatively trivial.

The SOC spatio-temporal dynamics were hypothesized to be closely related to soil
types. As an important pedological factor, the soil type was generally considered as a
predictor for modelling SOC in previous studies [14,45]. In this study, we found that the
inclusion of soil types could improve the R2 values of random forest models by 4% and
reduce the RMSE by 0.40 kg m−2, suggesting an important role of soil types in shaping
the spatio-temporal pattern of SOC. Considering the thin soil layers in alpine regions, we
separately calculated the SOC stock at 0–20 cm for Glacic Cryosols, while calculating it at
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0–60 cm for other soil types. Such efforts could avoid the overestimation of SOC stocks
in Glacic Cryosols, and make the SOC projections in alpine regions more reasonable. In
addition, we found that the size and direction of SOC changes under the three climate
change scenarios differed by soil type. Specifically, the SOC stock tended to decrease
significantly in Leptosols, especially in Eutric Leptosols and Mollic Leptosols, while it
increased significantly in Glacic Cryosols. This was mainly because the Leptosols in the
study area were located at 3000–3900 m, where the standing carbon stocks were very
high (>24 kg m−2). In addition, the Leptosols were generally characterized by a thin
soil layer, and thus topsoil SOC tended to be more prone to experiencing rapid loss due
to climate warming. By contrast, the Glacic Cryosols were generally located in regions
close to glaciers, where the heat conditions were the main drivers of vegetation activity.
Climate warming could accelerate glaciers retreat, and carbon in Glacic Cryosols may
significantly accumulate due to enhanced vegetation activity and litter input. The SOC
stocks in Haplic Chernozems, Haplic Kastanozems and Haplic Calcisols were less varied,
and this was probably associated with the opposite effects of climate warming and wetting
in low-elevation zones, where the precipitation was generally less than 300 mm.

4.3. Implications for SOC Management under Climate Change

The elevation-dependent SOC dynamics implied that the carbon management strategy
in the Qilian Mountains should vary with elevation zones. Soil carbon stocks in mid-
elevation zones (3100–3900 m), especially in the subalpine shrub-meadow zone, should be
given first priority in terms of carbon management under future climate change conditions.
The adaptive management practices for carbon pools should mainly aim at effectively
reducing carbon losses from soils into the atmosphere. In addition, considering the potential
carbon accumulation in high-elevation zones in the future, the adaptive management
practices should focus on lowering the intensity of anthropogenic disturbances such as coal
mining, overgrazing, and illegal construction, which may reduce the carbon sequestration
function of undisturbed alpine soils [33]. SOC in the low-elevation zones was estimated to
be less varied under future climate change conditions. Hence, to enhance the carbon stock
in the low-elevation zones, additional ecological construction projects instead of simple
enclosure or conservation, should be implemented in the future. As the initial standing
carbon stocks at low elevations were relatively low due to limited vegetation activity
induced by less precipitation, soils here may have large carbon sequestration potential if
the vegetation could be well irrigated by additional water [28].

The specific management practices should also differ by elevation zone. For the
mid-elevation zones, the rapid losses of SOC were mainly related to the warming-induced
increase in soil temperature, and thus measures that could hinder soil temperature increase
should be given priority. A previous study showed that the shelter effect of the shrub
canopy could significantly lower soil temperature and facilitate SOC accumulation in
comparison with that of grasslands under similar topographic conditions in the Qilian
Mountains [28]. Therefore, native shrub species such as Caragana jubata, Salix gilashanica
and Potentilla fruticosa could be selected for afforestation in grasslands where the climatic
and topographic conditions were also suitable for shrub growth. In addition, the number
of large livestock should also be further reduced in the Qilian Mountains. The feeding
behavior of large livestock such as yaks causes great damage to shrub branches and causes
large areas of subalpine shrubs to wither (Figure 12). As a result, the shelter effects of the
shrub canopy were weakened, and the high initial standing carbon stocks of subalpine
shrubs became more vulnerable under climate warming. In addition, the restoration
of degraded grasslands as well as returning cultivated lands to grasslands could also
contribute to the carbon sequestration in mid-elevation zones. For the high-elevation
zones, SOC dynamics were mainly shaped by climate change, thus conservation may be
a better choice considering the harsh climates and limited accessibility in alpine regions.
Carbon sequestration in low-elevation zones was essentially an issue related to the trade-
off of water resources. In other words, an effective balance between the agricultural and
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ecological water demand is fundamental for future carbon management. In addition,
considering the lower amount of total water resources under such arid climates, on the one
hand, unconventional water resources such as seasonal floods in gullies should be utilized
through a series of water conservancy projects, and on the other hand, high-efficiency
water-saving measures such as drip irrigation should also be taken into account during
ecological construction projects in low-elevation zones in the Qilian Mountains.
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The photos were taken at Toutan (3400 m a.s.l.) in the subalpine shrub-meadow zone of the middle 
Qilian Mountains. 
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Figure 12. Effect of different domestic animals on vegetation cover in the subalpine shrub. Note:
(a,b) are a full and close shot of the subalpine shrub-meadow zone, respectively. The ridge in (a) is
covered by fence with the left side mainly being grazed by yak and the right side by goats. The left
side of the fence in (b) was mainly grazed by goats, and the right side was mainly grazed by yaks.
The photos were taken at Toutan (3400 m a.s.l.) in the subalpine shrub-meadow zone of the middle
Qilian Mountains.

5. Conclusions

The area-weighted SOC stock in the middle Qilian Mountains was more than 22 kg m–2,
and was predicted to decrease significantly from the 2000s to the 2050s with a loss of 0.43,
0.63 and 1.01 kg m−2 under the RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. As
for the whole basin, the total carbon storage loss was 4.55, 6.66 and 10.62 Tg, respectively.
However, SOC dynamics were estimated to be elevation-dependent, i.e., the SOC stock
increased in regions with an elevation <3100 m or >3900, while it decreased at 3100–3900 m
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and varied less below 2900 m. SOC changes also varied significantly with vegetation and
soil types. The subalpine meadow was projected to experience the most intense carbon
loss, reaching to 2.85, 3.24 and 3.64 kg m−2, while the alpine desert tended to significantly
accumulate organic carbon in soils, reaching to 0.76, 0.99 and 1.06 kg m−2 under the three
scenarios. The largest total amount of carbon loss was contributed by the Mollic Leptosols,
which were projected to lose 4.15, 5.33 and 6.71 Tg carbon, while the Glacic Cryosols could
possibly sequester 1.60, 1.83 and 1.62 Tg carbon under the three scenarios by the 2050s.

Thus, SOC management practices should also differ by elevation zone and vegetation
and soil type. The mid-elevation zones, especially the subalpine shrub-meadow and
Mollic Leptosols, should be given priority in terms of reducing CO2 emissions, and the
main goal for this region should focus on slowing down the carbon loss rates. Native
shrub species such as Caragana jubata, Salix gilashanica and Potentilla fruticosa could be
selected for afforestation in grasslands where the climatic and topographic conditions were
also suitable for shrub growths. The high-elevation zones, especially the alpine desert
and Glacic Cryosols, were expected to experience significant carbon accumulation under
future climate change scenarios. Thus, vegetation and soils here should be protected
from anthropogenic disturbances to keep the authenticity of the zonal ecosystems. SOC
sequestration in low-elevation zones should rely on additional ecological construction
projects. Unconventional water resources such as seasonal floods in gullies should be
utilized through a series of water conservancy projects, and high-efficiency water-saving
measures such as drip irrigation should also be taken into account during ecological
construction projects in low-elevation zones in the Qilian Mountains.

Overall, our results highlight the important roles of elevation, vegetation and soil types
in soil carbon management under future climate change conditions in the Qilian Mountains.
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