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Abstract: Plant species, structural combination, and spatial distribution in different regions should
be adapted to local conditions, and the reasonable arrangement can bring the best ecological effect.
Therefore, it is essential to understand the classification and distribution of plant species. This
paper proposed an end-to-end network with Enhancing Nested Downsampling features (END-Net)
to solve complex and challenging plant species segmentation tasks. There are two meaningful
operations in the proposed network: (1) A compact and complete encoder–decoder structure nests
in the down-sampling process; it makes each downsampling block obtain the equal feature size of
input and output to get more in-depth plant species information. (2) The downsampling process of
the encoder–decoder framework adopts a novel pixel-based enhance module. The enhanced module
adaptively enhances each pixel’s features with the designed learnable variable map, which is as large
as the corresponding feature map and has n × n variables; it can capture and enhance each pixel’s
information flexibly effectively. In the experiments, our END-Net compared with eleven state-of-
the-art semantic segmentation architectures on the self-collected dataset, it has the best PA (Pixel
Accuracy) score and FWloU (Frequency Weighted Intersection over Union) accuracy and achieves
84.52% and 74.96%, respectively. END-Net is a lightweight model with excellent performance; it
is practical in complex vegetation distribution with aerial and optical images. END-Net has the
following merits: (1) The proposed enhancing module utilizes the learnable variable map to enhance
features of each pixel adaptively. (2) We nest a tiny encoder–decoder module into the downsampling
block to obtain the in-depth plant species features with the same scale in- and out-features. (3) We
embed the enhancing module into the nested model to enhance and extract distinct plant species
features. (4) We construct a specific plant dataset that collects the optical images-based plant picture
captured by drone with sixteen species.

Keywords: deep learning; plant species; semantic segmentation; features enhancing

1. Introduction

Forest plays a significant multi-dimensional role in human health and life [1]. The
reasonable virescence can conserve soil and water, purify the air, adjust the tempera-
ture, and execute other ecological functions vital to maintaining the earth’s ecological
safety [2,3]. The distribution of plant species is the basis of establishing a stable ecosystem
and plant community. Understanding the plants’ distribution can be extremely helpful in
environmental protection and resource development from a productional and academic
perspective [4]. Therefore, it is essential to realize the plant species’ classification and
distribution and attract considerable attention [5,6]. The traditional manual investigation
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is laborious and requires many experts to conduct an adequate investigation. Recently, the
studies provided more insights into automatic classification through the plants’ appearance
characteristics due to the increased availability of plant images [4,7,8]. Moreover, it is popu-
lar to collect plant pictures from the web or initiatively capture pictures to create vegetation
datasets [9]. According to these datasets, many meaningful studies have been executed,
such as the individual plant species classification, large-scale plant images classification,
and the multiple plant species segmentation.

In the individual plant species’ classification research, an important step is to obtain
plant organ features from images; for example, studies use the global features of leaf
images [10], or the contour information of leaves [11] for classification. However, the image
recognition of leaves is over fine and cannot play many roles in the structural composi-
tion and spatial distribution. Collecting the real plant information aims to understand
the distribution of plants in an area quickly. The plant growth is contiguous and dense
in the wild, where a small-scale image of a plant is not easily accessible. Therefore, an
image classification method that can segment plant species from large-scale images is
needed to capture all plants in a particular region. Some studies, including parametric and
non-parametric methods, have the breakthrough advancement of plant classification due
to the emergence of high spatial resolution satellite images. Parametric methods are the
mainstream algorithms in plant automatic classification. In early studies, K-means [12],
maximum likelihood (ML) [13], linear discriminant analysis (LDA) [14], and principal com-
ponents analysis (PCA) [15] can be easily implemented for plants classification. However,
these methods are affected by the distribution of training data. Therefore, parts studies
propose non-parametric approaches, such as Random Forest (RF) [16] and support vector
machine (SVM) [17], to overcome the problem of the parametric methods. However, these
methods have low efficiency, weak identifying ability, and cannot effectively understand
the distribution of plant species. Therefore, studies consider the segmentation techniques
and attempt to solve these problems.

In image segmentation, the convolutional neural networks (CNNs) succeed in com-
puter vision due to the fast development of computer power and are the mainstream
method in image segmentation [18]. Many studies propose various CNN variants to im-
prove the performance of plant segmentation on various scale images. The well-trained
CNNs can extract plant features and achieve plant segmentation with good performance
for the small-scale images [19]. To identify a plant from a large-scale image, CNNs are used
as the viable tools to remote sensing (RS) data and successfully segment vegetation with
high accuracy [20]. Moreover, CNNs have also been used to identify plant crowns using
aerial RS data to segment plants [21]. However, the existing CNN segment plants into
families rather than species, which is the limitation of most large-scale plant segmentation
studies, and this is because most studies use large-scale remote sensing, which makes some
plants in remote sensing images too small and cannot be well recognized. However, the
plants’ size in low-aerial images is moderate, which is helpful to segment and classify plant
species accurately. Therefore, we build a specific plant dataset using unmanned aerial
vehicles with an onboard optical camera and develop a novel approach for plant species
pixel segmentation based on the self-collected dataset. The aerial and optical images-based
plant species segmentation has the following challenges:

• The optical image only has RGB channels with little information compared to multi-
spectral and hyperspectral images.

• The aerial image misses the details of the tree species, such as the leaf’s texture, edge,
and shape.

• There are many tree species and staggered with each other in the aerial images.

We demonstrate some examples which are related to the plants’ segmentation, as
shown in Figure 1. In Figure 1, each example has two images; left-hand is the input image,
and right-hand is its result. Figure 1a–c can only address a single plant; Figure 1d use the
high-resolution remote sensing images to segment the object without a fine-grained tree
species segment; Figure 1e take RGB remote sensing imagery for plant detection. These
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approaches cannot fine-grain segment the tree species in complex backgrounds. Figure 1f is
our results which can segment interlaced tree species in a complex background.

(a) (b) (c)

(d) (e) (f)

Figure 1. Some examples focus on the plants’ issue. (a) Leaf count with optical images [22]; (b) Fig plant segmentation with
RGB images [23]; (c) Rice segmentation with RGB images [24]; (d) Object segmentatio with high-resolution remote sensing
images [20]; (e) Tree-crown detection with RGB imagery [21]; (f) Ours.

In this study, we analyze in depth the extraction of plant features with an information
enhancement technique and develop the convolutional neural network using enhancing
nested downsampling features, namely END-Net, which has a decent quality architecture
with novel enhancing modules, for semantic segmentation of plants. The proposed END-
Net nests a tiny encoder–decoder framework in each downsampling block to replace
the original ordinary convolution operation and add the pixel-based enhancing module
in each encoder block. The pixel-based enhancing module designs a learnable variable
map with a size of n by n, the same size as the corresponding feature map, to adjust the
enhancement information. Moreover, it associates with its corresponding features to obtain
the enhanced features. In addition, we conduct extensive experiments with well-known
semantic segmentation frameworks on self-built datasets and demonstrate the quantitative
and qualitative results to prove that the proposed model is generally beneficial to the plant
semantic segmentation task. In summary, our main contributions are four-fold:

• We propose a novel enhance module in this work; it is composed of a learnable variable
map and can adaptively enhance each pixel’s features. Moreover, the simplicity of the
module makes it a plug-n-play module. In ablation analysis, the proposed variable
map (plug-n-play module) improves the accuracy and is 0.45% and 0.60% higher than
using a single variable in PA and FWIoU, respectively.

• We nest a tiny encoder–decoder framework in the process of downsampling to replace
the original ordinary convolution operation, which can extract more in-depth informa-
tion features of plant species. In ablation analysis, the accuracy of the network without
the tiny encoder–decoder framework is 1.3% lower than the proposed network.

• The proposed END-Net has the advantage of the enhancing module and nested
structure; it can extract much information and distinctive features of plant species
to achieve the best performance on the self-collected plants’ dataset (OAPI dataset)
compared with other well-known methods. For example, the accuracies of END-Net
are 18.49% and 20.17% higher than OCNet and ASPOCRNet in PA metric, respectively.

• We build an optical aerial plant image dataset named OAPI, which contains hundreds
of optical aerial images and corresponding manual annotations. It is constructive
for the study of plant species segmentation. To the best of our knowledge, the OAPI
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dataset is a rare database mainly focused on collecting optical images captured by a
low-altitude drone.

• This study focuses on fine-grained instance segmentation of plant species with optical
aerial images, which is different from the existing studies such as single plant species
segmentation [25], rough segmentation [26], plant crown segmentation [27], and
single segmentation based on the current multi-functional technologies [28]. The
segmentation accuracy of the proposed method is better than the newest semantic
segmentation models from popular journals and conferences such as OCNet [29] and
ASPOCRNet [30].

We organize the rest of this study as follows: Section 2 introduces related works,
including semantic segmentation, aerial images semantic segmentation, and information
fusion. Section 3 explains the network architecture of the proposed END-Net and the detail
of the enhancing module. Section 4 describes the self-collected dataset, the OAPI dataset,
with 16 tree species. Section 5 presents the self-built dataset, implementation details, and
experimental results, including quantitative and qualitative results. Section 6 discusses
the effect of various hyper-parameters settings, data expansion, external factors, and the
advantages and limitations of the proposed model. We give the conclusions in Section 7.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation predicts each pixel’s class in an image and conducts regional
division according to each pixel’s category. In semantic segmentation studies, FCN [31]
is the classic deep learning approach; it proposes replacing the full connection of the net-
work with a convolutional layer to obtain each pixel’s category information and solve the
segmentation problem. A growing number of followers adopt the point-by-point addition
method of FCN to improve segmentation accuracy. Meanwhile, Unet [32] is another pop-
ular segmentation network different from FCN; it adopts the concatenation technique to
fuse features to improve the segmentation effect. In addition, Deeplab [15] uses dilation
convolution to expand the receptive field and performs multi-scale segmentation of objects
based on the spatial pyramid. DeeplabV3+ [33] further applies the encoder–decoder struc-
ture with a practical decoder module to refine the segmentation boundaries and improve
performance. Furthermore, DenseASPP [34] connects a set of atrous convolutional layers
with the dense concept to generate multi-scale features without significantly increasing
the model size. These methods provide high-quality results but are time-consuming. FC-
densenet [35] extends DenseNets to deal with semantic segmentation without any further
post-processing module, which has much fewer parameters. CCNet [36] adopted a novel
criss-cross attention module that obtains all the pixels’ contextual information to achieve
high computational efficiency. These methods are well-known segmentation models and
can be used for images from various sources.

2.2. Aerial Images Semantic Segmentation

The satellite and unmanned aerial vehicle(UAV) can provide high-resolution images,
which contain abundant features for semantic segmentation [37]. Marmanis [38] takes
several FCNs methods to deliver clutter pixel classification in high-resolution aerial images
of urban areas; he discusses the network’s design choices and the intricacies and demon-
strates that a combination of several networks is effective. RoadNet [39] takes SegNet [40]
as the backbone to execute realistic navigation over roads; it partitions the image into ’road’
or ’non-road’ and uses the Hough Transform as the post-process to obtain the best road cur-
vature contour. RA-FCN [41] introduces two plug-and-play modules, the spatial relation
module, and the channel relation module, to generate relation-augmented features, and uti-
lizes relation-augmented structure to enable spatially and channel relational reasoning for
aerial image segmentation. Benjdira [42] designs an algorithm using generative adversarial
networks (GANs) to reduce the domain shift impact in semantic segmentation of aerial
images, and the problems of the domain shift between the new city image and the source
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data set are solved. Zhang [43] built the NWPU-YRCC dataset for river ice segmentation
and the proposed ICENET, including fuse module and attention modules, which achieve
efficient features fusion and better results. The existing semantic segmentation models
of aerial images mainly focus on the segmentation of roads and buildings and lack the
segmentation and classification of plants.

2.3. Information Fusion

The information in different regions or scales to perform feature enhancement is critical
for achieving good pixel segmentation. AdapNet [44] proposes a convoluted mixture of
deep experts (CMoDE) fusion technique that adaptively weighs class-specific features of
expert networks and further learns fused representations to yield robust segmentation.
PSPNet [45] explores the benefits of contextual information aggregation for segmentation
and exploits the pyramid pooling modules to fuse context information of different regions.
Refinenet [46] uses long-range residual connections to achieve all the information available
during the downsampling process and capture high-level semantic features and rich
background context effectively. Deepresunet [47] uses the rich skip connections within the
network to fuse features of images that can facilitate information propagation and enhance
information. HDC [48] aggregates global information by expanding the receptive field
and designs dense upsampling convolution to keep more detailed features. SDN stacks
multiple shallow deconvolutional networks to aggregate contextual information, and a
clear segmentation boundary is obtained. The inter-unit and intra-unit connections of the
designed SDN [49] unit can enhance information aggregation and the discrimination of
feature representations. Recently, Fast-SCNN [50] combines high-resolution detail with
lower features and efficiently performs real-time semantic segmentation on high-resolution
image data. The information aggregation of these methods mainly focuses on combining
global or local information and improving details of pixel segmentation. These information
fusion methods are specific to their respective models but lack information enhancement
modules for plant species segmentation that can be applied to various models.

To sum up, there are existing segmentation models for aerial images, but the optical
aerial plants’ image segmentation and plants’ fusing and enhancing feature information
are lost. Therefore, this study proposes a plant species segmentation model with enhancing
nested downsampling features to achieve aerial image segmentation of plant species.

3. Methodology

This section introduces the details of the proposed convolution neural network with en-
hancing nested downsampling features (END-Net). Then, we describe the downsampling-
block with an encoder–decoder structure (DSED-block) in detail. Next, we present the
proposed pixel-based enhancing module and its related equations. Finally, we illustrate
the multi-loss approach that is used in END-Net.

3.1. Network Architecture

The proposed convolution neural network with enhancing nested downsampling
features (END-Net) has three main components, including the downsampling block with
an encoder–decoder structure (DSED-block), the pixel-based enhancing module, and the
multi-loss strategy. END-Net is a simple and efficient construction for plant semantic
segmentation, and its illustration is demonstrated in Figure 2.

In Figure 2, the image with the size of H × W sequentially executes the procedures of
three DSED-blocks, one convolution block (Conv. block), and three upsampling blocks (US-
blocks). The number in the lower right corner of each operation represents the number of
feature maps obtained after the operation. Each DSED-block’s internal structure is similar
to Unet but has the innovative improvement, which is the proposed pixel-based enhancing
model, in the encoding processing; its details’ structure and description as presented in
Section 3.2. After processing each DSED-block, the feature size is reduced to 1/2, 1/4,
and 1/8 of the original image using max-pooling operation. Moreover, we set the Conv.
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block, which contains two convolution layers with stride size 1, between DSED-blocks
and US-blocks; it connects the DSED-blocks and US-blocks using the un-shrinking feature
map. Next, the upsampling blocks (US-blocks) aggregate contextual information from
US-blocks and DSED-blocks, forming feature maps that contain contextual information
as intermediate output. In the US-block, feature maps sequentially operate convolution,
upsampling, concatenation, and convolution operations. In concatenation operation, we
fuse the features of DSED-blocks and US-blocks with the same size. Notice that each US-
block has one less convolutional layer compared to the upsampling module of Unet. Finally,
feature maps decode into a predicted image, which has the same size as the input image.

Figure 2. The architecture of the proposed framework, END-Net.

To assist the segmentation process, we add extra short-range connections between each
encoding module and its corresponding decoding module at each DSED-block. Moreover,
we apply the pixel-based enhancing module into each encoding module of the DSED-
block. The pixel-based enhancing module emphasizes an essential position in feature maps
and can extract potential features. More details of the pixel-based enhancing module are
described in Section 3.3. Furthermore, we execute the deep-supervision into DSED-blocks,
Conv. block, and US-blocks using the multi-loss approach to effectively auxiliary feature
learning and introduce the details in Section 3.4.

3.2. Downsampling Block in END-Net

To obtain abundant plants’ feature information during each down-sampling, we
add the pixel-based enhancing module into the encoding module of each DSED-block.
The enhancing module can adaptively learn the weight for each pixel and obtain the
discriminative features with abstract semantic segmentation information. The DSED-block
composes a tiny encode-decode framework and is similar to the overall architecture of the
proposed END-Net. Hence, the complete END-Net looks like a nested structure network.
The illustration of the DSED-blocks is shown in Figure 3.

Figure 3. An illustration of the downsampling blocks in our proposed network.



Forests 2021, 12, 1695 7 of 23

In Figure 3, there are three types of DSED-blocks (A) (B) (C) with different complexity
and be sequentially arranged in the process of downsampling. The number in the lower
right corner of each operation represents the number of feature maps obtained after the
operation. Each DSED-block has a various number of downsampling modules and sequen-
tially operates the downsampling modules, Conv. block, and the upsampling modules.
Moreover, each DSED-blocks operate the proposed pixel-based enhancing nodule and the
max-pooling operation on each set of adjacent downsampling modules to enhance the
feature of each pixel adaptively.

The feature maps sequentially go through the DSED-blocks, its size is gradually
reduced to 1/2, 1/4, and 1/8 of the original size, and is recovered to its original size by
sequentially executing the upsampling modules. The proposed model conducts several
operations in the downsampling process to extract more abstract features. Moreover, we
do not enhance the sparse upsampling features but enhance the compacted downsampling
features due to the sparsity of the upsampling features.

3.3. The Pixel-Based Enhancing Module

To overcome the segmentation difficulty caused by the intricate image content of
the plant, we introduce the novel enhancing module, namely the pixel-based enhancing
module, which applies operations based on pixels on feature maps of the downsampling
to complete the enhancing operation. The pixel-based enhancing module mainly contains
a learnable variable map, which considers the importance of the features’ distribution
based on the pixels, and its framework is shown in Figure 4. In Figure 4, the input is
the logits from original feature maps and is denoted as X with size H × W. The pixel-
based enhancing module applies an activation function on feature map X1 to generate a
weight array with values between 0 to 1 to indicate the pixels’ importance on convolution
operation. Then, to create the enhancing parameters, we multiply the activation results
with a learnable variable map k, which has the same size as X1. Finally, we multiply X1
with the enhancing parameters and add with X1 itself.

Figure 4. The computing details of the pixel-based enhancing module.

The pixel-based enhancing module can enhance each pixel with its characteristic,
expand the essential pixels’ effect, make the critical areas in the feature map more promi-
nent, and make the model pay more attention to this area. The operations are sequentially
defined as follows:

EX1 = P · X1 + X1 (1)

P = SX1 · k (2)

SX1 = δ(X1) (3)
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where SX1 is the output of executing the activation function on the feature map X1. δ
means activation function. P is the enhanced parameter generated by producing SX1 with a
learnable variable map k. EX1 refers to the result of the proposed enhancing module, which
is the sum of P · X1 and X1.

Moreover, we further associate the pixel-based enhanced features with the successive
convolution process and demonstrate the framework in Figure 5. In Figure 5, we construct
a short connection between two neighboring convolution layers, which are in the same
convolution block. We operate the proposed pixel-based enhancing module to enhance the
output of the first convolution layer X1 and generate the enhanced features EX1 . Then, we
add EX1 into X2, which is the output of the second convolution, to finish the process of the
short connection. The detail operation in Figure 5 is defined as follows:

EDS = EX1 + X2 = EX1 + F(X1) (4)

where EDS is the result with enhancing module in down-sampling. F(.) denotes the
convolution between two layers. X2 is the convolution result of X1.

Figure 5. The illustration of the combination for the proposed model.

In addition, we demonstrate the flow chart of using the proposed pixel-based enhanc-
ing module, as shown in Figure 6. In Figure 6, the first step is to select a feature map X1,
and that is used twice; one is for the pixel-based enhancing module, and the other one is
to generate a new feature map X2 in Step 6 and be used to add with the result from the
pixel-based enhancing module. Step 2 to Step 5 are operated in the pixel-based enhancing
module to generate the enhanced feature map EX1 . Moreover, the enhanced feature map
EX1 is added with X2 in Step 7 to generate the enhanced feature map EDS.

Figure 6. The flow chart of using the proposed pixel-based enhancing module.

3.4. The Multi-Loss Strategy

To effectively train the proposed network, we consider the deep-supervision into
various parts of the network as shown in Figure 2. We respectively evaluate the loss of
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DSED-blocks, Conv. block, US-blocks, and END-Net using the cross-entropy loss function.
The equations of the cross-entropy evaluation are expressed as follows:

lossj = −
c
∑

i=1
li · log(yi) j = 1, 2, 3, . . . , n (5)

lossk =
n
∑

j=1
M · lossj k = 1, 2, 3, . . . , N (6)

loss =
N
∑

k=1
lossk (7)

where lossj refers to the loss value of pixel j, n means the total number of pixels. li is the
label of each pixel that corresponds to class i. If the pixel belongs to class i, li sets to 1;
otherwise, it sets to 0. lossk is the total loss of each image k. N is the total number of the
training image. To address the problem of some plant species having little data, we design
an image mask M to ignore these species in both training and testing. The mask value
is set to 1 if the species has been considered in the classification; otherwise, it is set to 0.
Equation (7) represents the calculation of each loss in Figure 2, which is the summation of
all training image loss. The total loss is evaluated with the following:

Loss = ∑7
l=1 lossl (8)

where Loss means total loss of the proposed network, and the number of losses is from 1 to
7, which represents the loss at each location in Figure 2.

In addition, we demonstrate the backpropagation of the proposed pixel-based enhanc-
ing module to present the adjustment mechanism as follows:

∂Loss
∂O = ∂Loss

∂OEds
· ∂OEds

∂O = ∂Loss
∂OEds

· (P + 1) = ∂Loss
∂OEds

· (SX · k + 1) (9)

where O is the network’s output and OEds is the output of the enhancing module. We can
see that the optimization and updates are related to the variable k, which is embedded in
our proposed pixel-based enhancing module.

4. Dataset

We aim to realize the semantic plant species understanding using the aerial image.
However, the existing public plant datasets set over-process plant images, which means
there is only a plant or plant organ per image, and they are mainly designed for classifica-
tion without the ground truth of segmentation. Therefore, the existing dataset does not
satisfy our research goal, prompting us to build Optical and Aerial Plant species Images,
namely the OAPI dataset.

We take Anxi and Changting counties as the study area, which suffered from severe
soil erosion and vegetation restoration and is significant in research. We carefully designed
the recording data to capture abundant plant information per image at high resolution
and acquired thousands of aerial images from a moving UAV in the summer. We use an
unmanned aerial vehicle (UAV) equipped with an optical camera to capture aerial images
of the vegetation from a bird’s eye view. The UAV model is the DJI inspire one raw, and its
specific parameters are as follows: rotation angular velocity pitching axis is 300/s, and the
heading axis is 150/s. The optical camera is a ZenmuseX5R and provides an image with a
size of 4608 × 2592.

We consider different aerial shooting heights, set sampling height range at 20–100 m,
and mainly concentrate at 20–60 m as shown in Figure 7 to verify the robustness of the
proposed END-Net. In Figure 7, the leaves’ appearance, such as texture, shape, and color,
can be easily distinguished at low altitudes. However, the plants have a small area as the
increasing of aerial height; they may be ignored and add the difficulty of segmentation.
Finally, we selected 592 images to produce the training and testing sets.
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(a) 20 m (b) 40 m (c) 60 m (d) 80 m

Figure 7. The aerial images at different altitudes.

We invite relevant professionals to label the selected images by using various col-
ors based on the distribution of plant species and ensure that each class has its unique
corresponding color. The OAPI dataset has 16 classes as shown in Table 1: Background
(#0), Pinus massoniana (#1), Eucalyptus citriodora (#2), Dicranopteris dichotoma (#3), Photinia
serrulata (#4), Adenanthera pavonina (#5), Blechnum orientale (#6), Miscanthus sinensis (#7),
Withered dicranopteris dichotoma (#8), Withered pinus massoniana (#9), Unkown (#10), Stone
(#11), Schima superba (#12), Mosla chinensis (#13), Carmona microphylla (#14), Liquidambar
formosana (#15). In Table 1, we can observe that the morphological characteristics of most
plants are different. For example, the leaf of #1 is fasciculate, slender, and slightly twisted,
#2 is narrow and needle-shaped, #15 is thin, leathery, and broadly ovate. However, aerial
images sometimes fail to show clear differences, such as #4 and #5. In Figure 8, we demon-
strate an optical and aerial image with ground truth, and we mark the same plant with
the same color and outline the intersections of the different plants with yellow according
to distribution.

Table 1. Plants’ images and their corresponding ground truth’s colors.

Class #0 #1 #2 #3 #4 #5 #6 #7

Image

GT

Class #8 #9 #10 #11 #12 #13 #14 #15

Image

GT

(a) Original (b) Ground truth

Figure 8. Example of the original image and its ground truth.

5. Experiments

This section firstly describes the experimental settings and the evaluation indicators of
semantic segmentation. Then, we sequentially introduce the quantitative evaluation of our
proposed END-Net against the eleven well-known methods, present the qualitative result
with visualization, and execute the diagnostic and ablation experiments to evaluate the fea-
sibility and robustness of END-Net. All experiments were executed on Ubuntu 16.04 using
an NVIDIA 1080 graphics card, and all experimental setting parameters are consistent.
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5.1. Implementation Details

We implement our model in Tensorflow and execute all experiments on a workstation
with NVIDIA 1080 (11 G) under the Ubuntu16.04 system. Moreover, the hyper-parameters
are: the training epoch is set to 400, but they will be terminated when the over-fitting
phenomenon occurs; each batch has eight images per GPU; and the dropout rate of the
proposed net is 0.5. The initial learning rate is 0.0003; the optimizer is Adam-Optimizer;
images are resized into 224 × 224; and there are 414/178 images for training and testing,
respectively. The learnable variable map k is initialized to 1.

5.2. Evaluation Indicators for Semantic Segmentation

In this study, we take PA (Pixel Accuracy), MPA (Mean Pixel Accuracy), MIoU (Mean
Intersection over Union), and FWloU (Frequency Weighted Intersection over Union), as
the evaluation indicators with parameters: TP (True Positive), FP (False Positive), TN (True
Negative), and FN (False Negative). TP (True Positive) means that the model’s prediction is
a positive example, and actual observation is a positive example. FP (False Positive) means
that the model’s prediction is a negative example, and actual observation is a positive
example. TN (True Negative) means that the model’s prediction is a negative example,
and actual observation is a negative example. FN (False Negative) means that the model’s
prediction is negative, and actual observation is positive.

5.2.1. PA (Pixel Accuracy)

PA means the ratio of correctly classified pixel points to all pixel points. PA can show
the classification accuracy of the whole image. The confusion matrix can calculate the value
of PA. The equation of the PA is shown as follows:

PA = TP+ TN
TP+ TN + FP+ FN (10)

5.2.2. FWloU (Frequency Weighted Intersection over Union)

FWloU is the promotion of MIoU (Mean Intersection over Union). It means the
IoU of each class is weighted and summarized according to the frequency of each class’s
occurrence. The IoU is the ratio of the intersection and union of the predicted results and
the true values of a given class. The confusion matrix can also calculate the value of IoU
and FWIoU. The equation of the IoU and FWIoU are shown as follows:

IoU = TP
TP+ FP+ FN (11)

FWIoU = TP+ FN
TP+ FP+ TN + FN · TP

TP+ FP+ FN (12)

5.3. Quantitative Analysis

In the quantitative analysis, we compare the proposed END-Net with eleven well-
known semantic segmentation architectures on the self-collected dataset (OAPI dataset), in-
cluding Unet [32], FCN [31], Refinenet [46], FC-densenet [35], FRRN [51], Deepresunet [47],
BiSeNet [52], DANet [53], CFNet [54], ASPOCRNet [30], and OCNet [29], and adopt PA,
FWIoU, MPA, MIoU, Parameters (Params), and FPS metrics to demonstrate the validity of
the proposed method, as shown in Table 2.

In Table 2, the proposed END-Net has the best accuracy in both PA, FWIoU, MPA,
and MIoU metrics and achieves 84.52%, 74.96%, 52.17%, and 37.49%, respectively. It is
1.98%, 3.03%, 0.56%, and 1.36% higher than the second-best approach (Unet) in PA, FWIoU,
MPA, and MIoU metrics, respectively, and indicates that our improvement is noticeable
compared to our backbone (Unet). Moreover, the compared methods which take the
ResNet101 as the backbone have low accuracies in both metrics. It illustrates that the
ResNet101 is not suitable for our dataset. In addition, we also take FCN as the backbone
and use the proposed pixel-based enhancing module in the downsampling block and
achieve 81.61%, 70.36%, 45.14%, and 34.14% in PA, FWIoU, MPA, and MIoU metrics. It is
4.90%, 7.15%, 3.80%, and 5.21% higher than FCN in PA, FWIoU, MPA, and MIoU metrics,
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respectively. In the Params, our net is the third-smallest model and has the best accuracies
in PA, FWIoU, MPA, and MIoU metrics. Compared to the second-best method (Unet),
our model is 5.6 M smaller than Unet. In the FPS metric, the execution speed of most the
methods is between 11 and 12 FPS, in which OCNet has the best FPS and achieves 14.35.
The FPS of the proposed method is 11.42, which is close to most of the methods.

Table 2. Comparison with well-known networks on the OAPI dataset.

Method Year Source Backbone PA (%) FWIoU (%) MPA MIoU Params (M) FPS

Unet [32] 2015 MICCAI[C] Unet 82.54 71.93 51.61 36.13 34.51 12.40
FCN [31] 2015 CVPR[C] VGG19 76.72 63.21 41.34 28.93 139.74 12.85

Refinenet [46] 2017 CVPR[C] ResNet101 52.00 36.10 25.99 17.46 85.69 12.24
FC-densenet [35] 2017 CVPR[C] DenseNet56 81.43 70.52 38.51 27.78 1.37 11.86

FRRN [51] 2017 CVPR[C] FRRN-A 76.35 64.91 44.75 30.62 17.74 11.62
Deepresunet [47] 2018 GRSL[J] Unet 77.90 65.71 48.65 34.34 32.60 11.64

BiSeNet [52] 2018 ECCV[C] ResNet101 69.46 54.66 29.98 20.73 47.79 13.71
DANet [53] 2019 CVPR[C] ResNet101 63.35 48.37 26.77 18.07 46.29 13.79
CFNet [54] 2019 CVPR[C] ResNet101 64.78 49.48 30.00 19.65 48.70 12.40

ASPOCRNet [30] 2020 ECCV[C] ResNet101 64.35 48.61 25.65 17.50 47.21 12.37
OCNet [29] 2021 IJCV[C] ResNet101 66.03 49.90 29.87 18.77 43.93 14.35

FCN + (D − k) 2021 - VGG19 81.62 70.36 45.14 34.14 140.81 12.05
END-Net(D − k) 2021 - Unet 84.52 74.96 52.17 37.49 28.91 11.42

Additionally, we select three situations: (I) common tree species, (II) more and scat-
tered tree species, and (III) uncommon categories to present the robustness of our model
and demonstrate the fine-grained segmentation results of these situations in Tables 3–5,
respectively. In Tables 3–5, we use the PA metric to present the performance of each model
in classifying each plant species; ID is the number of plant species, the model is the name
of the compared method, and overall is the PA metric of the whole image. The best accuracy
is marked as red, and the second-best accuracy is marked as green.

In Table 3, it presents situation I, which is the aerial image that contains the common
tree species. The accuracy of the proposed framework, including FCN + (D − k) and
END-Net, has almost the best accuracy on classifying tree species except #0. The proposed
framework does not have the best accuracy on classifying #0 tree species but is only 0.27%,
slightly lower than the best approach. In Table 4, each tree species on the image is widely
distributed, and the number of tree species is more than the situation I. The proposed
END-Net has good performance and the best overall accuracy except recognizing #0 (the
background). Our model has the best accuracy for classifying Blechnum orientale (#6), which
has fewer pixels on the image, and compared models do not perform well. Moreover,
FCN + (D − k) has the second-best overall accuracy, which embeds the proposed pixel-
based enhancing module in the FCN’s downsampling blocks. In Table 5, the number of tree
species and that of rare tree species are increasing compared to situations I and II. None of
the models perform well for most tree species, but the proposed END-Net and FCN(D − k)
have the best overall accuracies. More specifically, the proposed framework has performed
well for most tree species compared to the compared methods.



Forests 2021, 12, 1695 13 of 23

Table 3. Performance of each model on a small number of a common classes image.

Items Input Image Ground Truth

Images

Model
ID #0 #1 #2 #3 #4 overall

Uet 96.14% 88.64% 74.83% 83.87% 88.19% 83.37%

FCN 97.34% 75.21% 77.59% 68.83% 78.16% 76.54%

Refinenet 98.80% 83.30% 43.06% 56.13% 37.65% 61.75%

FC-densenet 100.00% 80.45% 52.17% 65.89% 81.84% 77.15%

FRRN 99.87% 68.17% 54.00% 69.65% 75.40% 64.65%

Deepresunet 98.27% 74.83% 82.46% 84.90% 89.03% 80.29%

BiSeNet 100.00% 73.22% 31.21% 75.64% 51.08% 55.67%

DANet 99.87% 73.43% 19.40% 46.70% 41.19% 48.97%

CFNet 100.00% 73.70% 21.02% 33.51% 50.53% 50.40%

ASPOCRNet 100.00% 83.87% 19.33% 30.63% 40.07% 52.79%

OCNet 100.00% 77.64% 29.74% 20.00% 43.89% 53.81%

FCN + (D − k) 99.73% 83.24% 71.61% 93.30% 99.58% 81.96%

Ours 99.73% 85.12% 88.41% 89.05% 97.80% 88.40%

Table 4. Performance of each model on an image with more classes and more dispersed class distribution.

Items Input Image Ground Truth

Images

Model
ID

#0 #1 #2 #3 #4 #6 overall

Uet 96.31% 97.14% 78.98% 72.41% 85.17% 85.00% 80.12%

FCN 89.30% 85.08% 85.70% 74.21% 91.26% 91.25% 82.01%

Refinenet 73.92% 89.33% 65.18% 28.21% 21.92% 0.00% 41.97%

FC-densenet 97.54% 93.24% 31.10% 60.80% 42.87% 0.00% 55.54%

FRRN 97.79% 91.71% 36.53% 44.01% 41.76% 13.75% 48.86%

Deepresunet 83.27% 93.84% 70.84% 68.39% 70.62% 6.25% 72.61%

BiSeNet 99.26% 86.83% 16.99% 40.25% 35.87% 0.00% 41.58%

DANet 93.23% 90.89% 13.06% 36.83% 29.70% 0.00% 38.27%

CFNet 95.94% 91.66% 20.47% 37.71% 34.91% 15.00% 41.45%

ASPOCRNet 94.83% 92.37% 20.27% 32.43% 21.29% 0.00% 35.97%

OCNet 95.45% 92.33% 18.20% 34.68% 19.29% 0.00% 36.10%

FCN + (D − k) 90.41% 92.75% 86.76% 73.52% 89.67% 0.00% 82.30%

Ours 64.70% 95.81% 87.59% 79.13% 95.85% 95.00% 86.36%
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Table 5. Performance of each model on a greater number of rare classes images.

Items Input Image Ground Truth

Images

Model
ID

#0 #1 #3 #7 #9 #10 #12 #14 #15 overall

Uet 96.68% 89.12% 64.54% 0.00% 0.39% 0.00% 15.26% 0.00% 0.00% 69.17%

FCN 98.42% 88.11% 39.01% 0.00% 0.81% 1.65% 19.38% 0.00% 5.12% 69.57%

Refinenet 94.75% 70.95% 21.51% 0.00% 0.00% 2.20% 0.68% 13.43% 0.93% 58.51%

FC-densenet 92.78% 82.19% 57.45% 0.00% 0.00% 4.68% 9.72% 0.00% 18.60% 64.39%

FRRN 89.39% 72.03% 65.25% 6.07% 0.00% 1.65% 30.90% 0.00% 7.44% 61.83%

Deepresunet 95.39% 89.24% 65.48% 1.76% 0.65% 26.45% 36.66% 0.00% 0.00% 71.86%

BiSeNet 90.44% 74.49% 33.81% 0.00% 0.00% 0.00% 3.78% 0.00% 0.00% 59.25%

DANet 75.24% 63.88% 16.55% 0.00% 0.00% 0.00% 21.41% 0.00% 8.84% 52.32%

CFNet 76.48% 77.71% 9.93% 0.00% 0.00% 0.00% 3.63% 0.00% 0.00% 56.29%

ASPOCRNet 68.28% 76.10% 24.11% 0.00% 0.00% 0.00% 1.36% 0.00% 0.00% 53.08%

OCNet 78.92% 78.27% 22.22% 0.00% 1.07% 0.00% 12.28% 0.00% 0.00% 58.56%

FCN + (D − k) 99.51% 84.72% 13.48% 0.00% 0.00% 84.30% 54.71% 0.00% 0.00% 73.23%

Ours 95.83% 90.14% 64.54% 0.00% 0.00% 0.00% 88.73% 0.00% 0.00% 78.51%

5.4. Qualitative Analysis

This section provides the visualization predicted results to describe the capability of
each approach and shown in Table 6, respectively. In Table 6, we consider four situations:
(A) few tree species with relatively concentrated distribution, (B) a piece of bare land and
more tree species contain some rare classes, (C) a relatively scattered distribution of the
same tree, and (D) a lot of bare land with many tree species, the number of each tree species
is limited and contains most of the rare categories.

In Table 6, most of the networks have difficulty identifying the tree species on the
proposed dataset, and their performance is not very ideal. However, the proposed net
has the best performance in both situations, tree species with dense distribution, and tree
species with scattered distribution in the images. In situation A, the proposed framework
has the best visualization result compared to the other methods compared, which have
broken segmentation results similar to the ground truth. In situation B, all nets do not
perform well, especially the Withered pinus massoniana (#9). However, our model has the best
overall performance and recognition performances of Pinus massoniana (#1), Dicranopteris
dichotoma (#3), and Schima superba (#12) are very close to the Ground Truth. In situation C,
the shape of the recognition result of our model for each tree is similar to Ground Truth,
but it is slightly insufficient in details, and it also performs best among all the models
on the whole. In situation D, the performance of all models is poor in this situation, but
the proposed net has the best performance compared to the compared methods. Overall,
our model has the best performance in various situations; the FCN + (D − k) takes the
VGG as the backbone and embeds the proposed pixel-base enhancing module into the
downsampling blocks, and it has the second-best performance; the rest of the compared
methods with Resnet101 have the worst performance.
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5.5. Diagnostic and Ablation Experiments

In this subsection, we execute diagnostic and ablation experiments to present the
feasibility and effectiveness of the proposed network.

5.5.1. Diagnostic Experiments

In the diagnostic experiments, we execute the significance testing to prove the signifi-
cance of the proposed enhancing model. Significance test: We execute the paired-samples
T-test as the significance testing to verify the significance of the pixel-based enhancing
module on the self-collected datasets and demonstrate the testing result with two metrics
in Table 7. In Table 7, X, Y, “Sig. ( 2-tailed)”, and ∆ refer to the proposed network with
n × n variable map in enhancing module, the proposed network with 1 variable map in
enhancing module, the p-value of the two-sided significance, and the difference between X
and Y for each fold cross-validation. In Table 7, the performance of X is higher than that
of Y at each validation. Moreover, significant p-values (Sig.) are all less than 0.05 with
these two metrics. The testing proves that the proposed pixel-based enhancing module’s
performance is significant; and the proposed module can efficiently increase the accuracy.

Table 6. Visual schematic of all models.

Image GT Ours FCN + (D − k) Unet

1

2

3

4

FCN Refinenet FC-Densenet FRRN Deepresunet

1

2

3

4
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Table 6. Cont.

BiSeNet DaNet CFNet ASPOCRNet OCNet

1

2

3

4

Table 7. Significance testing results of 5-fold cross-validation.

Metrics PA (%) FWIoU (%)

#Fold
Sample X Y ∆ X Y ∆

1 84.05 83.31 0.74 74.25 73.49 0.76

2 83.95 83.56 0.39 73.75 73.27 0.48

3 85.02 84.15 0.87 75.49 73.84 1.65

4 83.69 83.16 0.53 73.37 72.90 0.47

5 84.33 82.94 1.39 74.40 72.75 1.65

Sig. (2-tailed) 0.010 0.021

5.5.2. Ablation Experiments

In this subsection, we conduct the ablation experiments on OAPI with three settings to
verify the rationality and scientificity of the proposed END-Net: (1) locations of pixel-based
enhancing module, (2) structures of variable map, and (3) loss strategies.

Locations of pixel-based enhancing module: We set the proposed pixel-based en-
hancing module at various locations of the END-Net to explore the optimal settings and
demonstrate the results in Table 8. In Table 8, we consider four locations: (a) downsampling
blocks (DS-blocks), (b) upsampling blocks (US-blocks), (c) DS +US-blocks, and (d) NONE.
More specially, situations (a) and (b) only set the proposed pixel-based enhancing module
at downsampling and upsampling blocks, respectively; situation (c) uses the enhancing
module at both blocks; and situation (d) does not consider the enhancing module in the
network. The network with the proposed pixel-based enhancing module at DS-blocks
has the best accuracies and achieves 84.52% and 74.96% in PA and FWIoU metrics. Its PA
accuracy is 1.64% higher than US-blocks, 1.75% higher than DS + US-blocks, 1.9% higher
than NONE; its FWIoU is 2.32% higher than US-blocks 1.95% higher than DS + US-blocks,
and 2.73% higher than NONE. Its accuracy is significantly higher than the rest locations
and ensures that using the pixel-based enhancing module at downsampling blocks can
effectively achieve the best results. The tiny encoder–decoder structure with a pixel-based
enhancing module embedded in a downsample block that can efficiently improve the
segmentation accuracy due to the downsampling blocks (DS-blocks) is the procedure of
downsampling. The downsampling block ensembles features from the large region into a
small region with convolution operation is the procedure to reduce the size of the feature
map. It uses the tiny encoder–decoder structure with a pixel-based enhancing module that
efficiently highlights the features and improves segmentation accuracy. In contrast, the
upsampling block enlarges the feature map, and this makes the feature blur. Operating the
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tiny encoder–decoder structure with the pixel-based enhancing module on a blur feature
map does not get better results.

Table 8. Pixel-based enhancing module at various locations in END-Net.

Locations PA (%) FWIoU (%)

DS-blocks 84.52 74.96

US-blocks 82.88 72.64

DS + US-blocks 82.77 73.01

NONE 82.62 72.23

Structures of variable map: We consider different structures of the variable map in
the enhance module, including the variable map with the size of n × n and with the size of
1 × 1, and demonstrate the results in Table 9. In Table 9, the item “Size” indicates the size
of the variable map in the enhance module, and n × n means the size of the variable map is
the same as the size of the feature map. It can seem that a variable map with size n × n
is powerful than using a single variable. The variables will adjust their value (enhancing
factor) adaptively as the network iterates; therefore, the variable map with the size of
n × n can obtain the appropriate enhancing factor for each pixel rather than use a single
enhancing factor. Notice that we set the initial value of the variable map with various sizes
to one. In Table 9, the performance of using variable map with size n × n is better than
with size 1 × 1, and it is 0.45% and 0.60% higher than using size 1 × 1 in PA and FWIoU,
respectively. An n × n feature map with only one enhancing factor makes each pixel of the
feature map have the same weight. However, some discriminative characteristics, such as
edges and corners, which can highlight the differences, should assign different weights
(enhancing factor) to highlight the importance of features in feature learning. Therefore,
our study designs an n × n variable map that can get better results.

Table 9. Different structures of variable map.

Size PA (%) FWIoU (%)

n × n 84.52 74.96

1 × 1 84.07 74.36

Loss strategies: We analyze two-loss strategies, single-loss, and multi-loss strategies
to determine the best loss strategy and demonstrate the results in Table 10. In a single-loss
strategy, we keep the loss7 and abandon the rest of the loss in our network. In multi-
strategy, we reserve all the losses, which are designed in our network. In Table 10, the
multi-loss strategy has 84.52% and 74.96% accuracies of PA and FWIoU, which is 0.09%
and 0.54% higher than using single-loss strategy. Overall, the multi-loss approach can
improve the performance of the proposed model and has better accuracy than using a
single-loss strategy.

Table 10. Performance of the various strategies in ENDFNet.

Loss PA (%) FWIoU (%)

multi-loss 84.52 74.96

single-loss 84.43 74.42

6. Discussion

This subsection discusses the effect of various hyper-parameters settings, data expan-
sion, external factors, and the advantages and limitations of the proposed model.
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6.1. Hyper-Parameters

To realize the effect of the hyper-parameters on the proposed model, we justified
the choice of all used hyper-parameters, including the image size and initial value of the
learnable variable map (k). We discuss two image sizes, 224 × 224 and 512 × 512, and
three initial values of learnable variable map (k = 1.0, 2.0, 3.0), and demonstrate the results
in Table 11. The value of variable k is learned during the training process, but its initial
value could make it obtain the local or global optimal values after training. Therefore, we
examine three initial values, 1.0, 2.0, and 3.0, to define the best initial value. In Table 11,
the initial value set as 1.0 can obtain the best accuracies in PA and FwIoU metrics; and the
initial value set as 2.0 can obtain the best accuracies in MPA and MIoU metrics. Therefore,
we set the initial value of k to be 1.0 in this study.

Moreover, we take different image sizes as the input with the same external factors
(NVIDIA 1080 (11 G) graphics card under the Ubuntu16.04 system) to analyze the effect of
the image size. We set the batch size from 6 to 3 for image size 512 × 512 to execute on the
same external factors and demonstrate the results in Table 11. In Table 11, the performance
of each metric becomes worse with image size 512 × 512 due to the different sizes of
the receptive field. The images with various sizes have the same content, making their
respective pixels cover the various size of the field. Therefore, it shows that the proposed
model is more effective for the input size of 224 × 224.

Table 11. Effects of hyper-parameters.

Size k PA (%) FwIoU (%) MPA (%) MIoU (%) Params (M) FPS

224 × 224

1.0 84.52 74.96 52.17 37.49 28.91 11.42

2.0 84.41 74.90 54.44 38.23 28.91 11.61

3.0 82.70 72.76 51.73 36.14 28.91 11.64

512 × 512 1.0 80.21 69.32 43.59 28.60 29.27 3.99

6.2. Data Expansion and External Factors

To study the effect of DATA expansion and processing on the model complexity
and energy efficiency, we expand the data set by non-overlap cropping images with
size 224 × 224 from the image with size 518 × 922, which is resized from the original
image with size 4608 × 2592 data, due to the difficulty of collecting data. We generate
3313/1424 images after extension for training and testing. Moreover, we execute the model
on the other device to discuss the effect of the external factors. The experiment results are
shown in Table 12. The specification of Environment 1 is NVIDIA 1080 (11 G) graphics card
under the Ubuntu16.04 system and that of device 2 is RTX6000 (24 G) graphics card under
the Ubuntu20.04 system. The Environment 1 and 2 have the same experimental parameters,
including input size being 224 and k = 1 in a learnable variable map. In Table 12, the model
with an expanded dataset has lower accuracies in the matrices of PA, FwIoU, MPA, and
MIoU due to different sizes of input data having different receptive fields for the same
model. For example, the receptive field of the image with size 224 × 224, which is cropped
from the image with size 4608 × 2592, is different from the receptive field of the image with
size 224 × 224, which is resized from the image with size 4608 × 2592. The FPS is increased
when addressing the expanded dataset because the cropped image’s content becomes
simpler than the original input image. More specifically, there are fewer tree species in
each cropped image compared to the original input image. In addition, the model that
executes with various external factors has the same results in each metric. It proves that
the proposed model is portable and can be used on various platforms.
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Table 12. Effects of data expansion and external factors.

Environment Data (Training/Testing) PA (%) FwIoU (%) MPA (%) MIoU (%) Params (M) FPS

Data expansion
1 414 / 178 84.52 74.96 52.17 37.49 28.91 11.42

1 3313 / 1424 80.00 68.97 46.65 31.69 28.91 18.70

External factors 2 414 / 178 84.69 74.88 52.21 37.40 28.91 14.22

6.3. Advantages and Limitations

The END-Net has the best accuracies in PA, FWIoU, MPA, and MIoU metrics. The
proposed modules and strategy play critical roles in improving the performance, proved on
the diagnostic and ablation experiments. Moreover, it has fewer parameters and acceptable
FPS. Therefore, END-Net can be used in reality. In practical application, the user can take a
mobile phone to shoot the plant species from a tall building or operate a drone with an
RGB camera to capture images at low latitudes to collect the images for analysis. Moreover,
the user can execute the proposed trained model at a cloud device or a personal computer
with a single graphic card for analysis.

In this study, we collect sixteen tree species images, but the number of images (pixels)
for each tree species is not equal. Some dominant tree species have an amount of data, and
few tree species have less, which makes the data unbalanced. We have to extend the data
for the tree species that has less data and add other tree species in follow-up research.

6.4. Challenges of Plant Segmentation Using UAVs

There are several challenges in the plant species segmentation with aerial images:
(1) the balance between the data and cost, and (2) the balance between accuracy and
efficiency. In the balance between the data and cost, the commonly used resource for plant
segmentation includes optical, multispectral, and hyperspectral images. The multispectral
and hyperspectral images can provide images of dozens or hundreds of channels to
generate abundant features for plant segmentation, but their cost is high due to high-
resolution images [55]. The Landsat satellite can provide some resource format but with a
low resolution compared to the spectral images captured by the UVAs [56]. Therefore, we
use UAVs with optical cameras to capture high-resolution images to balance the cost and
the resource resolution.

In the balance between accuracy and efficiency, the deep learning approaches using
optical images have challenges in accuracy and efficiency. Most of the existing approaches
focus on improving the segmentation accuracy [25] but have the issue of executing time
due to the complex model [57]. The complex models have a slow executing time and lead to
inefficient and non-real-time. The proposed network nests a tiny encoder–decoder module
with the proposed pixel-based enhancing module, increasing the depth of the network,
and complicated operations have the challenge of executing time but overcoming the issue
of segmentation accuracy. The proposed framework does not have a fast-executing time,
but the difference in executing time between our network and the compared methods is
slight. Moreover, the proposed framework has the best accuracy. Therefore, the proposed
method has a good balance between accuracy and efficiency.

7. Conclusions

This study proposes a plant species segmentation network with enhancing nested
downsampling features (END-Net) for complex and challenging plant species segmentation
tasks. END-Net takes the Unet as the backbone and contains three main contributions:
(1) The tiny encoder–decoder structure with a pixel-based enhancing module embedded
in a downsample block can efficiently highlight the features, improving the segmentation
accuracy; (2) the pixel-based enhancing module assigns different weights (enhancing factor)
to adaptively highlight the importance of each pixel’s features in feature learning; and
(3) the multi-loss strategy is a deep-supervision strategy; it calculates and accumulates
the losses for the efficient adjustment of the network. Moreover, we collect the aerial and
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optical images to construct the plant dataset, namely the OAPI dataset. To the best of our
knowledge, the OAPI dataset is a rare database mainly focused on collecting optical images
captured by a low-altitude drone.

In the experiments, we execute the diagnostic and ablation experiments to prove the
significance of the proposed pixel-based module and demonstrate the effectiveness of
our network. Moreover, we provide the quantitative results with six metrics to show the
performance of the proposed END-Net and give the qualitative consequence to prove the
feasibility of the END-Net with visualization segmentation outcomes.

In the future, we will improve the model to increase the segmentation accuracies
of rare plant species with fewer data than the dominant species. More specifically, we
will consider the classes’ weights into the loss strategy that makes the network pay more
attention to categories with small data [58]. In addition, we also consider using adversarial
networks [59] or various loss strategies [60] to improve the accuracy of categories with
small samples. Furthermore, we will keep collecting aerial and optical images, infrequent
ones, and balance the number of categories in the dataset. More precisely, we will expand
the number of rare categories, such as Withered dicranopteris dichotoma, Adenanthera pavonina,
Blechnum orientale, and Miscanthus sinensis. Moreover, we will add some new sampling
points to extend the number of tree species and images.
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Abbreviations
The following abbreviations are used in this manuscript:

END-Net The convolutional neural network using enhancing nested downsampling features
OAPI dataset Optical aerial plant image dataset
PA Pixel Accuracy
FWloU Frequency Weighted Intersection over Union
CNN Convolutional Neural Network
UAV Unmanned Aerial Vehicle
DSED-block The downsampling block with encoder–decoder structure
Conv. block Convolution block
US-block The upsampling block
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