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Abstract: In this study, six satellite-based terrestrial latent heat flux (LE) products were evaluated
in the vegetation dominated Haihe River basin of North China. These LE products include Global
Land Surface Satellite (GLASS) LE product, FLUXCOM LE product, Penman-Monteith-Leuning
V2 (PML_V2) LE product, Global Land Evaporation Amsterdam Model datasets (GLEAM) LE
product, Breathing Earth System Simulator (BESS) LE product, and Moderate Resolution Imaging
Spectroradiometer (MODIS) (MOD16) LE product. Eddy covariance (EC) data collected from six flux
tower sites and water balance method derived evapotranspiration (WBET) were used to evaluate
these LE products at site and basin scales. The results indicated that all six LE products were able
to capture the seasonal cycle of LE in comparison to EC observations. At site scale, GLASS LE
product showed the highest coefficients of determination (R?) (0.58, p < 0.01) and lowest root mean
square error (RMSE) (28.2 W/m?), followed by FLUXCOM and PML products. At basin scale, the
LE estimates from GLASS product provided comparable performance (R? = 0.79, RMSE = 18.8 mm)
against WBET, compared with other LE products. Additionally, there was similar spatiotemporal
variability of estimated LE from the six LE products. This study provides a vital basis for choosing
LE datasets to assess regional water budget.

Keywords: satellite; terrestrial latent heat flux; Haihe River basin; eddy covariance; water balance
method

1. Introduction

The terrestrial latent heat flux (LE) is the heat exchange of water between the underly-
ing surface and the atmosphere and mainly includes the evaporation of surface soil and
water bodies, vegetation vaporization, and interception evaporation of plant canopy [1,2].
As the largest single source of heat in the atmosphere [3], LE is the surface evaporation
energy source accounting for two-thirds of the annual global precipitation, which is of great
significance in thermodynamic and climate dynamics [4,5]. Therefore, accurate knowledge
of LE is vital to quantify the interaction between the land surface and atmosphere and
guide surface water resources management [6,7]. The Haihe River basin (HRB), with
more than 75% vegetation coverage, is one of the seven major basins of China and its

Forests 2021, 12, 1632. https:/ /doi.org/10.3390/£12121632

https:/ /www.mdpi.com/journal/forests


https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0003-3803-8170
https://orcid.org/0000-0003-3350-4566
https://orcid.org/0000-0001-7564-6509
https://orcid.org/0000-0001-5000-0779
https://doi.org/10.3390/f12121632
https://doi.org/10.3390/f12121632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12121632
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f12121632?type=check_update&version=1

Forests 2021, 12, 1632

20f 17

internal Haihe River has brought enormous water vitality to agricultures and industries
through agricultural irrigation, port transportation and fishery breeding. Although the
HRB accounts for only 1.5% of the annual average water resources, it has an urgent need
to meet the water requirements of 15% of population in China, which makes it a major
water shortage region in Asia [8,9]. To understand the spatiotemporal variations of water
consumption and improve water resource management in the HRB, the robust access of LE
has become the focus of attention of various institutions and researchers, which would be
helpful to maintain the healthy and sustainable development of regional economy [10].

Satellite remote sensing can obtain continuous spatial surface information in very
short period and has played an increasingly important role in LE estimation at the re-
gional scale [8,11,12]. In recent decades, with the development of satellite remote sensing
technique for monitoring surface LE-related variables, there are many satellite-based LE
models available including empirical regression models and physical models. The empiri-
cal regression methods are simple and operable, and have been widely applied to estimate
regional and global LE [13-15]. Machine learning (ML) method has the excellent ability in
prediction and has been widely used to generate LE products (i.e., WB-MTE [16]). Similarly,
Bodesheim et al. used random forest methods to produce a global set of LE products
and Jung et al. applied nine machine learning (9ML) models to develop FLUXCOM LE
products [17,18]. Physical LE models include the surface energy balance models [19],
the Penman-Monteith model [20,21], the Priestley-Taylor model [22,23], and temperature-
vegetation index feature spatial model [24]. These physical models simulate the physical
process of terrestrial LE and can be considered as the reliable methods to generate global
LE products, such as the MOD16 LE product from the Moderate-resolution Imaging Spec-
troradiometer (MODIS) data released by National Aeronautics and Space Administration
(NASA) [20,25], the Global Land Evapotranspiration Amsterdam Model (GLEAM) LE
product [26,27], the Breathing Earth System Simulator (BESS) LE product [28,29], the
Penman-Monteith-Leuning (PML)_V2 LE product [30], and the Global Land Surface Satel-
lite (GLASS) LE product [31,32].

Although many satellite-based LE products show relative consistencies in temporal
and spatial patterns, there are still substantial differences in inter-comparison and valida-
tion against in situ flux networks [33]. The study from the Global Soil Wetness Project-2
(GSWP-2) concluded that there were large discrepancies among 15 LE products and the
differences of mean annual global LE were close to 50% [34]. Similarly, a comparison of
eight satellite-based ET models over China showed that the mean annual ET of them varied
from 535 to 852 mm year ! [14]. Shang et al. also found substantial differences between
five process-based and empirical /semi-empirical LE algorithms against ground based
LE measurements over Europe [35]. The differences among these global or quasi-global
LE products will be more obvious at regional or river basin scale [32,36]. As one of the
inland river basins in northern China, the Heihe River basin also show large discrepan-
cies in annual averaged ET from nine models, ranging from 80 to 229 mm year ! [37].
Therefore, it is urgent to comprehensively assess the existing satellite-derived terrestrial
LE products in Heihe River basin to inform their applications in local watershed water
resources management.

Recently, the establishment of long-term EC flux tower networks (e.g., FLUXNET) has
substantially advanced the evaluation of terrestrial LE. However, EC in situ measurements
suffer from the energy imbalance problem, which leads to inaccuracies in the interpreta-
tions [38]. For ground-based validation, the scaling issue is also an important problem. The
spatial scale mismatch between EC measurement coverage and satellite pixels may cause
great uncertainties [37]. Furthermore, the observation periods of most EC sites are less than
one decade, which is not conducive to the long-term evaluation [39]. Alternatively, the wa-
ter balance method derived ET (WBET) can be used as a long-term LE evaluation method
at basin scale [40]. WBET usually assumes that the change of total water storage (TWSC) is
negligible during multi-years, which can be used as an indicator of long-term inter-annual
change of LE at basin scale [41]. One the other hand, the TWSC from gravity recovery and
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Climate Experiment (GRACE) mission combined with water balance equation [42] can
be used to calculate monthly LE and evapotranspiration (ET), which also facilitates the
evaluation of monthly LE changes at basin scale. Therefore, there is a scope for multi-scale
terrestrial LE evaluation by incorporating ground-based measurements and water balance
method to improve the LE estimation in Haihe River Basin.

In this study, to understand the differences and uncertainties of multiple satellite-
based LE products in Haihe River Basin, we evaluated six terrestrial LE products, including
five process-based algorithms (PML-V2, BESS, GLEAM, MOD16, and GLASS) and a
machine learning method (FLUXCOM). The objectives of this study includes: (1) To
validate the accuracies of six LE products using EC flux tower observations; (2) To evaluate
the performances of these LE products using water budget balance method at basin scale;
(3) To compare the spatial distribution differences among these products by mapping the
mean seasonal and annual terrestrial LE from 2013 to 2015 in the Haihe River basin of
North China.

2. Materials and Methods
2.1. Study Area and Datasets
2.1.1. Study Area

The Haihe River basin (HRB) (112.1°-119.9° E, 35.0°—42.7° N) is located in the North
China and has a total area of about 318,200 km?, accounting for 3.3% of the total area of
China. The 60% of study region are hilly and plateau areas, located at the north and west
of the HRB. The remaining 40% are plain areas (Figure 1). The vegetation coverage in the
study area is approximately 77%. The east of the basin is the Bohai Sea, the west of the
basin is the Taihang Mountains, the south of the basin is the Yellow River, and the north
of the basin is the Mongolian Plateau. The HRB is located in the transition area between
semi-humid and semi-arid with an average annual rainfall of about 539 mm. The average
annual land surface evaporation in this basin is around 470 mm and the water surface
evaporation is 1100 mm. The average annual relative humidity ranges from 50% to 70%,
with a temperate East Asian monsoon climate [43].
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Figure 1. Geographical location and topographic map of the Haihe River basin (HRB) and distribution
of the 6 flux tower sites.

2.1.2. Eddy Covariance Flux Tower Observations

We used the eddy-covariance (EC) observations and the corresponding meteorological
data collected from six flux tower sites to evaluate six LE products. Table 1 lists the
flux tower sites information in detail. The data for Daxingl (DX1) site was provided by
FLUXNET Lathuile network, the data for Yucheng (YC) site was provided by Chinaflux
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network [44], and the data for Dxing2 (DX2), Guantao (GT), Huailai (HL), and Miyun (MY)
sites was provided by the National Tibetan Plateau Data Center (TPDC) [45—49]. These sites
cover two global land-surface biomes: Mixed forest (MF) and crop land (CRO). The flux
towers used the eddy-covariance (EC) system for measurement of the half-hour latent heat
flux (LE), sensible heat flux (H), surface net radiation (Rn) and soil heat flux (G). We linearly
aggregated the surface flux from half-hour into daily mean values and then aggregated
daily values into 8-day mean values. We removed zero values and invalid values when the
amount of missing data exceeds 20% of the responsible half-hourly measurements. The
problem of unclosed energy in the flux towers data were reported in some studies, and we
used the method of Twine et al. [50] to correct LE values of six flux towers.

Table 1. Summary of the 6 flux tower sites used in this study, including the site name, location, land cover types, elevation

and period.

Site Location Land Cover Types Elevation (m) Period
Daxingl (DX1) 39.53° N, 116.25° E Mixed forest 30 2005-2006
Daxing?2 (DX2) 39.62° N, 116.43° E winter wheat/maize and vegetables 20 2008-2010
Guantao (GT) 36.52° N, 115.13° E winter wheat/maize and cotton 30 2008-2010

Huailai (HL) 40.35° N, 115.79° E maize 480 2013-2014
Miyun (MY) 40.63° N, 117.32° E orchard and maize 350 2008-2010
Yucheng (YC) 36.83° N, 116.57° E Warmer temperate dry farming cropland 28 2002-2007

2.1.3. Satellite-Based Latent Heat Flux Products

We evaluated six satellite-based products during 2002-2015 in this study, including
Global Land Surface Satellite (GLASS) LE product, FLUXCOM LE product, Penman-
Monteith-Leuning V2 (PML_V2) LE product, Global Land Evaporation Amsterdam Model
datasets (GLEAM) LE product, Breathing Earth System Simulator (BESS) LE product,
and Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD16) LE product.
To evaluate the accuracy of these products, we resampled spatially these products into
0.05 degree using bilinear method and aggregated daily LE into 8-day mean values. Table 2
summarized the detailed information of these LE products.

1.  GLASS LE product

GLASS LE product version 4.0 is a merged LE product using Bayesian model averaging
(BMA) method to merge five process-based algorithms [32]. The five algorithms include
the MOD16 algorithm, the revised remote-sensing-based Penman-Monteith LE algorithm,
the Priestley-Taylor-based LE algorithm, the modified satellite-based Priestley-Taylor LE
algorithm and the semi-empirical Penman LE algorithm. The forcing data include the
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2)
meteorological datasets provided by Global Modeling and Assimilation Office (GMAO),
and GLASS other products [albedo, LAI, Normalized Difference Vegetation Index (NDVI),
and fraction of absorbed photosynthetically active radiation (FPAR)] from Advanced Very
High Resolution Radiometer (AVHRR) data. The GLASS LE product version 4.0 used in
our study, with a 0.05° spatial resolution and 8-day temporal resolution.

2. FLUXCOM LE product

The FLUXCOM LE product with a 0.0833° spatial resolution and 8-day temporal reso-
lution was produced from machine learning methods driven by remote sensing data [18].
This LE product was estimated exclusively from MODIS satellite data, including daytime
and nighttime land surface temperature, land cover, FPAR and bidirectional reflectance
distribution function (BRDF)-corrected reflectances.

3. PML_V2 LE product

PML_V2 (PML version 2.0) LE product was produced based on a coupled diagnostic
biophysical model. The input datasets include the Global Land Data Assimilation System
(GLDAS) meteorological data and the LAI, albedo, and emissivity from MODIS. The
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PML_V2 datasets provide gross primary product (GPP), vegetation transpiration (Ec),
soil evaporation (Es), vaporization of intercepted rainfall (Ei) and ET_water [30,51]. The
PML_V2 LE product used in this study refers to the sum of the Es, Ei, and Ec, and it has a
temporal resolution of 8 days and a spatial resolution of 0.05°.

4.  GLEAM LE product

The GLEAM LE product was calculated based on the Priestley and Taylor equation,
the different components of land evapotranspiration was estimated separately, including
transpiration, bare-soil evaporation, interception loss, open-water evaporation and subli-
mation [27]. The GLEAM LE product version 3.a used in our study is based on satellite
data (soil moisture, vegetation optical depth and snow-water equivalent), reanalysis data
(ERA air temperature and net radiation), and a multi-source precipitation product [26].
The GLEAM LE product has a daily temporal resolution and 0.25° spatial resolution.

5. BESS LE product

BESS LE product was produced using a biophysical model that coupled the atmo-
spheric radiative transfer, canopy radiative transfer, canopy photosynthesis, maximum
carboxylation rate, two-leaf canopy conductance and temperature, and evapotranspira-
tion [28,29]. The input data of the LE product includes MODIS atmospheric and land
products and some auxiliary data. BESS LE product has the same projection and spatial
resolution as MODIS data. We obtained BESS LE data with a temporal resolution of 8-day
and a spatial resolution of 0.01°.

6. MODIS LE product

MODIS LE (MOD16A2) product was generated based on an improved Penman—
Monteith (PM) algorithm by Mu et al. [20]. The model input datasets include the land
cover, FPAR, LAI and albedo from MODIS data and the meteorological data from GMAO-
MERRA-2. The MOD16A2 product used in this study has a temporal resolution of 8 days
and a spatial resolution of 500 m.

Table 2. Detailed information of LE products used in this study.

Products Ressl():l‘:;i)n I;l"ee sr:)lllil (Ezln Study Domain Time Span References
GLASS 0.05° 8-day Global 1982-2018 Yao et al., 2014
FLUXCOM 0.0833° 8-day Global 2000-2015 Jung et al., 2019
PML_V2 0.05° 8-day Global 2002-2019 Zhang et al., 2019
GLEAM 0.25° daily Global 1980-2020 Martens et al., 2017
BESS 0.01° 8-day Global 2000-2015 Jiang and Ryu, 2016
MODIS 500 m 8-day Global 2001-2021 Mu et al., 2011

2.1.4. Auxiliary Data

The monthly gridded precipitation dataset provided by National Tibetan Plateau
Data Center was used in this study [52]. The dataset was generated based on the Climatic
Research Unit (CRU) dataset and the climatology dataset of WorldClim. The precipitation
data has a spatial resolution of 0.0083333° (~1 km). Validation results from the 496 weather
stations across China showed that this product was reliable in China [53,54].

We also used the monthly runoff dataset provided by the Global Land Data Assimilation
System (GLDAS) in this study. We choose the GLDAS-2.1 dataset (GLDAS_NOAH025_M
2.1) [55], which has a temporal resolution of monthly and a spatial resolution of 0.25°. To
evaluate six products, we resampled spatially all gridded dataset into 0.05 degree using
bilinear method.
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2.2. Methods
2.2.1. Water Budget Balance Method

The EC site-based validation method directly has been widely used to validate LE
products. However, understanding the uncertainty in the LE data and other components of
the water balance model at the basin scale is very important because inaccuracies in input
data can affect model accuracy [56]. The water budget balance method (WBET) has been
extensively used to evaluate large-scale LE products in some studies [56,57]. Therefore, we
used the WBET to evaluate six LE products at the basin scale. The basic equation of total
ET can be calculated with water balance method within a river basin is as follow,

WBET = P — R — TWSC 1)

where WBET is the evapotranspiration (ET) derived by water balance method and can be
calculated using LE/A. A is the latent heat of evaporation. P and R are the precipitation
and runoff, respectively. TWSC is the total water storage change. Some studies show that
when the data time span is larger than 10 years, the TWSC can be neglected [57]. Thus, we
used the below equation to evaluate six satellite-based LE products in this study.

WBET =P —R @)

2.2.2. Evaluation Methods

We used three statistical metrics to evaluate six satellite-based LE products by com-
paring satellite-based LE estimates with flux tower observations and WBET in our study.
The metrics include the coefficient of determination (R?), root mean square error (RMSE)
and bias. The mathematical equations of the three indicators are as follows,

?:1 (Xi — Y) (Yi — Y) ]2

R* = — — €)

VEL (X - X) (Y - )
RMSE = \/ % Yo (X - Yy)? @)
Bias = W ®)

where X; are the observed values and Y; are the estimated values, X and Y are the average
of X; and Y;, respectively, and 7 is the total number of the samples.

Taylor diagrams were also used to evaluate six satellite-based LE products [58]. A
Taylor diagram is a polar-style graph and it has a standard deviation (SD) between the
estimations and the observations, a correlation coefficient (R) and a centered root-mean-
square-difference (RMSD). Here, SD refers to the radial distance from the origin, R is
reflected by the cosine of the azimuth angle, and RMSD is the radial distance from the
observed point.

3. Results
3.1. LE Validation with Flux Tower Observations

Figure 2 shows scatterplots of the observed LE and estimated LE derived from six LE
products at six different sites. One notices that for different sites, the R? of the observed LE
versus the estimated LE from six products varied from 0.19 to 0.93 at a 99% confidence level,
the RMSE varied from 12.6 W/m? to 51.4 W/m?, and the bias varied from —40.3 W/m?
to 18.8 W/m?2, with an exception of MODIS LE product. Among them, GLASS LE had
the highest R? and lowest RMSE in DX1, GT and MY, FLUXCOM LE had the highest R?
and lowest RMSE in DX2. In contrast, MODIS LE had the lowest R? and highest RMSE
in DX1, DX2, GT and MY. Moreover, all products underestimated LE in DX1, X2, GT and
MY and overestimated LE in YC, except for MODIS. It is clear that MODIS product had
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a negative bias over six sites compared with observed LE, which indicates that MODIS
product systematically underestimated LE in the Haihe River basin.
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Figure 2. Scatterplots of the observed LE and estimated LE derived from six LE products at six different sites.

Figure 3 shows the scatterplots of the observed LE versus the estimated LE from six
products at all sites. For all six sites, GLASS LE had the highest R? of 0.58 (p <0.01) and
lowest RMSE of 28.2 W/m?, followed by FLUXCOM LE with R? of 0.54 (p < 0.01) and
RMSE of 30.3 W/m?. In contrast, BESS and MODIS products significant underestimated
LE, with a bias of —10.7 W/m?2 and —17.6 W/m?Z, respectively.



Forests 2021, 12, 1632

8of 17

GLASS LE (W/m?)

GLEAM LE (W/m2)

250

250

N
a
o

2=0.58 R?=0.54 R?=0.49
200 RMSE=28.2W/m? :\E 200+ RMSE=30.3W/m? 200+ RMSE=30.8W/m?
Bias=4.6W/m? = Bias=5.2W/m? “E Bias=1.1W/m?
150 % 5 150+ 4 S 150+ . .
o o 3 ':' = DU 07 Sy = R ¥e *
100} oo BRI e SREINS w N 7 100} | “;{". Site s ¥
Syt £ ¢ S| At © s N 34
o ] 5 [ 4T TP SRR 3 LT 18
. g% o =] e © o e o
50 e 50 a% 9, & 50 !'. e
’o‘t . r’” ] "q S‘ %
L)
o IS ' : : 0 : ' : s ‘ :
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Observed LE (W/m?) Observed LE (W/m?) Observed LE (W/m?)
250 250 250
2=0.49 R?=0.31 R?=0.26
200} RMSE=30.1W/m? 200+ RMSE=37.2W/m? 200} RMSE=40.7W/m?
Bias=-3.9W/m? E Bias=-10.7W/m? g Bias=-17.6W/m?
150 = 2 150}
2 = . .
. 5 = . < . . c.'.
100} * e <L 2 %’100- 8,8 s
K % P :"‘ = o ‘.. .. - .
: Sobee, M s 1 :‘ ---o'r-.-
503 ARRY * N - 50 ‘PL o ie
N . 30, 25 ¢
4 /o‘ . . ) o o X . ) : go vo o}l' ) .
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Observed LE (W/m?) Observed LE (W/m?) Observed LE (W/m?)

Figure 3. Scatterplots of the observed LE versus the estimated LE from six products at all sites.

Figure 4 presents the Taylor diagrams of six products with observed LE over mixed
forests (MF) and croplands (CRO) that cover all six flux tower sites. All LE products
except MODIS closed well to the EC observations in MF sites with RMSD values less
than 18.0 W/m? and R values higher than 0.86, while great differences were found over
CRO sites. For individual product, GLASS LE product showed better agreement with
EC observations in MF and CRO sites with the lower RMSD values of 13.2 W/m? and
23.1 W/m?, and highest R values of 0.93 and 0.84 respectively, followed by FLUXCOM,
PML and GLEAM. In contrast, MODIS LE product had the largest RMSD of 24.1 W/m? and
33.8 W/m?, the lowest R of 0.72 and 0.56 over MF and CRO, respectively. The performance
of PML and FLUXCOM LE were similar for two land cover types.
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Figure 4. Taylor diagrams for LE observations and LE estimates from six products at both MF and
CRO sites.

Figure 5 illustrates the multi-year average seasonal cycles from six LE productions
across six sites. Generally, LE derived from all products was comparable in seasonal pattern
and magnitude for all sites. GLASS LE product captured LE seasonal variances well across
most sites. However, no one product captures the LE variation in summer at HL site. The
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seasonal variations curve of MODIS LE and FLUXCOM LE products were similar at DX1,
DX2 and MY site. MODIS LE product was lower than observed values at DX1, DX2, MY
and YC sites. The observed dual peaks of seasonal LE variation curve at GT site were only
captured by GLASS and MODIS LE products. However, MODIS LE product tended to
underestimate LE for most sites. Overall, the GLASS LE product has the best performance
in the Haihe River basin, followed by FLUXCOM LE product.
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Figure 5. Seasonal cycle of the estimated LE derived from six products at six sites.

3.2. ET Evaluation with Water Balance Method

The WBET was used as the reference benchmark to evaluate the monthly ET calcualted
from each satellite-based LE products at the basin scale. The time span of this study was
14 years (2002-2015). Figure 6 presents the comparsion of the calcualted ET derived from
six LE products with WBET over the Haihe River basin. According to our statistical analysis,
R? and RMSE of the estimated monthly ET from six satellite-based LE products versus
WBET varied from 0.76 to 0.85 with 99% confidence and 16.1 to 20.8 mm, respectively.
Among six LE products, the ET estimates from GLASS LE product showed comparable
performance (R? = 0.79, RMSE = 18.8 mm) with ET estimates from other LE products,
though BESS had the highest R? of 0.85 (p < 0.01) and the smallest RMSE of 16.1 mm, and
FLUXCOM provided the lowest R? of 0.76 and the largest RMSE of 20.1 mm against WBET.
Therefore, GLASS and other five LE products were validated to capture the variability of
ET at basin scale.
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Figure 6. Comparison of the estimated monthly ET from six products and the corresponding WBET.

The Taylor diagrams for annual WBET and ET estimates from the individual products
for the all EC flux sites indicated that GLASS and other five LE products had the ability
to simulate the annual ET variances at basin scale (Figure 7). Among them, BESS had the
highest R value of 0.92 and the lowest RMSD of 31.7 mm, followed by GLASS product with
a R of 0.89 and a RMSD of 34.2 mm. The R for the other four products varied from 0.87 to
0.92, and the RMSD varied from 34.2 to 41.2 mm. Overall, although the six satellite-derived
LE products showed little discrepancies against WBET, BESS and GLASS LE products
provided the most accurate ET estimates across the Haihe River Basin.
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3.3. Spatial Distribution of LE in the Haihe River Basin of North China

Figure 8 shows the comparison of multiyear (2013-2015) mean seasonality of LE
estimates in Haihe River basin of China from GLASS, FLUXCOM, PML, GLEAM, BESS
and MODIS LE products. LE showed large spatial variability over the whole area and
strong seasonality according to the climate conditions and there was similar spatiotemporal
variability of estimated terrestrial LE from the six LE products. In the spring (MAM), the
estimated terrestrial LE values in the HRB ranged from 20 to 60 W/m? with a rapid rising
in temperature. LE values in the southeast area were higher than that in the northern
and northwestern area. In the summer (JJA), LE gradually increased relative to spring
and reached the peak with higher temperatures and vegetation cover. The estimated
terrestrial LE was mainly distributed in the range of 60 to 100 W/m?, and the variability in
the spatial distribution were similar to spring. During fall months (SON), LE decreased
significantly relative to summer due to dropped temperature and reduced vegetation cover.
The estimated terrestrial LE were mainly distributed in the range of 20 to 40 W/ m?, and the
variability in the spatial distribution decreased relative to spring and summer. In the winter
(DJF), the LE values were lowest and were obviously lower than that in the other seasons
due to the low temperature and more snow. The estimated terrestrial LE values were below
20 W/m? in winter months and the spatial patterns of LE were similar to fall. However,
for different satellite LE products, they exhibit an irregular pattern for the same seasons.
This may be attributed to the different spatial resolutions, different model structures and
different forcing inputs [36].
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Figure 8. Multiyear (2013-2015) mean seasonality of LE in Haihe River basin of China. MAM: March, April and May; JJA:
June, July and August; SON: September, October and November; DJF: December, January and February.

To investigate the differences of the six satellite-based LE products, we further mapped
spatial differences in the average annual terrestrial LE (2013-2015) between GLASS LE
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product and other five LE products (Figure 9). One notices that the differences of the
average annual terrestrial LE among the GLASS, FLUXCOM and PML LE products were
less than 10 W/m? for most regions. In contrast, the differences of the average annual
terrestrial LE among the GLASS, GLEAM, BESS and MODIS LE products were 10-20 W/ m?2
for most regions. Overall, in comparison to GLASS LE product, GLEAM, BESS and MODIS
LE products yielded lower average annual terrestrial LE across almost HRB areas.
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Figure 9. Spatial differences in the average annual terrestrial LE (2013-2015) between GLASS LE and other five LE products.

4. Discussion
4.1. Errors in Satellite-Based LE Products

The satellite-based LE models, the simplified equations of the physical process, are
widely developed and used to understand the process of evaporation and transpiration.
However, different models’ structure may lead to considerable uncertainties in LE estima-
tions. In our study, six satellite-based LE products were generated with different strategies
including empirical methods (e.g., machine learning method) and process-based methods.
Validation results illustrated that both GLASS and FLUXCOM LE products based on the
empirical methods outperformed other four process-based LE products (PML, GLEAM,
BESS and MODIS) at site scale. This may be attributed to the fact that both GLASS and
FLUXCOM LE products make full use of EC observations (more than 200 sites) distributed
around the world [18,32]. GLASS LE product integrates multiple single LE process-based
models by BMA method and FLUXCOM LE product uses the machine learning methods
to estimate LE [18,32]. GLEAM LE product applies data assimilation method into Priestley-
Taylor model to capture accurate soil moisture evaporation, contributing to more accurate
LE [26]. PML LE product takes advantages of EC data from 95 widely-distributed sites to
calibrate model, leading to better performance that BESS and MODIS LE products at site
scale [30]. On the other hand, based on our water balance validation, BESS LE product has
the best performance among all six products. This may be caused by the fact that BESS LE
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product uses a carbon-water-coupled module, which includes better physical mechanism
with higher accuracy at basin scale [28]. MODIS LE product improves estimates of LE
based on Penman-Monteith equation at global or regional scale [20,59].

The model input data, such as satellite and meteorological data, also has a great
influence on the accuracies of LE products. Previous substantial studies has reported
that vegetation parameters derived from satellite data had approximately 15-30% relative
error [5,60]. And the classification accuracy of the land cover data from remote sensing data
is general less than 78% [61]. More importantly, error in surface net radiation (Rn) data can
introduce large biases into LE estimation. The Rn has a large influence on the partition of
LE and H that is the energy source of LE [60]. Meanwhile, Rn is susceptible to the influence
of clouds sky, leading to the overestimation of Rn [62]. Moreover, the meteorological data
with low spatial resolution has large errors compared with ground measurement [63,64].
Badgley et al. has found that there is no most accurate meteorological reanalysis data for
estimating land surface energy budgets [65]. Therefore, the errors in the input data may
cause large errors in LE products.

4.2. Uncertainties in Reference Data and Evaluation Methods

Although we utilized the EC observation as reference data to validate six satellite-
based LE products at site scale, the large uncertainties still exist in the LE evaluation
framework. First, the EC observations errors and energy imbalance. According to pre-
vious studies, ground-observations from the EC sites have an error of approximately
10-30% [5,25]. The typical EC observations errors may lead to uncertainties for evaluating
LE products. Importantly, EC method suffers energy imbalance and Foken reported that
EC method cannot observe large eddies, which will cause H + LE # Rn — G [66]. Although
we correct the LE using the method proposed by Twine et al., this method is based on
limited understandings of the nature of the energy imbalance and errors resulting from
the unclosed energy problem remain unclear [50,67]. Second, the limited EC flux tower
sites in our study. There are only six flux tower sites available in the Haihe River basin to
validate LE products. These EC flux tower sites are sparsely distributed and covered with
limited lands cover types. Therefore, limited EC flux tower sites in the Haihe River basin
will lead to large uncertainties in LE evaluation. Third, the spatial scale mismatch. The
spatial footprint of EC observation is approximately 100-300 m and the spatial resolution
of six satellite-based LE products is more than 500 m [60,68]. Inaccurate representations of
the EC footprint may result in large uncertainties in LE evaluation.

On the other hand, the WBET were used as reference data to validate six satellite-
based LE products at basin scales. The WBET was generally based on the assumption
that the total water storage change (TWSC) can be negligible over multi-year scale [41,69].
In fact, TWSC may not equal to zero over the multi-year scale when there is sustained
climate change and/or human activities impacts on the water cycle [70]. Studies have
showed that TWSCs vary greatly due to glacier and snow melting in headwaters of rivers,
reservoir storage, and groundwater withdrawal for agricultural depletion, etc. [70-72]. The
neglection of TWSC is projected to lead to uncertainties in the derivation of WBET. The
GRACE mission provides TWSC observations, yet its coarse spatial resolution hampers
its application in regional water budget estimation. To data, downscaling GRACE TWSC
data using a forward algorithm may be the solution for estimating regional water budget
in near future [73].

5. Conclusions

We evaluated the reliability of six satellite-based LE products in the vegetation domi-
nated Haihe River basin of North China against ground-measured LE data collected from
six eddy covariance flux tower sites at local scale and water balance method derived ET at
basin scale. These six LE products consist of the GLASS LE product, FLUXCOM LE product,
PML_V2 LE product, GLEAM LE product, BESS LE product, and MODIS LE product.
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Our results indicated that all six satellite-based LE products were able to simulate
the seasonal cycle of LE. At site scale, GLASS LE product provided the highest R? (0.58,
p < 0.01) and the lowest RMSE (28.2 W/m?), followed by FLUXCOM, PML, GLEAM, BESS,
and MODIS LE products. At basin scale, the LE estimates from GLASS product showed
comparable accuracy (R? = 0.79, RMSE = 18.8 mm) with other LE products. Among them,
the BESS product had the highest R? value of 0.85 (p < 0.01) and the smallest RMSE value
of 16.1 mm, and FLUXCOM presents the lowest R? value of 0.76 and the largest RMSE
value of 20.1 mm against WBET. The Spatial distribution of annual averaged terrestrial
LE (2013-2015) illustrated that LE showed large spatial variability over the whole are and
presented strong seasonality according to the climate conditions. Moreover, there is similar
spatiotemporal variability of estimated terrestrial LE from the six LE products. Errors in
satellite-based LE products and uncertainties in reference data and evaluation methods
were also discussed. Overall, this study further demonstrates that GLASS LE product with
0.05 degree is promising dataset to evaluate regional water budget.
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