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Abstract: Vegetation and soil have spatial distributions at different scales, while the spatial distri-
bution of soil microorganisms and factors driving their distribution are still unclear. We aimed to
reveal the spatial pattern of microbial functional diversity and to identify its drivers in forest soils at a
regional scale. Here, we performed an investigation of microbes across several forest types covering
an area of 236,700 km2 in Guangxi, southwest China. We examined a total of 185 samples for soil
microbial functional diversity using Biolog EcoPlates. The soil microbial functional diversity had
strong spatial heterogeneity across the Guangxi region. The distribution of microorganisms in forest
soils was mainly determined by total nitrogen, available N, and C:N ratio, and stand age. We found
that coniferous forests, especially pine forest, exhibited lower functional diversity, but the reverse was
true for deciduous broadleaf forest/mixed evergreen and deciduous broadleaf forest. Our findings
suggested that a heterogeneous distribution of microbial functional diversity in forest soils is related
to forest types in Guangxi, China. In conclusion, high soil microbial functional diversity is favored
in subtropical forests with looser soil structure, lower soil C:N ratio, greater total soil nitrogen and
available nitrogen concentration, and broad-leaved tree species.

Keywords: microbial ecology; spatial pattern; Biolog EcoPlates; functional diversity; forest

1. Introduction

Soil microbes play an essential role in driving and regulating global cycling of bio-
geochemical nutrients (carbon, C; nitrogen, N; phosphorus, P), and the interactions
among these nutrients have important feedbacks to Earth’s landscapes, climate, and
ecosystems [1–3]. Many researchers have interpreted the spatial heterogeneity of soil nu-
trient interactions among climate, vegetation, and land uses [3,4]. Meanwhile, the spatial
distribution of plants has also been widely studied [5,6]. However, as a bridge between
plants and soil, the spatial distribution of soil microbes has gained little attention due
to the high spatial and temporal heterogeneities of soil properties and microbes and the
limitations of their sampling and measuring methods [7,8]. Thus, the spatial patterns of
the functional diversity of soil microorganisms remain largely unknown.

The driving factors of soil microbial spatial patterns vary at different scales. For
example, at the national and continental scales, it has been found that soil pH dominates
soil bacterial diversity [9,10], while soil texture, pH, total organic carbon, and land use has
been shown to control soil molecular microbial biomass [11]. At the regional scale, soil
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sampling depth and longitude are determinants of the soil archaeal community [12] and
exchangeable Ca2+ concentration dominates soil bacterial diversity [13]. At the ecosystem
scale, temperature affects ammonia-oxidizing bacteria [14], microbial biomass, and com-
munity profiles [15], and dispersal limitation and habitat heterogeneity affect soil microbial
taxa [16] and microbial diversity [17], respectively. At the plot scale, soil chemical proper-
ties are important determinants of bacterial communities [18]. Therefore, the differences in
the spatial patterns of vegetation, soil, and soil microorganisms are well understood, while
how microbes feedback to the distribution of the vegetation–soil system remains unclear.

Forests are an essential component of terrestrial ecosystems [19], and forest types
in combination with soil properties and climate play a major role in the global cycling
of carbon, nitrogen, and phosphorus [20]. According to the China Eighth National For-
est Resource Inventory, Guangxi contains rich forest resources with 220 million ha area
(62.2% coverage) and 740 million cubic meters forest stock volume, ranking third and
seventh in China, respectively. However, the subtropical monsoon climate, long-term
production management, and serious soil erosion have resulted in diverse forest types in
Guangxi [21]. Therefore, we used soil samples from different forest types in Guangxi to
analyze soil microbial functional diversity, the results of which are important for guiding
forest management.

Despite a well-constructed concept and evidence for the strong coupling of plant and
soil properties [22,23], the effects of soil microorganisms on them and their feedback on
plant and soil properties remain elusive due to the frequent covariation of biotic and abiotic
variables [24]. Targeting these current knowledge gaps and research needs, we conducted a
comprehensive analysis of soil microbial functional diversity at a regional scale in different
forest types in Guangxi, China, using Biolog EcoPlates technology, which could generate
the metabolic functional information based on the source of C the microorganisms use [25].
Our objectives for this study were to (1) test the hypotheses that the biogeographical
distribution of the functional diversity of soil microbial communities would resemble the
patterns of soil variables related to plant diversity, and would also be good predictors of soil
microbial communities; (2) to determine if there were relationships between the functional
diversity of soil microbial communities and environmental factors; (3) to ascertain the
ecological drivers of the spatial patterns of microbial biodiversity.

2. Materials and Methods
2.1. Site Description

Our study was conducted in Guangxi Zhuang Autonomous Region (104◦28′ to
112◦04′ E, 20◦54′ to 26◦23′ N), which has one of the largest forest areas in China. The
region has a subtropical monsoon climate. The mean annual temperature (MAT) is 21.1 ◦C,
and the mean annual precipitation (MAP) is 1835 mm. The annual sunshine duration is
1600–1800 h, and the relative humidity is 74.8%. This region has a wide distribution of low
mountains and hills with elevation ranging from 20 to 500 m. The main soil types include
Ferrallitic soil, Argosols, and Primosols [26].

2.2. Field Survey and Soil Collection

Five forest types were selected based on the distribution area and volume of each
forest type, and the sample plots of each forest type were established according to young,
middle, near-mature, mature, and overmature sequence (Figures 1 and S1). In total, 185
plots, with an area of 20 m × 50 m each, were established across Guangxi. Each plot
was divided into ten 10 m × 10 m quadrats. The number of woody plant species (DBH
(diameter at breast height) ≥ 2 cm), stand density, DBH, and tree age were recorded in each
10 m × 10 m quadrat. Tree age was determined by increment cores at about 10 cm above
tree DBH when in natural forests and investigated when in planted forest. The above data
were used to calculate plant community parameters, such as tree age, tree density, and
tree average DBH. Five soil cores (5 cm in diameter and 0–20 cm in depth) were taken
from four corners and the center of each 20 m × 50 m plot after removing the litter and
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pooled to form a composite sample per plot. The composite soil samples were sieved and
homogenized and then separated into two subsamples. One subsample was air-dried at
room temperature for determination of soil physicochemical properties. Soil samples for
soil bulk density determination were also collected alongside the five soil cores.
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Figure 1. Schematic map showing distribution of the sampling sites across Guangxi Autonomous Region, China. Different
symbols represent different types of forests.

2.3. Analyses of Soil Chemical and Physical Properties and Collection of the Climate Data

Soil bulk density was calculated from the oven-dried core cutter samples (105 ◦C, 48 h)
to constant weight. Soil pH, organic carbon (SOC), total nitrogen (TN), total phosphorus
(TP), total potassium (TK), and available nitrogen (AN) were determined according to [27].

Temperature and precipitation are two important variables of climate data. We ob-
tained the mean annual temperature (MAT) and mean average precipitation (MAP) of the
nearest city (district) to each plot in Guangxi. In the study, the values of MAT and MAP
represent the past 10 years for analysis.

2.4. Microbial Metabolic Activity Analysis

Microbial metabolic activity was measured using 96-well Biolog EcoPlatesTM (Biolog
Inc., Hayward, CA, USA), which comprised 31 sole carbon substrates and a negative
control (water) with three replications. The assay was based on the capacity of microorgan-
isms to utilize different substrates and thus generated a metabolic fingerprint providing
information on functional diversity in the soil [25]. Out of the 31 carbon substrates, seven
were carbohydrates, two amines/amides, six amino acids, nine carboxylic acids, three
miscellaneous, and four polymers. Briefly, 5 g of fresh soil was suspended in 45 mL 0.87%
NaCl solution, shaken for 30 min, and left to settle for a further 30 min. Then, a 100-fold
serial dilution was made, 150 µL of the suspension was transferred to the wells, and the
plates were incubated at 25 ◦C under dark conditions. The color development was followed
over time by measuring the absorbance at 590 nm every 24 h during an incubation period
of 240 h. The optical density (OD) for each well was calculated as substrate well OD minus
control well OD at 96 h [28]. Due to detection limitation, wells with an average OD ≤ 0.2
were set to zero. Microbial metabolic activity was represented by average well color devel-
opment (AWCD) [29], which was calculated for each soil as the mean absorbance values of
all 31 substrates and for the different substrate categories (carbohydrates, amines/amides,
amino acids, carboxylic acids, miscellaneous, and polymers) [30].

AWCD =
31

∑
i
(Ci − R)/ni

where Ci represents the absorbance of each medium-containing well, R represents the
absorbance of the blank control well, and n is the number of carbon source types (n = 31).
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The functional diversity was assessed by the Shannon–Wiener diversity index (H′) [31],
calculated for each soil sample using the following formula:

H′ = −∑ pilnpi

where pi is the proportional color development of the ith well relative to the total color
development of all wells.

2.5. Statistical Analyses

A geostatistical method was used to model the spatial structure of soil microbial
metabolic diversity (i.e., Shannon–Wiener index) in the forests at the regional scale for
Guangxi. First, soil microbial metabolic diversity in the Guangxi forests was analyzed
using descriptive statistics. A Kolmogorov–Smirnov test revealed the microbial functional
diversity followed a normal distribution after Box–Cox transformation (K-S value > 0.05)
(Table S1). Second, semivariogram models were calculated from GS+ 9.0 software (Gamma
Design Software, LLC., Canifolia, RL, USA) based on the transformed variables. Moran’s I
index was used to measure whether a variable had a spatial dependency and whether the
variable itself had a strong association in the nearest space [32]. Semivariance is a statistic
measuring the spatial autocorrelation between samples at different lag distances. A larger
value of the determination coefficient (R2) of the best fitting model indicates that the spatial
structure of soil microbial metabolic diversity can be better reflected (Table S2). Third,
ordinary kriging was used to make spatial prediction for points over the entire Guangxi
Autonomous Region. The kriging maps were generated through ArcGIS 10.3 software
(Environmental Systems Research Institute Inc., Canifolia, RL, USA).

The statistical analyses of microbial functional diversity (i.e., Shannon index) and use
efficiency of carbon sources were conducted in the software of SPSS 18.0 software (SPSS
Inc., Chicago, IL, USA). The one-way analysis of variation (ANOVA) with Tukey’s post
hoc test, the Kolmogrorov–Smirnov test, and the Kruskal–Willis test were also conducted
in SPSS 18.0. The principal components analysis (PCA) on the correlation matrix of
physico-chemical characteristics, climatic conditions, and vegetation data for soil microbial
metabolic diversity data from each forest type was conducted in SPSS 18.0. Stepwise
regression analysis was performed in R software (University of Auckland, Auckland, New
Zealand) [33], and “MASS” package [34] was used to find the most important predictors of
soil microbial metabolic diversity in Guangxi forest soils. Basically, the stepwise regression
conducts multiple regression several times and each time removes the weakest related
variables (p ≤ 0.05). The variables including forest types, MAT, MAP, elevation, soil bulk
density, pH, SOC, TN, C:N ratio, AN, average stand age, stand density, and average DBH
were chosen in the stepwise regression analysis. Forest types of evergreen broadleaved
forests, deciduous broadleaved forests, mixed evergreen and deciduous broadleaved
forests, bamboo forests, and warm coniferous forests were quantified as 1, 2, 3, 4, and
5, respectively. Then, we could identify the variables that significantly explain the soil
microbial functional diversity. Redundancy analysis was conducted using the Conoco 5.0
software (Microcomputer Power, Ithaca, NY, USA).

3. Results
3.1. Stand, Environmental, and Soil Characteristics across Guangxi

The minimum, maximum, and mean of the climate, elevation, and vegetation variables
and soil properties in the 185 selected sampling sites are shown in Table 1. Among the
tested environmental variables, the soil properties, such as the C:N ratio, and the plant
properties, such as stand age, had a greater variation than other variables did.

3.2. Spatial Distribution of Microbial Functional Diversity in Guangxi Forest Soils

Soil microbial diversity (i.e., Shannon index) ranged from 2.03 to 3.38 (Figure S2). The
mean value of Shannon index was 3.04 ± 0.02 (mean ± standard error). The distribution of
soil microbial functional diversity in Guangxi forests was neither normal nor lognormal,
but transformation with a Box–Cox resulted in a more normal distribution (Table S1).
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Table 1. Minima, maxima, means, and coefficient variation (CV) of environmental variables in the forests across Guangxi,
China (n = 185).

Variables Minimum Maximum Mean Standard Error Coefficient of Variation (%)

Climate factors
MAT (◦C) 19.5 23.1 21.6 0.7 4.5

MAP (mm) 1059.1 247.3 1413.7 24.4 23.1

Elevation Elevation (m) 24.2 1441.0 441.8 25.0 75.7

Soil factors

Bulk density 0.4 1.667 1.0 0.0 22.1

pH 3.3 8.0 4.8 0.1 21.7

SOC (g·kg−1) 4.8 85.8 31.1 1.1 46.7

TN (g·kg−1) 0.3 8.6 2.3 0.1 60.2

TP (g·kg−1) 0.1 1.7 0.5 0.3 60.6

TK (g·kg−1) 0.4 32.1 11.2 0.5 56.6

C:N ratio 8.6 137.7 16.6 0.9 71.7

AN (mg·kg−1) 34.7 634.7 212.0 8.7 54.6

Plant factors

Stand age (a) 1.0 120.0 29.8 1.9 84.9

Stand density
(stems·ha−1) 1700.0 46,400.0 13,749.0 6.2 59.8

DBH (cm) 1.1 31.9 13.2 0.4 44.7

MAT, mean annual temperature; MAP, mean annual precipitation; Bulk density, soil bulk density; SOC, soil organic carbon; TN, soil total
nitrogen; TP, soil total phosphorus; TK, soil total potassium; C:N ratio, ratio of soil carbon to soil nitrogen; AN, soil available nitrogen;
Stand age, average stand age; Stand density, average stand density; DBH, diameter at breast height.

Most of the forest sampling soils (86.5%) yielded soil microbial functional diver-
sity between 2.88 and 3.38, with 0.5% of the soils having soil microbial functional di-
versity larger than 3.38 and 13.0% having less than 2.88 (Figure S2). The robust vari-
ogram of the transformed Shannon index is shown in Figure S3 with the fitted expo-
nential model (nugget = 49.2, sill = 312.1, range = 0.32◦, and R2 = 0.69) (Table S2). The
nugget/(sill + nugget) ratio was substantial (0.16) and indicated the variance that cannot
be explained by the model. The value of this ratio showed a strong spatial correlation, and
the spatial heterogeneity was mainly due to systematic variability of soil microbes. The
fitted model gave an effective range of 0.32◦ and showed a large autocorrelation distance.

The Shannon index map revealed a heterogeneous distribution of microbial func-
tional diversity, which was, to a large extent, spatially structured in geographical patterns
(Figure 2). The middle part of the region exhibited low microbial functional diversity. In
contrast, the northwest part of the region exhibited large values of microbial functional
diversity. The rest of the region exhibited a medium and rather homogeneous microbial
functional diversity, although some outliers of high and low soil microbial metabolic
diversity were also observed throughout Guangxi (Figure 2).

3.3. Relationships between Soil Microbial Functional Diversity and Environmental Factors

Principal component analysis yielded three components, and their component cumu-
lative percentage was 57.91% (Figure 3a). The first, second, and third components represent
soil factors, plant factors, and the climate factors, respectively. The results indicated that
soil total nitrogen, available nitrogen, soil organic carbon, and average stand age were most
correlated with the first component, average stand DBH for the second component, and
mean annual precipitation for the third component (Figure 3b).

The differences in microbial metabolic diversity was not obvious among the forest
types by either biomes or tree species (Figure 4). When categorized by biomes, the Shannon
diversity index for warm coniferous forest was significantly lower than those of deciduous
broadleaf forest/mixed evergreen and deciduous broadleaf forest (p < 0.05), and other
biome types were not statistically different from each other (Figure 4a). When categorized
by tree species, the Shannon diversity index for pine forest was significantly lower than
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those of Alangium platanifolium plantation, soft broadleaf forest (p < 0.05), and bamboo
forest, but other species were not statistically different from each other (Figure 4b).
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A PCA correlation matrix of climatic characteristics, soil physico-chemical properties,
and vegetation characteristics was used to compile a component map for soil microbial
functional diversity in forest types at the biome level (Figure 5a–e). For evergreen broadleaf
forest, soil microbial functional diversity was preferentially associated with alkaline soils
with high organic C, total nitrogen, and available nitrogen concentration, and with old trees
(Figure 5a). For deciduous broadleaf forests, mixed evergreen and deciduous broadleaf
forests, bamboo forests, and warm coniferous forests, soil microbial metabolism was
prone to be active under soils with large organic carbon concentration, total nitrogen, and
available nitrogen (Figure 5b–e). For deciduous broadleaf forests, mixed evergreen and
deciduous broadleaf forests, and warm coniferous forests, plant factors (i.e., average stand
age and average stand DBH) also influenced soil microbial diversity (Figure 5b,c,e). Soil
C:N ratio was negatively related with the soil microbial diversity in the evergreen broadleaf
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forest, bamboo forest, and warm coniferous forest, and positively with deciduous broadleaf
forest and mixed evergreen and deciduous broadleaf forest (Figure 5a–e).

Forests 2021, 12, x FOR PEER REVIEW 8 of 14 
 

 
Figure 4. Distribution of the average value of soil microbial metabolic diversity according to (a) the 
biome and (b) tree species levels. Numbers in parentheses indicate the number of soil samples. Dif-
ferent letters indicate significant differences between forest types (p < 0.05). The bars that are above 
and below the boxes represent the positive and negative standard error, respectively. The line seg-
ment at the median inside the rectangular box is treated as the median line. The circles represent 
mild outliers, and the whiskers represent the extreme outliers. 

   

 

 

 

Figure 4. Distribution of the average value of soil microbial metabolic diversity according to (a) the
biome and (b) tree species levels. Numbers in parentheses indicate the number of soil samples.
Different letters indicate significant differences between forest types (p < 0.05). The bars that are
above and below the boxes represent the positive and negative standard error, respectively. The line
segment at the median inside the rectangular box is treated as the median line. The circles represent
mild outliers, and the whiskers represent the extreme outliers.



Forests 2021, 12, 1578 8 of 13
Forests 2021, 12, x FOR PEER REVIEW 9 of 14 
 

 
Figure 5. The principal components analysis (PCA) on the correlation matrix of soil physico-chemical characteristics, cli-
matic conditions, and vegetation for soil microbial metabolic diversity data from five forest types in Guangxi, China, 
showing the dominant factors contributing to distinction between soil samples. (a–e) Represent evergreen broadleaf forest, 
deciduous broadleaf forest, mixed evergreen and deciduous broadleaf forest, bamboo forest, and warm coniferous forest, 
respectively. MAT, mean annual temperature; MAP, mean annual precipitation; SOC, soil organic carbon; Available_N, 
available nitrogen; Bulk_density, soil bulk density; Nitrogen, total nitrogen; pH, soil pH; Stand_DBH, average stand DBH; 
Stand_age, average stand age; Stand_density, average density of stands. 

3.4. Drivers of Soil Microbial Functional Diversity 
We conducted multiple linear regressions for soil microbial functional diversity as 

dependent variable and climate factors, elevation, soil physical properties, and woody 

Figure 5. The principal components analysis (PCA) on the correlation matrix of soil physico-chemical characteristics,
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showing the dominant factors contributing to distinction between soil samples. (a–e) Represent evergreen broadleaf forest,
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Stand_age, average stand age; Stand_density, average density of stands.
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3.4. Drivers of Soil Microbial Functional Diversity

We conducted multiple linear regressions for soil microbial functional diversity as
dependent variable and climate factors, elevation, soil physical properties, and woody
plant factors as independent variables using the stepwise regression method. Only
vegetation types explained 7% of the variability in soil microbial metabolic diversity
(Shannon = −0.12 × Types + 0.3761 (p = 0.012)). No significant multiple linear regressions
were found between soil microbial metabolic diversity and climate factors, elevation, soil
physical properties, and other vegetation factors.

4. Discussion

We used the Biolog EcoPlates system to measure the rate of carbon utilization, and
used this data to quantify the functional diversity of forest soils in Guangxi, as previously
demonstrated [35,36]. The Shannon index has been the most widely employed index in
studies of microbial functional diversity [37,38], and for most Guangxi forest soils (about
87%), the functional diversity ranged from 2.88 to 3.38 (Figure S2). The demonstration that
soil functional diversity did not follow a normal or lognormal distribution implied that its
distribution between Guangxi forest soils (Table S1) was nonstochastic, and consequently
that functional diversity could be under the dependence of environmental conditions. In
addition, we found a large range of variation (from 0.99 to 3.38) for soil microbial functional
diversity, which might be attributed either to the large sampling scale across various
forest types and soil types, or to the greater sensitivity of the Biolog approach to detect
differences in microbial diversity. As suggested by the parameters of the semivariogram
function (Table S2), the nugget/(sill + nugget) ratio was small (0.16), which indicated
that a small proportion of the variance was unexplained, perhaps due to the systematic
variability of soil microorganisms. In addition, the autocorrelation distance of about 0.32◦

longitude (Figure S3) revealed that the soil microbial functional diversity was spatially
organized in biogeographic patches scaling dozens of kilometers. This scale of spatial
variation suggested that climatic conditions, soil properties, and vegetation would strongly
influence the spatial distribution of soil microbial diversity. The map of Guangxi forest
soil microbial functional diversity revealed a heterogeneous spatial distribution with
hot/high and cold/low spots at the regional scale (Figure 2). Therefore, we rejected the null
hypothesis of microbial biogeography implying a random distribution of microorganisms
over space [11,39].

The component scores of the PCA correlation matrix confirmed that there were strong
relationships between microbial functional diversity and soil properties (Figure 3). Soil pH
has been demonstrated as the main factor driving the distribution of soil microbes, such
as bacteria, at both large and fine scales [10,40]. However, in our study, soil pH was not
the most dominant factor predicting variation in soil microbial functional diversity at the
regional scale, a finding that agreed with Singh et al. [13]. Soil total nitrogen and available
nitrogen accounted for the most important variation for the soil microbial functional
diversity (Figure 3b), which has also been documented for the structural diversity by
Lan et al. [40]. Soil C:N ratio was negatively correlated with the functional diversity of
soil microorganism in evergreen broadleaf forest, bamboo forest, and warm coniferous
forest in the study (Figure 5a–e), which has also been seen in subtropical natural secondary
forest [41]. Soil microorganisms must take up nitrogen from the soil to meet their own
carbon and nitrogen requirements (soil microorganisms need a C:N ratio of about 24:1 to
complete their body composition) and to decompose litter from plants in forests [42]. This
is also partly demonstrated by the soil C:N ratio and available nitrogen explaining much of
the positive correlation with soil microbial metabolic function in the study (Figure 5a–e).

The main factor of soil microbial metabolic diversity differed for individual forest
types (Figure 5). Soil pH was an important factor for microbial functional diversity only
in evergreen broadleaf forest (Figure 5a), while total nitrogen, available nitrogen, and soil
organic carbon were the most common factors in the other four forest types (Figure 5b–e).
Among vegetation properties, stand age was more important than stand density and av-
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erage DBH in influencing soil microbial metabolic diversity (Figure 5), which indicated
that older forests could provide more carbon resources and better quality of carbon input
for utilization by soil microorganisms. Based on this, it is easily found that plantations
are more prominent than natural forests, which indicates that the pattern of vegetation
is more likely to reflect land use change and afforestation policies. Significant differences
were observed between warm coniferous forests and deciduous broadleaf forests/bamboo
forests (Figures 4a and 5), which could partly be explained by differences in litter quality
and quantity [11] and varied influences on soil microbial metabolic activity from different
plant species [43]. In addition, our data highlighted that Illicium verum, oil-tea camellia, and
bamboo forests soils exhibited high microbial metabolic diversity (Figure 4b), which was
consistent with the distribution map in that the high zone in the northwest of Guangxi was
dominated by bamboo and some evergreen broadleaf forest (i.e., Illicium verum and oil-tea
camellia) soils (Figures 1 and 2). This finding indicates that soil microbial diversity of
function might be favored by an environment under medium quantity of litter and/or plant
exudates [43]. The lower microbial functional diversity observed at warm coniferous forests,
especially pine forests, confirmed the strong effects of the lower availability and/or ability
of decomposition of organic substrates provided by this litter for microorganisms [44,45].
Another explanation is the complementary effect of plant diversity, i.e., more plant species
diversify the resource pool, for example, deciduous broadleaf forests vs. warm coniferous
forests, and apply more niches that accommodate more soil microorganisms [46,47]. How-
ever, Chen et al. [48] found that tree species surpassed richness in affecting soil microbial
richness and community composition in subtropical forest. Therefore, there are still some
uncertain relationships between vegetation and soil microbial functional diversity during
forest development and plantation establishment.

There were 31 types of carbon sources in the Biolog EcoPlate: 12 carbohydrates, four
polymers, five carboxylic acids, two phenolic acids, six amino acids, and two amines [40].
Generally, the carbon source utilization rates in the five forest types followed a descend-
ing order of carbohydrates, amino acids, carboxylic acids, polymers, and phenolic acids
(Figure S4), which indicated that carbohydrates were the major carbon source utilized by
forest rhizospheric microbiota. Elevation, mean annual precipitation, and soil organic
carbon were found to significantly influence soil organic carbon resource utilization by
microbes as indicated by redundancy analysis (Figure S5), which suggested that climate
factors and soil organic carbon might be important factors determining carbon source use
in forest soils. Low variation (<10% in total for both axes) for carbon source use (Figure S5)
indicated that some important factors may be neglected in the study. Bending et al. [49],
Springob et al. [50], and Lan et al. [40] also found that soil organic carbon concentration
markedly correlated with the metabolic activity of soil microbes, which resulted in soil
microbial functional diversity.

However, stepwise regression analysis at the regional scale showed that the climate
factors (MAP and MAT) were not the pronounced determinants of the spatial distribution
of forest soil microbial functional diversity (p > 0.05). This finding might be explained
by the small differences in the climate factors at the experimental sites in the study. Only
vegetation type was the driver of soil microbial metabolic diversity in the Guangxi forest
(p = 0.012 < 0.05). These results indicated that the spatial distribution of soil microbial
functional diversity would reflect the forest types at the regional scale to some degree, with
different responses of soil microorganisms to changing soil carbon/nitrogen concentrations
during forest development and plantation establishment [51]. The different responses
of soil microbial functional diversity to forest types can be due to the changes in soil
factors (Figure 5) [52], while soil type is also the major factor affecting the diversity of
microorganisms [53,54]. Forest ecosystems are complex with respect to the age of plant
community [55], site-specific variability [56], and species composition [6], and are paralleled
by shifts in soil properties [55] and microbial community [57]. Collectively, the spatial
distribution of soil microbial functional diversity depended on the forest types.
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5. Conclusions

Here, we investigated forest soil microbial functional diversity at a large regional
scale across Guangxi Autonomous Region, China. Our study indicated that microbial
functional diversity can show spatial variation at large scales with biogeographic patterns.
Among all tested environmental factors, total nitrogen, available nitrogen, and soil C:N
ratio collectively drove the spatial pattern of soil microbial functional diversity in Guangxi
forests. Meanwhile, the composition of forest also greatly influenced the soil microbial
functional diversity. Moreover, for subtropical forests in Guangxi, a lower soil C:N ratio,
larger soil total nitrogen and available nitrogen concentrations, and more broad-leaved
tree species were beneficial to improve soil microbial carbon source metabolism. However,
our study neglected the effects of prior land use history and agricultural practices in
plantations such as fertilizer inputs on the patterns of microbial diversity. Collectively,
our study highlighted the differential response patterns of microbial functional diversity
to different forest types and provided a scientific view for use in the evaluation of the
microbial function diversity during forest development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12111578/s1, Table S1. Results of soil microbial functional diversity (Shannon index) for
descriptive statistics and Kolmogorov-Smirnov test. Table S2. Semivariance analysis of spatial
structure of soil microbial functional diversity. Figure S1. Photos of sampling plots. Figure S2.
Frequency distribution of Shannon-Wiener diversity index for the investigated forest soils. Figure S3.
Robust variograms (�) of microbial functional diversity for the investigated forest soils. Figure S4.
Use efficiency of carbon sources by the soil microbial communities from the different forest types.
Figure S5. Redundancy analysis (RDA) of carbon resources utilization and environmental factors in
forest plots.
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