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Abstract: Harnessing sustainably sourced forest biomass for renewable energy is well-established in
some parts of the developed world. Forest-based bioenergy has the potential to offset carbon dioxide
emissions from fossil fuels, thereby playing a role in climate change mitigation. Despite having an
established commercial forestry industry, with large quantities of residue generated each year, there is
limited use for forest biomass for renewable energy in Queensland, and Australia more broadly. The
objective of this study was to identify the carbon dioxide mitigation potential of replacing fossil fuels
with bioenergy generated from forest harvest residues harnessed from commercial plantations of
Pinus species in southeast Queensland. An empirical-based full carbon accounting model (FullCAM)
was used to simulate the accumulation of carbon in harvest residues. The results from the FullCAM
modelling were further analysed to identify the energy substitution and greenhouse gas (GHG)
emissions offsets of three bioenergy scenarios. The results of the analysis suggest that the greatest
opportunity to avoid or offset emissions is achieved when combined heat and power using residue
feedstocks replaces coal-fired electricity. The results of this study suggest that forest residue bioenergy
is a viable alternative to traditional energy sources, offering substantive emission reductions, with the
potential to contribute towards renewable energy and emission reduction targets in Queensland. The
approach used in this case study will be valuable to other regions exploring bioenergy generation
from forest or other biomass residues.

Keywords: forest residue; bioenergy; FullCAM; carbon dioxide emissions offsets; GHG emission
offsets; climate change mitigation; fossil fuel substitution

1. Introduction

Greenhouse gas (GHG) emissions are the leading cause of rising global temperatures
and anthropogenic climate change, and of these GHG emissions, carbon dioxide is the most
significant contributor [1]. It is estimated that there has been a 48% increase in atmospheric
carbon dioxide since the Industrial Revolution began over 250 years ago [1]. In 2021, the
Intergovernmental Panel on Climate Change (IPCC) [2] reported on further evidence that
emissions from human activities are responsible for increased global surface temperatures.
Globally, energy in the form of electricity, heat, and transport accounts for over 70% of
GHG emissions [3]. To fulfill the United Nation’s ambition of limiting global warming
to 1.5 degrees Celsius, there will need to be a 45% reduction in global carbon dioxide
emissions from 2010 levels by 2030, reaching net zero around 2050 [4].

In Australia, the combustion of fuels for electricity and industrial processes accounted
for 53% of total GHG emissions in 2020, with a further 17% of emissions coming from trans-
port fuel combustion [5]. In Queensland, 13% of total GHG emissions can be attributed to
transport [6]. Australia is a fossil-fuel-rich country that has experienced a highly politicized
debate over several decades. However, commitments to international agreements, such as
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the 2015 Paris Agreement where Australia committed to an emissions reduction target of
26% to 28% below 2005 levels by 2030 [7], and international conversations about reaching
net zero emissions by 2050, have motivated the national debate about reducing fossil
fuel combustion.

Bioenergy is energy generated from biomass. It is the oldest source of energy for
humankind and is gaining renewed interest as nations seek to move away from fossil
fuels [8]. Bioenergy generated from sustainably sourced feedstocks is expected to play a role
in climate change mitigation in the coming decades [9]. In 2019, about 6.4% of Australia’s
energy consumption was from renewables, with about half of this being bioenergy [10],
compared to 19.7% in Europe [11] and 11.3% globally (in 2018) [12]. Demand for bioenergy
in Australia is expected to grow over the coming decades, contributing 20% or more of total
electricity and transport fuels [13,14]. Initiatives to promote sustainable and renewable
energies and emission reductions exist at both the national and state level. Under the
Australian Government’s Renewable Energy Target (RET) scheme, electricity providers are
required to meet regulated renewable energy obligations [15]. The Emissions Reduction
Fund (ERF) provides financial incentives for emission reduction technologies through
the governmental purchase of carbon credits, which can also be traded [16]. The State
of Queensland has made specific commitments to biofuels and bioproducts through its
Biofutures 10-Year Roadmap and Action Plan, worth AUD 1 billion by 2026 [17], including
the development of the AUD 16 million Advanced Biofuels Pilot Plant at Gladstone,
Australia by Southern Oil Refining Pty Ltd., turning residues into aviation and other heavy
industry fuels [17].

Bioenergy is versatile and can be produced from residues from forest or agriculture. It
can be in the form of a solid, liquid, or gas, and can be transformed into heat, electricity,
biofuels, and biogas [18]. Increasingly, industrial heat and power, or combined heat
and power (CHP), is generated wholly or partially (co-fired with coal) from biomass
feedstocks [19]. If biomass is used to generate grid-scale electricity in Queensland, it will
most likely displace coal, because approximately 88% of the State’s electricity is generated
from coal [10]. Wood pellets are a source of heat and power across the world, including
in Europe, Asia, and America. Wood pellets are a suitable substitute for gas boilers and
heaters and, although there is some household use in Australia, the market is small, and
most wood pellets produced there are exported to international markets. There are good
opportunities for liquid biofuels to replace traditional diesels and have applications in
transport, heavy industry, aviation, and shipping sectors in Australia and around the
world [9]. When produced from lignocellulosic feedstocks such as wood residues, biofuels
are generally referred to as renewable diesel, advanced biofuel, or second-generation
biofuel, in contrast to traditional, first-generation biodiesels produced from vegetable oils
and fats [20]. Renewable diesel is an established renewable energy that can be used with
minimal or no modification to diesel engines. With large road networks and heavy reliance
on road freight, there is significant scope for liquid biofuels to contribute to transport as
well as heavy industry, shipping, and aviation fuel consumption in Australia.

Bioenergy can be generated from forest biomass which, in the developed world,
includes harvest residues such as unmerchantable wood, wood removed during thinning,
and other residue material. Forest residues are a sustainable source of bioenergy, involving
the use of a by-product to replace fossil fuel alternatives, with the potential to lead to
GHG emission savings [21]. Recent international studies have explored forest residue
bioenergy and found several possible benefits, including emission reductions, and regional
development opportunities in northern Spain [22], northern Italy [23], Canada [24], and
the United States [25].

In Queensland, there are vast plantation forests covering approximately 230,000 hectares,
over 85% of which are softwood plantations [26] generating large volumes of harvest
residues, a potential feedstock for existing and future bioenergy projects. The annual
estimate of forest harvest residues is up to 600,000 tonnes, and sawmill residues are
estimated to be over 900,000 tonnes, mostly from softwood plantations with only minimal
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contributions from hardwood native forests [27]. Plantation harvesting and thinning
operations generate residues, some of which do not have a commercial use. During
softwood plantation timber harvesting, only merchantable wood is extracted and removed
from the plantation [28], leaving other fractions of the tree such as tree stumps, small
branches, bark, and needles behind, as well as whole small trees and stems that are not
suited to wood products [28,29]. Traditionally, forest harvest residues are left to decay
on-site or burned to reduce the risk of forest fires. Increasingly, harvest residues are
being captured for co-products such as wood chips, panel construction, landscaping,
and bioenergy.

This study investigated the GHG mitigation potential of using forest harvest residues
for bioenergy at a regional scale in Queensland, Australia. This research builds on previ-
ous biomass-for-bioenergy studies in Australia. Past research has estimated Australia’s
potential supply of bioenergy and GHG mitigation at a (macro) national scale [30]; [and the
potential availability of a range of biomass types, including plantation harvest residues, on
a broad, spatial level [31]. Moreover, the potential availability and costs of agricultural and
forestry residues for electricity generation, replacing coal-fired electricity, in the Green Tri-
angle region of southern Australia has been investigated [32], and in Tasmania, a previous
study assessed native forest residues and the availability for bioenergy in Tasmania [33].
For the State of Queensland, other studies have provided information about the supply
of lignocellulosic (dry plant biomass) feedstocks, specifically, grasses, short rotation trees,
native vegetation regrowth for aviation fuels [34], and native plantation forest regrowth
for aviation fuels in Queensland [35]. Other researchers have investigated sustainably
managed private native forests [36] and private hardwood plantations [37] as a potential
source of biomass for bioenergy in southeast Queensland. Other studies have investigated
optimal locations for bioenergy facilities in Queensland, considering factors such as the
availability of forest biomass [38] and multiple biomass feedstocks [39]; the economic
and environmental viability of supplying bioenergy plants [40] have also previously been
investigated for Queensland.

Few dedicated studies have quantified the implications of managed forest harvest
residues for bioenergy from a climate change mitigation perspective on a regional scale.
This study aims to obtain a better understanding of the GHG emission offsets of forest
harvest residues for bioenergy in Queensland, Australia. Understanding biomass avail-
ability and net carbon implications, based on broad assumptions of forest practices and
technologies, is an important first step and will be demonstrated here with a large, privately
managed forest operation in southeast Queensland as a case study. In this study, carbon
stocks and flows were estimated using the Full Carbon Accounting Model (FullCAM).
FullCAM is an industry standard model used by the Australian Government to report
carbon emissions on Australia’s National Greenhouse Gas Inventory and to the United
Nations Framework and Convention on Climate Change [41]. As well as application at
the national scale for recording land sector GHG emissions, FullCAM is applied at the
local scale for monitoring and reporting carbon sequestration projects under the Australian
Government’s Emissions Reduction Fund [16].

2. Materials and Methods
2.1. Study Area

The area of analysis was a softwood plantation managed for timber production,
Toolara–Tuan Forest Estate, located in the Gympie–Maryborough region, roughly 200 km
north of Brisbane, Queensland (25.99586 S, 152.83367 E) (Figure 1). It is a rural region that
extends eastward to the coast, where it meets the Great Sandy Strait. Toolara–Tuan Forest
Estate is one of several plantation estates throughout the state of Queensland managed
by a single private company, Hancock Queensland Plantations Pty Ltd. (HQPlantations)
(Gympie, Australia). The area is characterized by mild winters and warm, humid summers,
with long-term average temperatures between 10 ◦C in July and 29 ◦C in January. The area
receives high rainfall, with an annual long-term average of 1400 mm.
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 Figure 1. Map showing the location of Toolara–Tuan Forest Estate.

HQPlantations operates sustainable forest management practices according to cer-
tification standards of the Forest Stewardship Council (FSC) and Australian Forestry
Standard for Sustainable Forest Management (AFS) [42]. The Toolara–Tuan Forest Estate is
a long-rotation plantation with about 85,000 hectares of non-native, commercial, softwood
Pinus spp., commonly referred to as Southern Pine. Of the three Pinus taxa (Pinus caribaea
var. hondurensis [PCH], Pinus elliottii var. elliottii [PEE], hybrid pine [PEE x PCH]) in
cultivation in the estate, the current profile is dominated by the locally developed hybrid
pine [PEE x PCH].

2.2. Plantation Management Practices

The Toolara–Tuan Forest Estate is managed on 28–30-year rotation cycles. About 3%
of the 85,000 hectares undergoes clearfell harvest each year [43], mostly through whole
tree (WT) harvesting technique and is replanted following a site preparation phase. In WT
harvesting, most of the above-ground portion of the trees is removed from the harvest site,
whereas in cut-to-length (CTL) systems, stems are cut into shorter lengths at the harvest
site. The silviculture regime typically involves site preparation, aerial herbicide application,
hand planting in rows or mounds, fertilizer application as required, and chemical and
mechanical weed control. Plantation management practices include thinning operations at
around 14 years after planting, when approximately 40% of stems are removed.

Under current management (business as usual), stems removed during thinning
operations are transported to wood processing operations located adjacent to the estate.
A small proportion of tops (stems), branches and bark remain in situ to decay. Similarly,
following clearfell harvest, small tree fraction proportions (5% of stems, plus branches and
bark) remain in the field, while the bulk of the stems, high quality sawlogs and ply logs,
are transported to a wood processing mill (Hyne Timber & Sons, Maryborough, Australia)
co-located in the Toolara–Tuan Forest Estate. Traditionally, the bulky residue left behind at
clearfell harvest is raked into windrows and either burned or left to decay, whereas smaller
materials decay in situ. At times, when burning does not occur, the residue may instead be
mechanically mulched in the field and spread out to decay. More recently, stem and branch
residues from clearfell harvest are collected and chipped by a mobile chipper in the field
and transported to co-located facilities as wood chips for bioenergy generation near the
plantation estate.
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2.3. Application of FullCAM to Estimate Carbon in Residues

Estimates of carbon stocks and flows of available harvest residues were not available
from the plantation manager; therefore, they were made using FullCAM [44]). FullCAM
is a freely available software system for tracking GHG emissions and changes in carbon
stocks associated with land use and management in Australian agricultural and forest
systems [41]. The model was configured to incorporate plantation-specific parameters,
including the geographic location, Pinus spp., rotation length and timing, and management
treatments such as thinning events (refer to Supplementary Figure S1 and Table S1). For this
study, two FullCAM simulations were used to provide estimates of available residues over
the course of a single rotation, corresponding to residue utilization alternatives 1 and 2
(Table 1). A single location, representing average climatic and soil conditions across the
Toolara–Tuan Forest Estate, was selected to provide a representative estimate of forest
residue production.

Table 1. Summary of bioenergy type, fossil fuel substitution, and tree fraction utilization of the different scenarios and
residue utilization alternatives.

Scenario
Bioenergy

Product Type
Fossil Fuel

Substitution
Residue

Alternative
Forest

Treatment

% Utilization

Stem Branch Bark

1 CHP Coal-fired electricity
1

Thin
5 95 5Final harvest

2
Thin 95

95
95

Final harvest 5 5

2 Pellets Natural gas
1

Thin
5 95 5Final harvest

2
Thin 95

95
95

Final harvest 5 5

3 Renewable
diesel

Diesel
1

Thin
5 95 5Final harvest

2
Thin 95

95
95

Final harvest 5 5

2.4. Case Study Scenarios and Residue Utilization Alternatives

Avoided emissions were estimated for three different bioenergy scenarios with two
residue utilization alternatives (Table 1). The scenarios varied according to the final
bioenergy product type and the fossil fuel product that it could feasibly replace. Scenario 1
closely resembles business as usual (BAU), given that residues are currently utilized for
on-site heat and energy by facilities co-located at the Toolara-Tuan Forest Estate (Laminex
Group Pty Ltd., Maryborough, Australia); however in the current business model residues
other than harvest residues are utilized. Scenario 2 also resembles an existing BAU,
although currently, most of the feedstock used is sawmill residue. Co-located at the
study site is Altus Renewables Limited (Maryborough, Australia), producing wood pellets
from residues; however, in the current business model, the wood pellets are exported
to international markets [45], and therefore carbon mitigation and renewable energy is
attributed external to Queensland. Scenario 3 is a theoretical residue bioenergy option in
Queensland; however, investment in and development of an advanced biofuels pilot plant
by Southern Oil Pty Ltd. at Gladstone, Australia, approximately 300 km north of the study
site, is expected to lead to demand for harvest residue in the future [46].

In Scenario 1, emissions avoided by replacing centralized State grid electricity with
wood-fuelled integrated cogeneration, often referred to as combined heat and power (CHP),
were estimated. CHP was assumed to mitigate 88% of emissions in this study, given that
12% of Queensland electricity is generated from renewable sources. In Scenario 2, emissions
avoided by replacing natural gas with wood pellets were calculated, and in Scenario 3,
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emissions avoided by replacing diesel fuel with renewable diesel for transportation and
other industrial uses were calculated.

For each scenario, two residue utilization alternatives were investigated. These al-
ternatives varied according to the volume of thinning material available for bioenergy.
For softwood plantations, debarking does not occur in the field and the bark is generally
harder to separate from the stems and branches. In this study, bark was assumed to be
included in the residue at the same proportion as the stems for both thinning and clearfell
operations. Residue utilization alternative 1 assumes that just a small proportion (5%) of
thinning stems and bark are available for bioenergy, whereas alternative 2 assumes that
whole stems (95%) and bark from thinning are available. For all scenarios, 95% of branches
from thinning operations and final harvest were assumed to be available for bioenergy, as
well as 5% of stems and bark from final harvest, which, in a commercial setting, includes
stems outside standard width and shape dimensions. In this study, stumps, leaves and
cones were not included in residue estimates and assumed to be left on-site.

2.5. Estimating Energy Potential and GHG Emissions Avoided

Carbon dioxide emissions avoided by substituting fossil fuels with residue bioenergy
can be estimated by calculating the fossil-fuel-based emissions associated with generating
an equivalent amount of energy as the bioenergy alternative. Net GHG emissions avoided
in this study considered emissions displaced by combusting the substituted fossil fuel type,
non-carbon dioxide emissions (methane and nitrous oxide) generated by combusting the
bioenergy type (which are not avoided), and estimates of transport emissions associated
with hauling residue to the bioenergy facility. Emissions associated with forest residue
extraction and storage, and alternative residue treatments, such as field burning or decay,
were beyond the scope of the current study. Net GHG emissions avoided, expressed as
carbon dioxide equivalents, is the difference between fossil fuel type of carbon dioxide
combustion emissions, and the bioenergy of non-carbon dioxide and transport carbon
dioxide emissions. The bioenergy non-carbon dioxide emissions are methane and nitrous
oxide emissions generated by the bioenergy type, estimated and expressed as carbon
dioxide equivalents. Transport emissions are an estimate of carbon dioxide emissions
associated with hauling harvest residue from felling site to bioenergy facility. Total net
emissions avoided, therefore, are effectively GHG emissions (expressed as carbon emission
equivalents) avoided. Table 2 summarizes the key parameters used in the calculations.

Table 2. Summary of main parameters used in the calculation of emissions avoided (Equations (1)–(14)).

Parameter Units Values

Harvest Residue

Total available energy content in dry wood (Econtent(wood)) GJ tbiomass
−1 18.63

Carbon content (Ccontent)
Total available energy content in carbon

%
GJ tC−1

50
37.26

Renewable diesel

Total available energy content (Econtent(biofuel)) GJ kL−1 34.60
Renewable diesel yield (Vprod) kL tbiomass

−1 0.36

Scenarios CHP Pellets Biofuel

Conversion efficiencies (CF)
Net available (useful) energy content (Eavail)

%
GJ tC−1

70.00
26.08

75.00
27.95

-
24.80

Product emission factors (EF) kgCO2-e GJ−1 225 1 51.40 69.90
Non-CO2 emission factors (EFnon-CO2) kgCO2-e GJ−1 1.20 1.20 2.50

Transport emissions

Diesel energy content (Econtent(diesel)) GJ kL−1 38.6
Diesel fuel intensity (Fuelintens) L tC−1 km−1 0.16

Transport distance km 50 50 300
1 Scope 2 emission factor.
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2.5.1. Net GHG Emissions Avoided (CO2-eavoid)

Net GHG emissions avoided were calculated with:

CO2 − eavoid = CO2 − e f ossil −
(
CO2 − egen + CO2 − etransp

)
(1)

where CO2-eavoid is the net GHG emissions avoided, expressed as carbon dioxide equiva-
lents, CO2-efossil is the carbon dioxide emissions associated with combusting the substituted
fossil fuel type, CO2-egen is the methane and nitrous oxide emissions associated with com-
busting the bioenergy type, expressed as carbon dioxide equivalents, and CO2-etransp is the
carbon dioxide emissions associated with transporting residue biomass to the bioenergy facility.

2.5.2. CHP and Pellets (CO2-efossil and CO2-egen)

To determine carbon dioxide emissions displaced and non-carbon dioxide emissions
generated for solid fuels (CHP and pellets), it was necessary to first calculate the useful
(available) energy contained within the carbon in the harvest residue. Assuming a moisture
content of 15% and energy content of dry wood of 16.2 GJ tonne−1 [47], the energy content
of the dry wood biomass was estimated to be 18.63 GJ tonne−1. This is consistent with the
19 GJ tonne−1 reported previously [47,48].

Using the standardized value of 50% carbon content per weight in wood, and an
assumed (base) energy conversion efficiency of 70% for CHP [49] and 75% for wood
pellets [50], the energy per tonne of carbon for solid fuels was calculated with:

Eavail(CHP) =
Econtent(wood)

Ccontent/100
×

(
CFpellet/100

)
(2)

Eavail(pellet) =
Econtent(wood)

Ccontent/100
× (CFCHP/100) (3)

where Eavail(CHP) and Eavail(pellet) are the useful (available) energy (GJ tC−1) in CHP and
pellets, respectively, Econtent(wood) is the energy content of dry forest residue biomass
(GJ tbiomass

−1), Ccontent is the carbon content (%), and CFCHP and CFpellet are energy conver-
sion efficiency factors (%).

Using available energy figures and the relevant NGA [47] emission factors (scope 2
electricity; scope 1 natural gas) of the substituted fossil fuel type, carbon dioxide emissions
avoided through combustion were calculated with:

CO2 − e f ossil(CHP) = Eavail(CHP) × (EFCHP/1000)× 0.88 (4)

CO2 − e f ossil(pellet) = Eavail(pellet) ×
(

EFpellet/1000
)

(5)

where CO2-efossil(CHP) and CO2-efossil(pellet) are the carbon dioxide emissions associated with
combusting the substituted fossil fuel type (tCO2-e tC−1), Eavail(CHP) and Eavail(pellet) are the
useful (available) energy (GJ tC−1) for each product type, EFCHP and EFpellet are emission
factors for the production of either CHP or pellets using fossil fuel (kgCO2-e GJ−1), and
0.88 is the fossil fuel proportion in the State electricity grid [10].

Using available energy figures and the NGA [47] emission factors for methane and
nitrous oxide generated through combusting dry wood, the non-carbon dioxide emissions
generated in the bioenergy type were calculated with:

CO2 − egen(CHP) = Eavail(CHP) ×
EFnon−CO2(CHP)

1000
(6)

CO2 − egen(pellet) = Eavail(pellet) ×
EFnon−CO2(pellet)

1000
(7)
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where Eavail(CHP) and Eavail(pellet) are as above, and EFnon−CO2(CHP) and EFnon−CO2(pellet) are
the non-carbon dioxide emission factors for CHP and wood pellets (kgCO2-e GJ−1).

2.5.3. Renewable Diesel (CO2-efossil and CO2-egen)

To determine carbon dioxide emissions displaced and non-carbon dioxide emissions
generated for liquid biofuel (renewable diesel), it was necessary to first calculate the
useful (available) energy. Assuming a renewable diesel production volume of 0.32 kL per
tonne of dry wood [51,52], and a moisture content of 12% (wood shavings), the renewable
diesel production of dry wood biomass was estimated to be 0.36 kL tonne−1. Using the
standardized value of 50% carbon content in wood, the available energy per tonne of
carbon for liquid fuel was calculated with:

Eavail(liquid) = Econtent(bio f uel) ×
Vprod

Ccontent/100
(8)

where Econtent(biofuel) is the energy content of one kilolitre of biofuel (GJ kL−1), Vprod is the
volume of biofuel produced per tonne of dry wood biomass (kL tbiomass

−1), and Ccontent is
the carbon content (%), used to convert units from biomass to carbon.

Using the available energy figures and the NGA [47] emission factor for transport
fuels of the substituted fossil fuel type (traditional diesel oil), carbon dioxide emissions
avoided through combustion were calculated with:

CO2 − e f ossil(liquid) = Eavail(liquid) ×
(

EFliquid/1000
)

(9)

where CO2-efossil(liquid) is the carbon dioxide emissions (tCO2-e tC−1), Eavail (liquid) is the
useful (available) energy, and EFliquid is the emission factor for the production of liquid
biofuel (kgCO2-e GJ−1).

Using the available energy figures and the NGA [47] emission factors for methane
and nitrous oxide generated through combusting biofuels for transport energy purposes,
the non-carbon dioxide emissions generated in the bioenergy type were calculated with:

CO2 − egen(liquid) = Eavail(liquid) ×
EFnon−CO2(liquid)

1000
(10)

where Eavail(liquid) is as above, and EFnon−CO2(liquid) is the non-carbon dioxide emission
factor for liquid fuel (kgCO2-e GJ−1).

2.5.4. Transport Emissions (CO2-etransp)

To calculate carbon dioxide emissions associated with transportation, it was necessary
to first calculate the carbon dioxide emissions generated per volume of transport fuel,
assumed to be traditional diesel, using NGA [47] energy content and emission factors.
Assuming an energy content of one kilolitre of diesel (Econtent(diesel)) of 38.6 GJ kL−1, fuel
intensity (Fuelintens) of 0.16 L tC−1 km−1 (assuming 0.07 L tbiomass km−1 [53], 15% moisture
content, and a distance of 50 km for CHP and wood pellets and 300 km for renewable
diesel, transport emissions were calculated as:

CO2 − etransp(CHP,pellet) = Econtent(diesel) × Fuelintens × 50 (11)

CO2 − etransp(liquid) = Econtent(diesel) × Fuelintens × 300 (12)

2.5.5. Annual Net GHG Emissions Avoided (CO2-eoffset_ha and CO2-eoffset_total)

For each scenario, net GHG emissions avoided (offset) by substituting a traditional
fossil fuel type with a bioenergy alternative were estimated on a per hectare per year
basis with:
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CO2 − eo f f set_ha = Cresidue × CO2 − eavoid (13)

where CO2-eoffset_ha is the GHG emissions avoided for each scenario (tCO2-e ha−1 year−1),
Cresidue is the carbon content in available residues estimated using FullCAM (tC ha−1 year−1),
and CO2-eavoid is the net GHG emissions avoided in the energy substitution scenario,
expressed as carbon dioxide equivalents (tCO2-e/tC) (Equation (1)). Conversion to total
(regional) annual avoided (offset) potential was achieved by multiplying CO2-eoffset_ha by
the total area (A), in hectares:

CO2 − eo f f set_total = CO2 − eo f f set_ha × A (14)

2.6. Uncertainty and Sensitivity Analysis

To investigate the variability of emission offsets based on uncertainties of inputs, a
Monte Carlo analysis was performed on selected variables using Microsoft Excel software.
The effect of energy conversion efficiencies for CHP and wood pellets, fuel intensity of
renewable diesel, and variability in the proportion of stem available for extraction were
investigated. For conversion efficiency, the impact of a ±5% variation from the 70% base
rate for CHP, and 75% base rate for pellets, was investigated. For renewable diesel, the
±10% variation from the fuel intensity rate of 320 L per tonne of biomass was investigated.
To account for uncertainty in the amount of residue left on-site, the proportion of stem
and bark carbon available for extraction was varied over the range 95% ± 5% of the total
reported by the FullCAM modelling. Random variates within the specified ranges were
sampled from a rectangular distribution, and 1000 Monte Carlo iterations were run to
calculate the average outcome and the variability (reported as the standard deviation).
Covariances between random variables were assumed to be zero, reflecting the assumption
that they are statistically independent.

The sensitivity of the results to the distance required to transport residue feedstock
to a bioenergy processing facility was explored, with four distance scenarios (50 km,
100 km, 200 km, and 300 km), For CHP and pellets, the base case was 50 km, and 300 km
for renewable diesel, given the distances from the study site to existing or proposed
bioenergy facilities.

3. Results
3.1. Carbon Stocks

Table 3 shows the results of the FullCAM simulations for the different tree fractions,
forest management treatments, and residue utilization alternatives.

Table 3. Carbon in forest harvest residue for two residue utilization alternatives and forest treatments.
Values are the total residues produced over the course of a single 30-year rotation.

Residue
Alternative

Forest
Treatment

Stems
(tC ha−1)

Branches
(tC ha−1)

Bark
(tC ha−1)

Total
(tC ha−1)

1
Thinning 0.84 4.79 0.12 5.75

Final harvest 3.14 17.97 0.42 21.53

Total 3.98 22.76 0.54 27.28

2
Thinning 15.92 4.79 2.04 22.75

Final harvest 3.14 17.97 0.42 21.53

Total 19.06 22.76 2.46 44.28

Over a full rotation, 27.28 tC ha−1 of forest residue biomass is predicted to be available
for use under residue utilization alternative 1, and 44.28 tC ha−1 under residue utilization
alternative 2 (Table 3). Branches at final harvest comprised the largest residue component
of any fraction, across all forest treatments (17.97 tC ha−1). At thinning, stems had the
largest accumulated carbon (15.92 tC ha−1) in residue utilization alternative 2, where it
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was assumed that 95% of thinned stems were available for bioenergy, compared with
alternative 1 (0.84 tC-ha−1), where just 5% of stems were assumed to be available. Stems at
final harvest accounted for just a small proportion of carbon (3.14 tC ha−1) available for
bioenergy, which is consistent with expectations that this fraction provides the primary,
merchantable product to mill. Carbon in bark accounted for a small proportion of the total
carbon in both residue utilization alternatives (0.54 tC ha−1 in alternative 1; 2.46 tC ha−1 in
alternative 2) available for bioenergy. These bark volumes ranged from 2% to 5.3% of the
total residue material and included only bark on stems, not bark on branches.

Information on past harvesting activity for the case study area was used to generalize
and scale the results to the whole plantation estate (case study site), which suggested
an average harvesting rate of 3.3%, or 2833 hectares per year. Based on the simplifying
assumption of continuous harvesting and replacement, with an even representation of
coppicing across the estate, an average of 77,293 tC year−1 in residues was expected to be
available across the whole plantation (average of 0.91 tC ha−1 year−1) for residue utilization
alternative 1; and 125,460 tC year−1 (average of 1.48 tC ha−1 year−1) for residue utilization
alternative 2.

3.2. Avoided GHG Emissions

Table 4 shows the carbon dioxide emissions associated with producing the equivalent
energy to that available in the residue for the three different bioenergy types (or scenarios).
Standard deviation values depict the effects of variation in the uncertainty analysis for
energy conversion efficiencies (CHP and pellets), renewable diesel intensity, and thinned
stem and bark utilization. The combustion carbon dioxide emissions represent the carbon
dioxide emissions associated with combusting the traditional fossil fuel source, which are
avoided in the proposed scenarios. Methane and nitrous oxide emissions (non-CO2), and
transport emissions generated by bioenergy, expressed as carbon dioxide equivalents, are
also shown in Table 4.

Table 4. Carbon dioxide emissions associated with the combustion of fossil fuel type (avoided), GHG emissions associated
with bioenergy (generated), and net GHG emissions avoided.

Scenario 1
Combustion Carbon

Dioxide Emissions Avoided
(t CO2-e tC−1)

Non-CO2 GHG Emissions
Generated by Bioenergy

(t CO2-e tC−1)

Transport Carbon
Dioxide Emissions

(t CO2-e tC−1) 2

Net GHG
Emissions Avoided

(tCO2-e tC−1)

1 5.15 ± 0.30 0.031 ± 0.002 0.022 5.10 ± 0.30

2 1.44 ± 0.04 0.034 ± 0.001 0.022 1.38 ± 0.04

3 1.74 ± 0.20 0.062 ± 0.007 0.130 1.53 ± 0.19
1 Scenario 1 (CHP from residue replacing grid electricity); scenario 2 (wood pellets from residue replacing natural gas); scenario 3 (renewable
diesel from residue replacing diesel). 2 Transport emissions are reported for the base case for each scenario (50 km for scenarios 1 and 2,
and 300 km for scenario 3).

In this case study, biomass-fed CHP that replaces coal-fired electricity had the highest
mitigation potential, with 5.10 ± 0.30 tonnes of GHG emissions avoided for each tonne
of biomass carbon combusted. This compares to 1.53 ± 0.19 and 1.38 ± 0.04 tonnes of
avoided emissions for renewable diesel replacing traditional diesel and wood pellets
replacing natural gas, respectively. Renewable diesel generated the most non-carbon
dioxide emissions, 0.062 ± 0.007 tonnes of equivalent carbon dioxide emissions for each
tonne of carbon available for energy generation, and the highest transport carbon dioxide
emissions (0.13 t CO2-e tC−), given the longer travel distance to the proposed bioenergy
facility in this case study.

3.3. Annual GHG Emissions and Sensitivity Analysis

The average GHG emissions per hectare potentially avoided each year for each sce-
nario and residue utilization alternative are shown in Table 5. Additionally, average GHG
emissions avoided are expressed on a whole plantation estate basis, representing the poten-
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tial mitigation using the available residue for bioenergy each year from the case study area.
The sensitivity of the results to change in transport distance (50 km, 100 km, 200 km, and
300 km) are also included in Table 5.

Table 5. Sensitivity analysis for the impact of transport distances on GHG emission offsets for each scenario for residue
utilization alternatives 1 and 2 (average and standard deviation for a per hectare and site basis).

Average per ha GHG Emissions Avoided per Year (±s.d.)
(tCO2-e ha−1 year−1)

Average Site GHG Emissions Avoided per Year (±s.d.)
(tCO2-e year−1)

Scenario
Residue

Alternative
50 km 100 km 200 km 300 km 50 km 100 km 200 km 300 km

1
1 4.61 ± 0.27 4.60 ± 0.27 4.53 ± 0.27 4.51 ± 0.27 13,064 ± 763 12,993 ± 761 12,894 ± 767 12,773 ± 772
2 7.36 ± 0.43 7.32 ± 0.43 7.24 ± 0.44 7.2 ± 0.44 20,798 ± 1228 20,681 ± 1242 20,595 ± 1230 20,443 ± 1228

2
1 1.24 ± 0.04 1.23 ± 0.04 1.19 ± 0.04 1.15 ± 0.04 3538 ± 105 3480 ± 103 3364 ± 108 3251 ± 106
2 1.99 ± 0.07 1.96 ± 0.06 1.90 ± 0.06 1.84 ± 0.06 5653 ± 189 5548 ± 184 5380 ± 183 5194 ± 177

3
1 1.49 ± 0.18 1.47 ± 0.17 1.44 ± 0.17 1.38 ± 0.17 4203 ± 493 4186 ± 487 4088 ± 495 3929 ± 490
2 2.38 ± 0.27 2.35 ± 0.28 2.29 ± 0.28 2.23 ± 0.29 6684 ± 781 6596 ± 810 6477 ± 789 6320 ± 782

Note: Base transport distances for each of the scenarios are shown in bold.

With residue utilization 1, there is the potential to avoid 4.61 tonnes of GHG emissions
per hectare per year if CHP generated by harvest residue were to replace traditional fossil
fuel electricity at a base transport distance of 50 km. This compares to 1.38 tonnes of
emissions per hectare per year for renewable diesel at a base transport distance of 300 km,
and 1.24 tonnes of emissions per hectare per year for wood pellets at a base transport
distance of 50 km, when these renewable sources replace fossil fuel sources. As expected,
the net GHG emissions avoided were higher for all scenarios under residue utilization
alternative 2, where the larger harvested volumes reflect the inclusion of 95% of stems and
bark at thinning (compared to 5% in alternative 1).

Based on the annual harvest residues available for bioenergy from the Toolara–Tuan
Forest Estate, it would be possible to avoid (offset) 12,773 to 20,798 tonnes of GHG emissions
per year by replacing coal-fired electricity with CHP (scenario 1). Wood pellets replacing
natural gas could avoid 3251 to 5653 tonnes of emissions per year (scenario 2); replacing
diesel could avoid 3929 to 6684 tonnes of emissions per year (scenario 3). For all scenarios,
there was a negligible decrease in emission offsets with increased transport distances to the
bioenergy facility (see Table 5).

4. Discussion

This study found that annual harvest residues from a managed softwood plantation
in southeast Queensland can provide carbon mitigation benefits when used for bioenergy.
The study results revealed that bioenergy replacing coal-fired electricity provides the
largest mitigation opportunity, consistent with [23,24]. In Queensland, electricity is mostly
generated by burning black coal, a carbon-intensive fuel source, that emits fewer emissions
relative to brown coal (used widely for electricity generation in other parts of Australia),
but more than other fossil fuels considered in the study: diesel and natural gas. This study
suggests that potential GHG emissions offsets may be up to four times higher if forest
residue bioenergy displaces coal-fired electricity compared with diesel or natural gas.

From a practical perspective, replacing coal-fired electricity with combined heat and
power is a realistic short-term option, given the technological and operational capacity to
upscale and adapt existing practices to increase forest residue for combined heat and power
at the study site. Laminex Group Pty Ltd. (Maryborough, Australia), a wood-processing
facility situated at the edge of the Toolara–Tuan Forest Estate, utilizes forest residues for
heat and electricity (CHP) at its plant. Opportunities exist to expand use of residues, to
include harvest residues, for CHP at both this facility and others co-located at the plantation.
Additionally, there is future scope to sell excess energy to the State electricity.
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Mitigation opportunities were comparable between diesel and natural gas when
these were substituted for renewable diesel and wood pellets, respectively. Similarly to
combined heat and power, there are existing or developing facilities with a capacity to
utilize forest harvest residues for pellets or renewable diesel in Queensland. Co-located
at the plantation site is a pellet production company, Altus Renewables Limited, with a
capacity to produce 125,000 tonnes of wood pellets per year [45] and scope to expand
further. International demand for pellets is expected grow, and there is likely to be greater
demand in the domestic Australian market as States work towards increasing the share of
renewables in the energy mix.

Renewable diesel may currently be a hypothetical bioenergy scenario for Queens-
land; however, Southern Oil Pty Ltd. (Gladstone, Australia) has established an advanced
biofuels pilot project at the Northern Oil Refinery at Gladstone. Beginning with bagasse
(sugarcane residues) and prickly acacia (invasive pest species), the plant has scope to
further expand and utilize other woody feedstocks in the future [46]. Renewable diesels,
replacing traditional fossil fuel-based diesels, represent one of the main, short-term oppor-
tunities to reduce transport emissions [9], which is particularly relevant to Queensland, as
well as Australia more broadly, given the extensive road networks and heavy reliance on
road freight.

Initiatives to promote sustainable and renewable energies and emissions reductions
exist at both state and national level. Recently, Queensland has made specific commit-
ments to biofuels and bioproducts [17]. With the skills, resources, and technology already
existing in forestry and agriculture, along with biofuel blend mandates in the transport
industry, Queensland is well positioned to develop a biofuels industry based on residue
feedstocks [54]. Waste-to-bioenergy is well positioned to play a significant role in assisting
Queensland to reach its 50% renewable energy by the 2030 target [55]. This study further
supports the opportunity for forest woody residues to contribute to carbon mitigation in
Queensland and Australia.

Under the Australian Government’s Renewable Energy Target (RET) scheme, elec-
tricity providers are required to meet regulated renewable energy obligations [15]. The
Emissions Reduction Fund (ERF) provides financial incentives for emission reduction
technologies through tradeable carbon credits [16]. ‘Wood waste’ is specifically identified
in the Australian Government’s Renewable Energy (Electricity) Act 2000 as an eligible
renewable energy source for industrial electricity projects attracting ERF carbon credits [56].
Similarly, fuel switching to sources such as renewable diesel that reduce emissions in land
transportation and aviation are eligible for ERF carbon credits.

Carbon pricing fluctuates in response to many market-based and other forces, includ-
ing supply and demand and political and planning processes. The current price (September
2021) of Australian carbon credit units (ACCUs) is AUD 26 (where each ACCU is equivalent
to one tonne of carbon dioxide equivalent (tCO2-e) avoided), up from about AUD 15 per
ACCU (tCO2-e) during most of 2020. Using the estimate of carbon emissions avoided
in this study, where bioenergy replaces coal-fired electricity, and the more conservative
estimate for harvest residue availability (residue utilization alternative 1), AUD 339,664
of carbon credits may be possible. This assumes that a price of AUD 26/t CO2-e and
13,064 tonnes of carbon are avoided (offset), and that these avoided emissions meet the
additionality test.

In this study, two alternatives for thinned stems and associated bark were analysed.
The more conservative assessment included a minor proportion (5%) of these fractions
for bioenergy and more closely represents the current practice at the study site. Removal
of higher proportions assumes that bioenergy provides the optimal utilization over alter-
native uses. Pulp logs and round logs have uses in panel production, landscaping, and
construction products; there are emerging opportunities for residues in biochar [57] and
bioplastic production [58]. Commercial contracts and revenue streams associated with
alternative uses of residue material, particularly pulp logs and round logs from thinning
operations, may impact the economic viability and therefore emission mitigation potential
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of harvest residues used for bioenergy. Emission offsets will also be impacted by alternative
fates of residues such as burning and decay, not considered in this study; likewise, there are
opportunities to combine bioenergy generation with carbon capture and storage (BECCS),
which may even lead to negative emissions [59,60].

The bark content of residue feedstock for bioenergy must be managed to avoid nega-
tive impacts, including pollutants (nitrogen oxides and sulphur dioxide emissions), ash
content, reduced calorific value and therefore combustion efficiency, and plant equipment
damage. Bark in softwood plantations is not as easily removed in situ from stems as in
hardwood plantations and is transported to processing facilities attached to the logs and
branches. Given that the highest percentage of bark is found at the top of the stem [61],
harvest residues, particularly those containing high proportions of stem tops and branches,
are likely to have higher bark content than the 10% average by weight in pine logs [61]. At
this site, bark currently contributes a higher-than-ideal proportion of the feedstock avail-
able for pellets [62], most likely due to bark included in the chipping of stems and branches.
Although not currently in practice at the case study site, debarking equipment typically
used at sawmills and other bioenergy facilities around the world could be employed to
remove the bark if required [63]; however, this represents an additional financial cost.

This study did not consider costs associated with use of forest residue for bioenergy.
Ref. [24] identified some of these costs to include feedstock costs, costs of extraction,
and fluctuations in price of fossil fuels. Transportation and hauling biomass are widely
recognized as the most significant forest bioenergy costs [23,31,64]. Where bioenergy
facilities are co-located at the forest, or close by, there are likely to be lower costs, and
therefore higher net emission offset credits. This study shows that although transport
costs may be significant in bioenergy projects, transport emissions are minor relative to the
overall emissions profile.

Concerns have been raised about the sustainability of forest bioenergy [65,66], in
particular, the diversion of wood from native or unmanaged forests, high-quality stems
from managed plantations, and land use changes that might lead to deforestation [67].
High energy demands can lead to increased prices and the diversion of woody biomass
from other products [68]. When these diversions occur, there can be implications for the
assumption of carbon neutrality, food security, and wood product industries. The case
study site, Toolara–Tuan Forest Estate, is a well-established and sustainably managed
plantation with long-term contracts for the supply of high-quality stems for timber prod-
ucts. Co-located at the site is a mill, which processes sawlogs for construction materials.
Additionally co-located are processing plants utilizing residues for secondary products
such as panelboards as well as bioenergy products for both on-site use and sale to the
market. Given this and the very large difference in prices between bioenergy products and
traditional forest products, there appears to be limited risk that forest biomass material,
other than residues, will find their way to bioenergy at this regional site; it is unlikely to
attract the same concerns as native forest residues, as reported by [33].

Additionally, consideration of the impacts of the removal of forest residue for bioen-
ergy on soil health and nutrition is important. Soil health and nutrition can be supported by
ensuring suitable volumes of nutrient-rich tree fractions remain on-site to return nutrients
to the soil [28]. Pine needles are the most nutrient-dense fraction of softwoods [69]; in this
study, needles were not considered as a bioenergy feedstock. As well as pine needles, this
study excluded cones, and at least 5% of each of the other tree fractions (stems, branches,
bark) from the residue utilization. Soil health and nutrition in managed plantations are
also maintained through silviculture practices that include routine monitoring of sites and
fertilizer application. Thus, harnessing increased volumes of harvest residue for bioenergy
should be supported with the ongoing monitoring of soil health and nutrition.

5. Conclusions

This case study has presented the modelling of forest harvest residue availability in
Queensland to examine bioenergy output and carbon impacts under a range of existing
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and hypothetical scenarios. It employed a national carbon accounting model, FullCAM,
for a project-level assessment of forest residue bioenergy. It is the first such use of the
model and demonstrates further research opportunities to apply the model and approach
to other finer-scale biomass assessments such as agricultural residues and native forest
thinning. The results of this study demonstrate that combined heat and power generated
with harvest residue may provide the best opportunity to avoid (offset) GHG emissions as
an alternative to fossil fuels. Significantly, the results confirm that there are large volumes of
harvest residues produced each year and that a range of bioenergy final products replacing
a fossil fuel source can provide emissions savings. This study found that emission offsets
are not sensitive to increased distances to transport feedstock to bioenergy plant. Regarding
the sustainability of feedstock sources for bioenergy, and the carbon emission implications
of their use, this research presents finer-scale spatial and temporal estimates compared to
other studies, and an important preliminary assessment of harvest residue for bioenergy.
As Queensland continues to invest in its renewable energy and bio-products future, this
research contributes to the overall discussion of feasibility and opportunities for industry
and governments.

The modelling framework developed here required making a number of simplifying
assumptions. It was assumed that the entire plantation was stocked with the hybrid taxon,
although there remained a mix of taxa. It was also assumed that harvest would occur at a
regular and consistent rate over the next 30 years, although the plantation management
plan is to continue to reduce rotation length into the future. Conversion pathways and
technological feasibility, as well as considerations of supply and quality, were excluded
the study, as were direct and indirect GHG emissions associated with collecting and
storing residues.

To further enhance our understanding, future research that looks more broadly at
other sustainability factors is required. This study focused on carbon mitigation and did
not consider social and economic considerations such as regional development, capital
investment requirements, transportation costs, and the quality of supply. Future research
that considers mill residues, technological constraints, and opportunity costs of existing
and future alternative uses of available residues, such as biochar and bioplastics, is re-
quired to better understand the full scope of the potential of forest residues for bioenergy
in Queensland.
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