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Abstract: It is of great value to research the problem of forest pest and disease control. Currently,
helicopters play an important role in dealing with this problem. However, the spraying route
planning still depends on the pilot’s driving experience, which leads to low efficiency and less
accurate coverage. For this reason, this paper attempts to use intelligent algorithms to plan the
pesticide spraying route for helicopters. When the helicopter is conducting spraying operations in
multiple forest areas, the routes are divided into two parts: pesticide spraying routes for individual
forest areas and dispatch routes between multiple forest areas. First, the shorter spraying route
with fewer turnarounds for individual forest areas was determined. Then a two-layer intelligent
algorithm, a combination of a genetic algorithm (GA) and ant colony optimization algorithm (ACO),
was designed to determine the dispatch route between multiple forest areas, which is referred to as
GAACO-GA. The performance was evaluated in self-created multiple forest areas and compared
with other two-layer intelligent algorithms. The results show that the GAACO-GA algorithm found
the shortest dispatch route (5032.75 m), which was 5.60%, 5.45%, 6.54%, and 4.07% shorter than that
of GA-GA algorithm, simulated annealing-GA (SA-GA) algorithm, ACO-GA algorithm, and particle
swarm optimization-GA (PSO-GA) algorithm, respectively. A spraying experiment with a helicopter
was conducted near Pigzui Mountain, Huai’an City, Jiangsu Province, China. It was found that the
flight path obtained from the proposed algorithm was 5.43% shorter than that derived from a manual
planning method. The dispatch route length was reduced by 16.93%, the number of turnarounds
was reduced by 11 times, and the redundant coverage was reduced by 17.87%. Moreover, helicopter
fuel consumption and pesticide consumption decreased by 10.56% and 5.43%, respectively. The
proposed algorithm can shorten the application route, reduce the number of turnarounds and the
cost of spraying operations, and has the potential for use in spraying operations in smart forestry
and agriculture.

Keywords: route planning; helicopter; two-layer intelligent algorithm; genetic algorithm; ant colony
optimization algorithm; multiple forest areas; spraying operations

1. Introduction

Carbon neutrality has become a hot topic and it is of concern to the Chinese govern-
ment and people. Forests play an important role in achieving carbon neutrality [1]. At
present, China has 220 million hectares of forests, with 23.04% forest cover and 79,542,800
hectares of planted forests [2]. The carbon sink of China’s forests is equivalent to neutraliz-
ing 21.55% of the national industrial carbon emissions from 1978 to 2018. Forest plantations
hold an important share of the Chinese forests [2]. However, in recent years, pests and
diseases have accounted for 23.7% in forest plantations, and the economic loss due to pests
and diseases was more than 110 billion RMB [3]. Not only in China, but also in other
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parts of the world, forest pests and diseases often occur and have caused serious economic
losses [4–6]. Thus, pest and disease control is an important and indispensable part of food
and forest production [7–10].

Aerial spraying is essential to modern forestry and plays an increasingly important
role in pest and disease control and in other applications [11,12]. Route planning is crucial
for aerial applications in forestry to reduce the amount of applied pesticide and aviation fuel
consumption and to improve the accuracy of the aircraft when following the track [13,14].

Current research on route planning for aerial applications has mainly focused on
unmanned aerial vehicles (UAVs) [15]. Zhan et al. [16] developed an intelligent delivery
system for biological control agents using electric multi-rotor UAVs and achieved 36.75%
coverage redundancy. Cabreira et al. [17] reviewed studies of UAV-based coverage path
planning for differently shaped areas (e.g., rectangles, concave polygons, and convex poly-
gons). Causa et al. [18] proposed a multi-UAV path planning algorithm in heterogeneous
Global Navigation Satellite System (GNSS) coverage scenarios. Xu et al. [19] optimized
the operation sequence and dispatch routes for multiple areas using a genetic algorithm
(GA) and achieved full-coverage route planning of a forest spraying UAV. Fan et al. [20]
performed path planning optimization of UAVs in mountainous operating conditions
and minimized energy consumption using a simulated annealing (SA) algorithm. Wang
et al. [21] conducted path planning of a forest spraying UAV and ranked the 3D opera-
tion orders based on an improved ant colony optimization (ACO) algorithm to generate
transfer paths with a shorter total length. Although these studies provide references for
helicopter path planning, there are differences between helicopters and UAVs. UAVs, in
particular, rotary-wing UAVs can perform flexible turnaround operations. Therefore, path
planning for UAVs typically aims for the shortest path and does not consider the number
of turnarounds. As a result, a UAV enter a forest area more than once. Those routes are not
suitable for a manually driven helicopter. Sometimes there are often many shorter routes
for a UAV, which are also difficult for helicopters to follow.

Helicopters are commonly used for airborne operations in agriculture and forestry
in the world [22,23]. However, few studies focused on route planning for helicopters.
Helicopters have several advantages over UAVs [22,23], such as higher pesticide carrying
capacity, higher operational efficiency, and longer endurance, making them more suitable
for application operations in complex terrains, such as hills, mountains, and large forested
areas. However, the spraying route planning still depend on the pilot’s driving experience,
which leads to low efficiency and less accurate coverage [23].

The goal of this paper is to develop a route planning method that provides the shorter
routes with fewer turnarounds when the helicopter spray pesticide in multiple forest
areas. First, the suitable route was determined for a single area; then the multiple low-
slope forest area operation was simplified into one plane operation, and an intelligent
two-layer algorithm that combines a GA and ACO algorithm (GAACO-GA) was designed
to determine the optimum dispatch route. Finally, the proposed algorithm was verified by
experiments.

2. Materials and Methods

When the helicopter is conducting spraying operations in multiple forest areas, the
routes are divided into two parts: spraying routes for individual forest areas and dispatch
routes between multiple forest areas.

2.1. Spraying Route Planning Algorithm for a Single Forest Area

With the development of variable application techniques, the spray volume can be
regulated according to the operating altitude and flight speed, ensuring consistent pesticide
applications in the canopy of multiple forest areas [24,25]. By using this technique, multiple
low-slope forest area applications were simplified into one plane application. To ensure full
coverage when spraying [26,27], the spraying route needs to extend beyond the boundary
of the operation area. Therefore, spraying outside of the designated areas is minimized, and
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the spraying range is more precise if the length of the spray routes outside the boundary
is reduced. At a given spray width, when the number of turnarounds is fewer, it means
that the individual routes are longer. Such routes are more suitable for helicopters. How to
determine that suitable spraying route of a single forest area is given below.

(1) Establishing a coordinate system for the operating area. We assume that the
operation area is a polygon with n sides and is located in the eastern longitude and
northern latitude region. The polygon operation area is located in the first quadrant of the
coordinate system to facilitate the analysis. Further, the smallest latitude and longitude
values in the operation area are selected as the coordinate origin. The positive direction of
the x-axis is due east, and the positive direction of the y-axis is due north. The coordinate
system is shown in Figure 1a.

Figure 1. Spraying area and schematic diagram of the spraying routes at the border. (a) Spray area;
(b) The routes at the border.

(2) Calculate the slope of each boundary as follows:
k j =

|yj+1−yj|
|xj+1−xj| , 1 ≤ j < n, j ∈ Z

k j =
|y1−yj|
|x1−xj| , j = n, j ∈ Z

(1)

where kj is the slope of the jth edge, yj is the vertical coordinate of the jth vertex, and xj is
the horizontal coordinate of the jth vertex.

(3) Calculate the total length of the spray routes outside the operating area. Most
aerial spray applications use parallel flight lines. We use the x-axis as the starting edge and
calculate the number of routes as follows to achieve full coverage. Mj =

|yj+1−yj|
Ws

, 1 ≤ j < n, j ∈ Z

Mj =
|y1−yj|

Ws
, j = n, j ∈ Z

(2)

where Mj is the number of application routes required for the jth edge. Ws is the spray width.
The total length of the spray routes outside the operating area is computed next. Since

the spray routes are parallel, and the spacing is equal to the spray width, the quadrilateral
ABCD shown in Figure 1b is a parallelogram. The length lAB can be obtained as follows:

lAB =
Ws

2k
(3)

where lAB is the length of each spray route outside the operating area, and k is the slope of
the operating area boundary line.
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We combine Equations (2) and (3) to obtain the total out-of-area spray distance at each
boundary. It is equal to the sum of the lengths of all application routes beyond the regional
boundary line.

lj =
MjWs

2k j
(4)

where lj is the total length of the out-of-area spray routes at the jth boundary.
Equations (1) and (4) are combined to obtain Equation (5): lj =

|xj+1−xj|
2 , 1 ≤ j < n, j ∈ Z

lj =
|x1−xj|

2 , j = n, j ∈ Z
(5)

The total length of the out-of-area spray routes is equal to the sum of the spray routes
outside all the boundaries of the area.

L =
|x1 − xn|

2
+

n−1

∑
j=2

∣∣xj+1 − xj
∣∣

2
, j ∈ Z (6)

where L is the total length of the out-of-area spray routes.
As shown in Equation (6), the shortest total length of the out-of-area spray route is

obtained when the spray route is parallel to the x-axis, and the x-axis of the coordinate
system is parallel to the regional boundary line. Thus, the spray route parallel to the
boundary of the area is shorter than that not parallel to the boundary.

(4) Determine the coordinate system with fewer number of turnarounds. We use each
boundary of the operating area as the x-axis and establish the coordinate systems Z1, Z2,
and Zn. Equations (7) and (8) is then used to calculate the number of turnarounds. When
the number of turnarounds is minimum, we use that boundary as the x-axis.

M =

⌈
1
2

n

∑
j=1

Mj

⌉
(7)

Ts = M− 1 (8)

where M is the number of total application routes, Ts is the number of turnarounds.
(5) We plan the first spray route offset by 1/2 the spray width parallel to the boundary

obtained by step four. Then we plan the spray route one by one, parallel to first spray route
offset by the spray width until the area is covered.

To summarize, the shorter out-of-area routes mean more precise route coverage.
The acreage of the operating area is approximately equal to the length of the applica-
tion route multiplied by the spray width. At a given spray width, when the number of
turnarounds is lower, it means that the individual routes are longer. Such routes are more
suitable for helicopters.

2.2. Dispatch Route Planning Algorithm for Multiple Forest Areas

When planting operations are carried out in large forest areas containing fishponds,
lakes, animal farms, and military no-fly zones where pesticide applications are not allowed,
the forest area is divided into many patches. Once the spraying routes for individual forest
areas have been determined, we still need to connect the multiple forest areas, known as
the dispatch route. Next, we discuss the algorithm to plan the dispatch route.

For ease of expression, two concepts are defined. Figure 2 shows the spraying opera-
tion plan with four sectors. A1 and A2 are the entry or exit points, respectively, of sector A,
and A0 is the midpoint of line A1A2. The same applies to sectors B, C, and D. The helicopter
enters the sector at point A2, traverses zone A, exits at point A1, enters zone C at point
C2, traverses zone C, exits at point C1, enters B1, traverses zone B, exits at B2, enters D1,
traverses zone D, exits at D2, and returns to point A2. The operation order refers to the
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closed loop formed by the line linking the midpoints of the entry and exit points of each
zone. A0C0B0D0 in Figure 3 is an operation order; it only indicates the operational sequence
and not the route traveled by the aircraft. The sum of the lengths of lines A0C0, C0B0, B0D0,
and D0A0 is called operation order length. The dispatch route is an open loop formed by
the line linking the entry/exit points of one zone to the entry/exit points of the next zone.
The green line segments A1C2, C1B1, B2D1, and D2A2 form the global dispatch route, as
shown in Figure 2. The sum of the lengths of the four-line segments is called the dispatch
route length.

Figure 2. The spraying operation plan.

Solving the global dispatch route is similar to the traveling salesman problem (TSP),
an NP-hard problem [28]. The difference is that the helicopter must complete its pesticide
application in one zone before it moves to the next zone. This makes it more difficult than
TSP because some paths are not allowed. We consider solving this problem in two steps.
First we solve for the operation order and then we determine the sequence of entry and exit
points for each forest area. The latter is equal to the dispatch route as mentioned above.

Meta-heuristic algorithms are widely used for solving NP-hard problems and are
classified into two dominant classes: evolutionary and swarm intelligence techniques.
Evolutionary algorithms mimic the concept of evolution in nature [29,30]. The best and
most suitable algorithm in this class is the genetic algorithm (GA) [29]. Swarm intelligence
techniques mimic the intelligence of swarms, herds, schools, or flocks of creatures in nature.
One of the most popular algorithms in this class is the ant colony optimization algorithm
(ACO) [29]. Numerous studies have shown that GA is strong in global search and poor in
local search, while ACO is the opposite, with its strong in local search and poor in global
search [31–33]. A fusion of GA and ACO algorithms can make better use of the advantages
of both algorithms [34,35].

With reference to “No free lunch theorems” and the concept of divide-and-conquer [31],
a two-layer intelligent algorithm is proposed to obtain the dispatch route. The first layer of
the algorithm combines the GA and ACO algorithm [35,36]. It finds feasible solutions for
the operation order. The second layer of the algorithm is a GA that determine the sequence
of entry and exit points for each area. This two-layer algorithm is called GAACO-GA,
and its flow chart is shown in Figure 3. Since the first layer solves a TSP problem, any
algorithm suitable for TSP can be used. In addition to the GA and ACO algorithms, particle
swarm optimization (PSO) and simulated annealing (SA) algorithms are also suitable for
TSP. Therefore, the first layer can also use the GA [37], SA [38], ACO [39,40], and PSO
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algorithms [41–44]. Four intelligent two-layer algorithms (GA-GA, SA-GA, ACO-GA, and
PSO-GA) are compared with the proposed GAACO-GA algorithm. In the following we
only present the GAACO-GA algorithm. The other four algorithms are similar to that.

Figure 3. Flow chart of the intelligent two-layer algorithm for calculating the global dispatch route.

2.2.1. The First Layer of GAACO-GA

In this layer, our goal is to obtain a set of better operation orders, containing the
shortest orders. We use GA to obtain the better operation orders, and ACO to obtain the
shortest orders. Then we put the results into the one population. The results of the GA are
used for pheromone initialization to increase the search speed of the ACO algorithm [34,35].

(1) Using the GA to obtain better operation orders
The GA is a global search algorithm based on natural selection and evolutionary

mechanisms and simulates the genetic evolution of organisms [37]. We use integer coding
to define the spraying areas and the airport. Then we use Equation (9) to calculate the fitness
value by means of crossover operations, mutation operations, and reversal operations, the
population is updated. Finally, the paths with large fitness values (shorter operation orders)
are retained. The set of operation orders in the last population is what we need.

f1 =
1

n−1
∑

i=1
Dij + D1n

(9)
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where Dij is the distance from the application region i to the application region j, j = i + 1;
f 1 is the fitness function, which is the reciprocal of the distance from the start node to the
end node then back to the start node after passing through all nodes.

In particular, a reversal operator is incorporated into the traditional GA to prevent the
population from losing diversity prematurely and falling into a local optimum solution. It
works like this. If the code string is 12345678, and two breaks occur between 2 and 3 and
between 6 and 7, the number between the two break positions is reversed so that the new
code string is 12-6543-78.

GAs tend to stagnate near the optimal solution when solving TSP problems, so that
a set of better operation order solutions can be obtained. A more powerful intelligent
algorithm is still required for the acquisition of the shortest operation order. Among these
algorithms, the ACO algorithm was chosen.

(2) Using ACO to obtain the shortest operation order
The ACO algorithm emulates the behavior of ant colonies moving from their nest

to food sources. Ants can find the shortest route from the food source to their anthills
without using their sense of sight [38,39]. Since the ACO algorithm is similar to a greedy
algorithm at the beginning of the operation and operates blindly, the solution to the TSP
obtained from the GA is used for the pheromone initialization of the ACO algorithm. The
principle is as follows. For example, when the GA obtains a result with a path sequence
of 2-5-7, the pheromone of that path is increased correspondingly. The algorithm starts,
executes the first loop, and randomly places m ants on n nodes. The probability of the kth
ant moving from node i to node j as a result of being attracted by the pheromones is given
by Equation (10). The local pheromone level of the path between nodes i and j is updated
using Equation (11). Ant k starts at node j and continues to search for the next node until
it has visited all nodes. All m ants traverse all nodes in the same way as ant k. When
all ants have completed their routes, the global pheromone level is updated. The global
pheromone update rule uses only the pheromone level of the ant moving on the optimal
path after each loop, as shown in Equation (12). At this point, the first loop ends, and the
next loop starts, again placing m ants randomly at n nodes. The algorithm ends when
the set number of cycles has been reached. The pheromones level is limited, as shown in
Equations (13)–(15) to prevent an excessive local pheromone level from affecting the global
search capability. The optimal path length obtained by the GA is used as the benchmark
for setting the pheromone level.

Pk
ij =


[τij ]

α [ηij ]
β

∑
u⊂allowedk

[τiu ]
α [ηiu ]

β , j ∈ allowedk

0, otherwise
(10)

τij(t + n) = (1− ρ)τij + ρτ0 (11)

τij = (1− ρ)τij + ∆τbs
ij , ∀(i, j) ∈ Tbs (12)

τij =


τij, τmin < τij < τmax
τmin, τij < τmin
τmax, τmax < τij

(13)

τmax = a(Dnn)
−1 (14)

τmin = (aDnn)
−1 (15)

where τij is the pheromone level at edge E(i,j), ηij(t) is the heuristic factor, ηij(t) = 1/dij, dij
is the distance between node i and j. allowedk is the set of pesticide application areas that
ant k is allowed to visit next. ρ is the pheromone volatility factor, less than 0.5. m is the
number of ants. α is the pheromone heuristic factor. β is the expected heuristic factor. q is a
random variable uniformly distributed in interval [0,1]. Q is a pre-determined parameter
that determines the relative importance of using prior knowledge and exploring new paths,
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0 ≤ Q ≤ 1. Dnn is the optimal path obtained by the GA using this value as a benchmark
for the maximum and minimum pheromone level. τ0 is the length of the shortest path
obtained from the GA, τ0 = 1/Dnn. a > 1 is an interval factor that controls the interval range,
and a ≤ 1/ρ. τij ∈ [τmin, τmax] holds true at all times, and τij(0) = (τmax + τmin)/2.

In summary, the pheromone initialization utilized the results of the GA, using the
strategy of the elite ants when updating the global pheromone and limiting the pheromone
size at all times. With the use of these strategies, the ACO algorithm is able to quickly
focus on the superior paths and is further enhanced in terms of the speed and global
seeking capability.

2.2.2. The Second Layer of GAACO-GA

The second layer of GAACO-GA uses a GA to obtain the global dispatch route
considering the enter/exit points of the multiple forest areas. A binary code is used, and
the chromosome length is the number of forest areas plus one; the latter point indicates the
airport. The fitness of each chromosome is calculated using Equation (16). As described
previously, the first layer of the algorithm provides a set of feasible operation orders
containing n paths with different sequences. If chromosome (i,:) is the ith chromosome
in the population of the GA in this layer, each operation order is adjusted to chromosome
(i,:) according to the location of the entry/exit points, and n global dispatch routes are
obtained. The distances of all n global dispatch routes are calculated, and the minimum
distance is obtained. The reciprocal of this minimum value is used as the fitness value of
the chromosome (i,:). As shown in Figure 2, the operation order is assumed to be ABCD.
Region A may have an entry point at A1 and an exit point at A2 or vice versa. The two
states are represented by 0 and 1, respectively. Therefore, the state code of the sequence
A1A2B1B2C1C2D1D2 is 0000, and that of the sequence A1A2B2B1C1C2D2D1 is 0101. The
fitness value of chromosome 0101 can be found by replacing chromosome (i,:) in Equation
(16) with 0101. Similarly, the chromosomes in the population are continuously optimized
through crossover and mutation operations. Finally, the chromosome corresponding to the
shortest dispatch route is preserved and its shortest dispatch route is determined.

f2 =
1

min(l1(chromosome(i,:)), l2(chromosome(i,:)), . . . , ln(chromosome(i,:)))
(16)

where li(chromosome(i,:)) denotes the length of the global dispatch route path adjusted accord-
ing to chromosome (i,:) for the ith row of the path li in the operation order set obtained
by GAACO.

2.3. Evaluation Metrics of the Scheduling Algorithms

To evaluate the performance of a scheduling algorithm, specific indicators need
to be used. Since the algorithm is a stochastic intelligent optimization algorithm, the
results may be different even if the algorithm starts at the same point [29]. However,
the main advantage of stochastic algorithms over deterministic algorithms is that they
prevent finding locally optimal solutions [29]. For practical applications, it is desirable
that the algorithm has a short running time to provide optimal results and operates stably.
Therefore, three evaluation metrics are used to determine the algorithm’s performance: the
average search time, the optimal solution in a finite number of runs, and the robustness.
Among these metrics, the most important one is the optimal solution, so this metric should
be considered first.

The average search time of the algorithm is defined as follows:

t =
1

m0

m0

∑
i=1

ti (17)

where m0 is the number of running times of the algorithm, and ti is the time cost for each run.
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The optimal solution in a finite number of runs is defined as follows:

sbest = min(si) (18)

where sbest is the global optimal solution obtained by the algorithm, and si is the solution
obtained after each implementation of the algorithm.

The algorithm robustness is defined as follows:

σs =

√√√√ 1
m0 − 1

m0

∑
i=1

(si −
1
m

m0

∑
i=1

si)

2

(19)

2.4. Self-Built Multi-Forest Test Environment

Although the algorithm has been designed, we also need a multi-forest area environ-
ment to test the algorithm. In addition, many parameters of the algorithm are also related
to the number of forested areas. First estimate the acreage of helicopter operations, then
determine the number of forest areas and construct a hypothetical operational task map.

First, we calculate the pesticide application area based on the helicopter’s endurance voyage.

A1 = 1000SvWs (20)

Second, we calculate the pesticide application area based on the weight of the load.

A2 =
10000md

ρdVph
(21)

Third, we calculate the pesticide application aera based on the helicopter’s endurance time.

A3 = 1000v0TbWs (22)

The working area is the smallest of the three calculated areas.

A = min(A1, A2, A3) (23)

where Sv is the maximum travel distance of the helicopter, km; Ws is the spraying width,
m; md is the weight of the pesticide, kg; ρd is the density of the pesticide, g/cm3; Vph is
the pesticide application rate per hectare, L/hm2; v0 is the helicopter speed during the
spraying operation, km/h; Tb is the helicopter’s endurance during the spraying operation,
h; A is the total operating area, m2.

We use the Thunderbird R44 helicopter as an example. It is commonly used for
spraying operations in forest areas. We estimate the operation area of this aircraft and create
a scenario map with multiple forest areas to be sprayed. Table A1 lists the parameters of
the Thunderbird R44 Helicopter [23]. We use the spraying operation parameters provided
in Ref. [23] as an example; the parameters are listed in Table A2. The calculated operation
area is A = 60 hectares. We consulted experienced helicopter pilots and the literature and
found that the acreage of a single forest area is usually not less than 3.3 ha. Thus, the
R44 can cover up to 18 areas in one flight. The algorithm parameters are based on this
information. We created a map using these parameters (Figure A1; including 18 forest
areas of approximately 3.3 hectares each). The coordinates of the vertices of all forest areas
are shown in Table A3.

2.5. Test Equipment

Field experiments were carried out to compare the performance of the proposed algo-
rithm with manual empirical methods under practical conditions. The test was conducted
using a Robinson Helicopter (Thunderbird model R44) supplied by Jiangsu Ningxiang
General Aviation Company, with an average fuel consumption of 57 L/h. The spray width
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was 20 m, and the pesticide consumption was 10 L/km [23]. A variable application mon-
itoring system [25] was developed to monitor the trajectory and control the application
volume in real time. The device was located in the cab during the test. The photos of the
experiment are shown in Figure 4.

Figure 4. Test equipment. (a) R44 helicopter; (b) The variable application monitoring system in the helicopter.

3. Results

Simulation experiments were carried out on a self-constructed multi-forest environ-
ment. Then a live flight experiment was carried out in the woodland.

3.1. Algorithm Verification Using a Self-Constructed Multi-Forest Environment

Applying the full coverage algorithm described in Section 2.1 above in individual
forest areas in Figure A1 in the Appendix A, we can obtain the application route map as
shown in Figure 5. The black circles indicate the airport. We have zoomed in three times
on one of the areas, K, to make it easier to see the routes within the area. All other areas
are similar. Once the planning was complete, the coordinates of the entry and exit points
for each forest area were determined. The entry and exit point coordinates are shown in
Table A4 in the Appendix A.

Five two-layer intelligent algorithms (GA-GA, SA-GA, ACO-GA, PSO-GA, and GAAC
O-GA) were used to solve the scheduling task shown in Figure 5, and their performances
were compared. Each algorithm was run 20 times to reduce errors. The various algo-
rithm parameters were set as follows: in GAACO-GA, GA in the first layer: popula-
tion size N = 100; variation probability Pm = 0.005; the maximum number of iterations
MAXGEN = 500. ACO algorithm in the first layer: number of ant colonies m = 30, the max-
imum number of iterations NC_max = 500; pheromone volatility factor ρ = 0.1; pheromone
intensity Q = 100; pheromone heuristic factor α = 1; expected heuristic factor β = 5. GA
in the second layer: population size NIND = 50, crossover probability Pc2 = 0.9; variation
probability Pm2 = 0.005; the maximum number of iterations MAXGEN2 = 2000. In GA-GA,
the maximum number of iterations MAXGEN = 1000. In SA-GA, the main parameters of
the SA algorithm included a cooling rate of 0.9, initial temperature of 1000 ◦C, and final
temperature of 0.001 ◦C. In ACO-GA, it was the same as the GAACO-GA. In the PSO
algorithm of PSO-GA, the number of individuals was 200, and the number of evolutionary
generations was 500. The results obtained from the five algorithms are listed in Table 1.

The results show that the GAACO-GA provides a global route length of 5032.75 m,
which is 5.60%, 5.45%, 6.54%, and 4.07% shorter than that obtained from the GA-GA,
SA-GA, ACO-GA, and PSO-GA, respectively. The average optimal solution is also shorter
than the other four algorithms. The average search time is faster than that of the GA-GA,
GA-GA, ACO-GA, and PSO-GA.
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The dispatch routes solved by the five algorithms, and their corresponding operation
orders, are shown in Figure 6. The dispatch routes are shown as the thick blue solid line on
the left and the operation orders are shown as the thin blue solid line on the right.

Figure 5. Map showing multiple forest areas, the spray route, and the entry/exit points based on the
proposed algorithm.

Table 1. Comparison of the performance of the five algorithms.

Algorithm GA-GA SA-GA ACO-GA PSO-GA GAACO-GA

Optimal Solution (m) 5314.53 5307.18 5361.89 5237.72 5032.75
Average Optimal

Solution (m) 5667.99 5806.81 5505.26 5448.92 5254.29

Average Search Time (s) 16.88 25.12 7.86 15.71 7.82
Algorithm Robustness 216.74 229.34 181.14 161.11 153.85

Figure 6. Cont.
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Figure 6. The operation orders and dispatch routes obtained from five algorithms. (a) The dispatch
routes solved by GA-GA(5314.53m); (b) The operation orders corresponding to the dispatch routes
solved by GA-GA(6522.32m); (c) The dispatch routes solved by SA-GA (5307.18m); (d) The operation
orders corresponding to the dispatch routes solved by SA-GA(6508.33m); (e) The dispatch routes
solved by ACO-GA(5361.89m); (f) The operation orders corresponding to the dispatch routes solved
by ACO-GA(6479.91m); (g) The dispatch routes solved by PSO-GA(5237.72m); (h) The operation
orders corresponding to the dispatch routes solved by PSO-GA(6522.32m); (i) The dispatch routes
solved by GAACO-GA(5032.75314.53m); (j) The operation orders corresponding to the dispatch
routes solved by GAACO-GA(6909.83m).

3.2. Field Experiments

Field experiments were carried out to compare the performance of the proposed algo-
rithm with manual empirical methods under practical conditions. The test area was located
near Pigzui Mountain in Xuyi County, Huai’an City, Jiangsu Province. The combined area
of the five sites was 18.2 ha (Figure 7a). The latitude and longitude coordinates of the forest
areas are listed in Table A5. The coordinates of the aircraft take-off and landing point are
(118◦23′31′′, 32◦49′41′′), as shown in the red circle in Figure 7a.
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Figure 7. Comparison of the routes obtained from the proposed GAACO-GA algorithm and the
manual empirical method. (a) Five forest areas selected for spraying; (b) The planned route obtained
from the GAACO-GA algorithm; (c) The actual flight path based on the manual empirical method;
(d) The actual flight path based on the GAACO-GA algorithm.

The manual empirical method and the proposed algorithm were used to plan the
route. The results are shown in Figure 7. Figure 7b shows the planned route obtained
from the GAACO-GA algorithm, and the actual flight paths based on the manual empirical
method and the proposed algorithm are shown in Figure 7c,d, respectively. The manual
empirical method is typically used by companies to plan the route based on experience.
The route is approximated to achieve a consistent heading on the route and choose the
shortest route to reach the next patch. The route planning was conducted offline using
a Lenovo Zhaoyang K43c-80 business laptop, and the data were imported into the vari-
able application monitoring system. The laptop had an Intel Core i7-8550U processor,
1.8 + 2.0 GHz, 8 GB of RAM, and a 64-bit Win10 genuine system. Table 2 lists the results of
the two methods.

Table 2. Quantitative results obtained from the GAACO-GA algorithm and the manual empirical method for route planning.

Algorithm Length of Pesticide
Application Path (m)

Length of Dispatch
Route (m)

Number of
Turnarounds

Extra Coverage
Rate (%)

Fuel
Consumption (L)

Pesticide
Consumption (kg)

Actual flight path
based on the

manual empirical
method

12,560.294 1503.748 51 10.29% 8.57 125.6

Planned path
obtained from
GAACO-GA

9972.793 1086.66 40 7.94% — —

Actual flight path
based on

GAACO-GA
11,913.184 1286.065 40 8.73% 7.76 119.131

The results show that the length of the pesticide application path planned by the
GAACO-GA algorithm is 9972.793 m, and the dispatch route is 1086.66 m. The actual
pesticide application path based on this algorithm has a length of 11,913.184 m, and the
dispatch route is 1286.065 m, both of which are longer than the planned path. However, the
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number of turnarounds is 40 for the planned and actual flights. In summary, it seems more
meaningful to compare the actual flight paths obtained from the GAACO-GA algorithm
and the manual empirical method since external influencing factors are excluded. The
actual flight path based on the manual empirical method has a pesticide application path
of 12,560.294 m, a dispatch route of 1503.748 m, 51 turnarounds, an extra coverage rate
of 10.29%, fuel consumption of 8.57 L, and pesticide consumption of 125.6 kg. The actual
flight path based on the proposed algorithm is 5.43% shorter than that based on the manual
empirical method. The dispatch route length is 16.93% shorter, the number of turnarounds
was reduced by 11 times, and the extra coverage rate was reduced by 17.87%. Aviation fuel
consumption and pesticide consumption are reduced by 10.56% and 5.43%, respectively.

4. Discussion
4.1. Analysis of Pesticide Spraying Routes of a Single Forest Area

The pesticide spraying routes in the area planned according to the algorithm proposed
in this paper are shown in Figure 5. From Figure 5, almost all of the routes were planned
to start from the longest side of a single forest area, which resulted in fewer turnarounds.
There were triangles, quadrilaterals, and pentagons in the forest areas. Pesticide spray
routes in triangular forest areas inevitably produced many shorter single spray routes,
which was better in quadrilateral and pentagonal shapes with two parallel sides. It is
suggested that, where possible, when dividing large forest areas, the application area
should be divided into polygons with two parallel sides where possible, and it is better
to have longer parallel sides. By this way the routes were planned so that there fewer
turnarounds, and the individual routes were usually longer, which were more suitable for
helicopters to follow. The division of forest areas into triangles was strongly discouraged.
In Ref. [21], which are planned routes for UAVs, they contain a large number of shorter
single routes, with a large number of additional turnarounds, and the routes change in
height depending on the terrain. Obviously, such a route would be very difficult to track
for a helicopter flying at high speed. Therefore, it was not possible to apply the routes
planned by the UAV directly to the helicopter.

4.2. Analysis of Scheduling Algorithms for Multiple Forest Areas

Judging from Table 1, compared with the other four two-layer intelligence algorithms,
the results of the GAACO-GA algorithm solution have some advantages. Since offline plan-
ning was conducted, the average search time did not have a significant impact. The most
important metric was the scheduling route length. The reason for the better performance
of the GAACO-GA is that the results in the first layer contain both the shortest operation
order and a sufficient number of other feasible operation orders, which was the design
intent of the two-layer algorithm. The other four algorithms use a signal algorithm for the
set of operation orders, which do not work as well as GAACO.

The dispatch routes for the multiple forest areas solved by different algorithms are
shown in Figure 6. Judging from Figure 6, we find an interesting phenomenon. The length
of operation order path was not proportional to the length of the dispatch route. In other
words, the dispatch route corresponding to the shortest operation order may not be the
shortest, especially for a large number of forest areas.

An algorithm that solved a similar problem had been described in Ref. [19], which
was published in a top Chinese journal. In Ref. [19], the shortest sequence order is first
solved for and then the global scheduling path is after. The algorithm designed by this idea
will be compared with the algorithm proposed in this paper. It is obvious that the results of
solving with this approach will be consistent with Figure 6e,f. It is clear that the algorithm
in this paper is better.

4.3. Analysis of Field Experiment

The actual flights were carried out with a variable application monitoring system
developed by the team and operated by the same pilot. Judging Figure 7b,d and Table 2, the
actual pesticide application path and the dispatch routes are longer than the planned path.
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There are two main reasons. First, the proposed algorithm does not plan the turnaround
route; thus, its length was not included in the calculation of the application path. In the
actual flight, the application path included the length of the turnarounds. Second, the
planned pesticide application patch and dispatch route were straight lines. However, in
practice, the flight path was not perfectly straight due to operational factors, weather, and
wind. Thus, the flight path was slightly longer than the planned path. In a small area,
the deviation between the planned and actual flight paths was within acceptable limits.
However, in larger areas, this discrepancy should be considered and will be analyzed in a
further study.

Figure 7c shows the actual flight paths planned by the experienced pilot team accord-
ing to the empirical method, representing the highest level of the company. Figure 7d
shows the actual flight path based on the algorithm in this paper. In order to exclude the
influence of experimental factors, this paper focuses on comparing the differences in the
real flight paths. The algorithms in this paper have significantly fewer turnarounds on
the actual flight routes, less excess coverage, shorter application and dispatch routes, and
reduced aviation fuel consumption and pesticide consumption. It can be inferred that the
algorithm proposed in this paper has a significant advantage over the manual empirical
method for planning pesticide application routes.

4.4. Application Prospects and Limitations

When the number of forest areas increases and the size of the forest area increases, it
becomes much more difficult to delineate a reasonable pesticide spray route by manual
empirical regulations. However, it is easy to solve these problems with algorithms in this
paper that are independent of the size and the number of forest areas. We are convinced that
the algorithms in this paper have good prospects for application to the difficult problems
of forest pest and disease control.

Nevertheless, the route planning in this paper, which is carried out on a two-dimensional
plane, is mainly aimed at operational forest areas that are plantations with little change
in elevation. The route planning was mainly suitable for helicopters that operate at high
speeds. In the case of ecological forest areas containing large slopes, such as the Dabie
Mountains, further route planning in three dimensions will need to be considered, at
which point both the route planning method and the route monitoring system will need
to be improved and designed. In addition, the airport was pre-selected in this paper. The
algorithm cannot be used to plan an optimal airport or estimate fuel consumption and
pesticide consumption. Moreover, the division of large forest areas into smaller patches
based on no-fly zones such as fishponds, and the utilization of multiple aircraft types
are worthy of further in-depth studies. Future route planning will therefore need to take
further account of helicopter speed and energy consumption characteristics to further meet
the needs of smart forestry management.

5. Conclusions

At present, China has a very large forest area. The use of helicopters for pesticide
application to control pests and diseases is one of the most important methods. However,
route planning of pesticide application in China still relies mainly on the pilot’s flight
experience and there is no strict scientific route planning method so far. Therefore, this
paper investigates the route planning method for helicopter pesticide application.

When the helicopter is conducting spraying operations in multiple forest areas, the
routes are divided into two parts: pesticide spraying routes for individual forest areas
and dispatch routes between multiple forest areas. First, the shorter spraying route with
fewer turnarounds for individual forest areas was determined. Then a two-layer intelligent
algorithm was designed to determine the dispatch route between multiple forest areas,
which is referred to as GAACO-GA. A pesticide spraying experiment was conducted with
a helicopter. It was verified that the algorithm in this paper plans the path and outperforms
the manual empirical method. It was found that the length of actual pesticide application



Forests 2021, 12, 1658 16 of 20

routes and the global dispatch route, the number of turnarounds, the extra coverage rate,
the aviation fuel consumption, and the pesticide consumption were all reduced to a certain
degree, compared with the manual empirical method. We also found that the dispatch
route corresponding to the shortest operation order may not be the shortest, which we
believe can provide guidance for the future scheduling algorithm developers.

We believe that the method in this paper can provide a technical reference for the
world’s helicopter pest control route planning. In future, to meet the needs of smart forestry
management, it will be better to further consider the reasonable division of forest areas,
helicopter speed and energy consumption characteristics when planning the routes for
helicopters.
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Appendix A

Table A1. Parameters of the Thunderbird R44 Helicopter.

Helicopter Fuselage
Length (m)

Helicopter Wingspan
Length (m)

Maximum Take-Off
Weight (kg)

Cruising Speed
(km·h−1)

Rout Length
(km)

Endurance
(h)

9 10.1 1134 204 404 3.5

Table A2. Spraying operation parameters.

Operating
Height (m)

Operating Speed
(km·h−1)

Amount of
Pesticide Applied

Per Hectare
(L·hm−2)

Spraying
Width (m)

Maximum
Spray Time (h)

Pesticide
Weight (kg)

Pesticide
Density (g·cm−3)

10 100 5 10 2 300 1
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Table A3. Coordinates of the vertices of each area.

Area P0 P1 P2 P3 P4 P5

A (50, 700) (50, 867) (250, 867) (250, 700) — —
B (400, 700) (477.46, 922) (700, 700) — — —
C (515, 1000) (515, 1180) (700, 1180) (700, 1000) — —
D (760.8, 1365) (815.1, 1522.9) (1004, 1458) (950, 1300) — —
E (1188.3, 1299.1) (1425.6, 1411.7) (1440, 1150) — — —
F (915, 1109) (938, 1189) (1322.7, 1079.8) (1300, 1000) — —
G (1550, 1150) (1648.6, 1298) (1793.4, 1298) (1833, 1251) (1800, 1150) —
H (800, 800) (899, 948) (1099, 948) (1050, 800) — —
I (1121.5, 778.5) (1333.6, 990.6) (1412, 912) (1200, 700) — —
J (1370, 755) (1584, 977) (1670, 755) — — —
K (1817, 650) (1817, 900) (1950, 900) (1950, 650) — —
L (250, 395) (250, 506) (550, 506) (550, 395) — —
M (606.8, 400) (753.4, 617) (900, 400) — — —
N (945, 345) (945, 428) (1345, 428) (1345, 345) — —
O (1396.6, 434) (1486.4, 570) (1684, 539.4) (1643.7, 395.9) — —
P (1800, 300) (1800, 433) (2050, 433) (2050, 300) — —
Q (429.5, 239.2) (596.9, 301.4) (759.6, 185.1) (632.9, 93.8) — —
R (900, 150) (968.2, 298) (1168.2, 298) (1150, 150) — —

Airport (1100, 600)

Figure A1. Multi-forest scheduling task map.
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Table A4. Coordinates of entry/exit points of eighteen forest areas (Unit: m).

Area Abscissa Value
of Point 1

Ordinate Value
of Point 1

Abscissa Value
of Point 2

Ordinate Value
of Point 2

Abscissa Value
of Midpoint

Ordinate Value
of Midpoint

A 45.00 705.00 255.00 865.00 150.00 785.00
B 396.45 705.00 469.73 915.00 433.09 810.00
C 510.00 1105.00 510.00 1175.00 510.00 1140.00
D 757.74 1371.30 1008.32 1452.43 883.03 1411.87
E 1183.45 1309.49 1436.72 1391.00 1310.09 1350.25
F 911.76 1115.42 930.88 1182.76 921.32 1149.09
G 1547.32 1155.00 1802.52 1295.00 1674.92 1225.00
H 797.32 805.00 1102.91 945.00 950.12 875.00
I 1192.93 700.00 1341.42 989.91 1267.18 844.96
J 1371.93 750.00 1669.37 770.05 1520.65 760.03
K 1822.00 905.00 1942.00 645.00 1882.00 775.00
L 245.00 400.00 555.00 500.00 400.00 450.00
M 598.07 405.00 773.56 605.00 685.82 505.00
N 940.00 350.00 940.00 420.00 940.00 385.00
O 1394.14 439.26 1688.26 535.77 1541.20 487.52
P 1795.00 305.00 2055.00 425.00 1925.00 365.00
Q 430.22 244.80 761.33 180.22 595.78 212.51
R 896.80 155.00 1172.88 295.00 1034.84 225.00

Airport 1100.00 600.00 1100.00 600.00 1100.00 600.00

Table A5. Longitude and latitude coordinates of the five forest areas in the experiment.

Area P1 P2 P3 P4 P5

A (118◦23′03′′, 32◦49′50′′) (118◦23′09′′, 32◦49′45′′) (118◦23′17′′, 32◦49′47′′) (118◦23′11′′, 32◦49′52′′) —
B (118◦23′13′′, 32◦49′53′′) (118◦23′19′′, 32◦49′46′′) (118◦23′29′′, 32◦49′48′′) (118◦23′25′′, 32◦49′53′′) —
C (118◦23′27′′, 32◦49′47′′) (118◦23′29′′, 32◦49′43′′) (118◦23′37′′, 32◦49′46′′) (118◦23′36′′, 32◦49′52′′) —
D (118◦23′37′′, 32◦49′51′′) (118◦23′39′′, 32◦49′48′′) (118◦23′45′′, 32◦49′50′′) (118◦23′43′′, 32◦49′53′′) —
E (118◦23′20′′, 32◦49′42′′) (118◦23′21′′, 32◦49′39′′) (118◦23′26′′, 32◦49′35′′) (118◦23′30′′, 32◦49′40′′) (118◦23′25′′, 32◦49′43′′)
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