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Abstract: Identifying wood accurately and rapidly is one of the best ways to prevent wood product
fakes and adulterants in forestry products. Wood identification traditionally relies heavily on special
experts that spend extensive time in the laboratory. A new method is proposed that uses near-infrared
(NIR) spectra at a wavelength of 780–2300 nm incorporated with the gray-level co-occurrence (GLCM)
texture feature to accurately and rapidly identify timbers. The NIR spectral features were determined
by principal component analysis (PCA), and the digital image features extracted with the GLCM
were used to create a support vector machine (SVM) model to identify the timbers. The results from
fusion features of raw spectra and four GLCM features of 25 timbers showed that identification
accuracy by the model was 99.43%. A sample anisotropy and heterogeneity comparative analysis
revealed that the wood identification information from the transverse surface had more characteristics
than that from the tangential and radial surfaces. Furthermore, short-wavelength pre-processed
NIR bands of 780–1100 nm and 1100–2300 nm realized high identification accuracy of 99.43% and
100%, respectively. The four GLCM features were effective for improving identification accuracy by
improving the data spatial clustering features.

Keywords: near-infrared (NIR) spectra; gray-level co-occurrence matrix (GLCM); wood identification;
feature fusion; support vector machine (SVM)

1. Introduction

The forest products industry, such as the building and furniture manufacturing in-
dustries, has become prosperous worldwide. Wood is traded actively and globally as a
raw material. Many timbers in the market are not native to the importing country and are
difficult for local people to identify. For example, the supply of wood raw material in China
is mainly by importation [1]. Consumers know little about exotic wood, and fakes and
adulterants of wood products are challenging for the forest products industry. Therefore,
an on-site, accurate wood identification technique is necessary for the industry.

The traditional method of identifying wood requires a special expert who spends an
extended time identifying a sample. This method needs to be improved for on-site rapid
testing in market supervisory agencies [2]. Near-infrared (NIR) spectral analysis and image
identification have the potential to be used for the on-site identification of wood because of
the advantages of non-destructive testing, fast identification, and instrument portability.
Red oak and white oak species have been correctly classified with NIR spectra and soft
independent modeling of class analogies [3]. NIR spectra with the aid of partial least
squares for discrimination analysis has been used to identify true mahogany (Swietenia
macrophylla King.) from three similar-looking types of wood, including crabwood (Carapa
guianensis Aubl.), cedar (Cedrela odorata L.), and curupixá (Micropholis melinoniana Pierre),
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at two conditions of laboratory-processed powder [4] and solid wood block [5]. Eight
rosewoods were clearly placed in eight categories by principal component analysis (PCA)
based on the NIR spectra [6]. Seven high-value Dalbergia wood species were identified
at the species level using portable NIR technology [7]. Softwood and hardwood species
from ancient wooden statues were successfully identified by NIR spectra combined with
PCA [8].

Wood identification has been carried out based on image analysis. Ibrahim et al. pre-
sented an automated wood texture recognition system, in which the pore features are used
to assign new images to broad categories, and then the image is classified into a particular
species by another set of textural features [9]. In a subsequent study, Ibrahim et al. used
24 statistical features of vessels to successfully identify 30 species [10]. Yusof et al. proposed
a Kernel–Genetic algorithm technique to select nonlinear features in macroscopic images
of wood for a tropical wood species recognition system [11]. Rajagopal et al. introduced an
image quality assessment module in a wood identification system to improve identification
accuracy [12]. Kobayashi et al. constructed a wood recognition system using the textural
features of a low-resolution computed tomography image [13]. Based on the textural
features extracted using gray-level co-occurrence (GLCM), Bremananth et al. developed
a wood identification system to classify 10 species of Indian woods [14]. Yousof et al.
introduced a fuzzy logic-based pre-classifier mechanism in a 52 species tropical wood
recognition system. The method pre-classified the species into groups based on pore char-
acteristics extracted using the statistical properties of the pore distribution and identified
the wood species using the features extracted with the basic gray-level aura matrix [15].

Those studies indicated that the use of NIR spectra and image identification are
effective methods for wood identification. However, increasing the quality and quantity
of the spectral database are key steps to improve the identification accuracy of the NIR
spectral model, but it is unlikely to be accomplished in the short term. Previous reports
have indicated that the pore and textural characteristics are two main useful features for
identifying wood images, but the pore features are only suitable for pre-classifying where
the wood species are classified into groups in some cases. There is no precise boundary
between categories. Wood texture varies within similar species, as it is influenced by the
growing location, weather, age, and different parts of the wood. Introducing better features
with more discriminative power is a challenge for wood image identification.

A novel method based on a fusion of NIR spectral features and digital image texture
features is proposed in this study to improve the robustness and accuracy of wood identifi-
cation. The innovation in this study is that the information obtained from the NIR spectra
and digital wood image can be used to identify wood that overcomes the limitations of a
single feature. PCA was used to reduce the dimensions and extract the NIR spectral data
features. GLCM was used to extract the textural features of the wood digital images. In
this study, the NIR spectra and textural features were combined at the feature level, and a
support vector machine (SVM) model was created to identify 25 common timbers widely
used in solid wood flooring. The effectiveness of the proposed method was evaluated. The
identification efficiencies of three different wood surfaces (transverse, radial, and tangential
sections) were compared, and identification accuracy was analyzed.

2. Materials and Methods
2.1. Sample Preparation

In total, 25 timbers, commonly used for flooring, were studied (Table 1). They were
acquired from the Beijing Dongba wood market at different times. The boards were
randomly collected to represent timbers in general. Five 900 × 160 × 18 mm boards were
purchased for every timber. The wood samples anatomical analysis and the consistency
ascertain were conducted in the Research Institute of Wood Industry, Chinese Academy of
Forestry. A total of 42 cubes with sides of 15 mm along the longitudinal, tangential, and
radial directions were prepared from the heartwood of the 25 timbers using the planer
and circular saws. Among them, 28 samples were randomly used as the training set, and
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14 were in the test set. The wood samples were equilibrated in a chamber before the
experiment at a constant temperature of 20 ◦C and relative humidity of 65%. The samples
were considered to reach equilibrium moisture content when the difference between wood
samples weights determined every 24 h was less than 0.5% of the wood samples mass.

Table 1. Wood timbers used in the experiment.

ID Latin Name Trade Name Genus Family

1 Hymenaea sp. Courbaril, Jatoba, Jutai, Jatai et al. Hymenaea Caesalpiniaceae
2 Newtonia sp. Dahoma Newtonia Mimosaceae
3 Xylia sp. Pyinkado, Cam xe, Deng, Sokram Xylia Mimosaceae
4 Intsia sp. Merbau, Mirabow, Ipil, Djumelai et al. Intsia Caesalpiniaceae
5 Manilkara sp. Macaranduba, Kating, Sawokecik Manilkara Sapotaceae
6 Piptadeniastrum sp. Dabema, Dahoma, Ekhimi, Toum et al. Piptadeniastrum Mimosaceae
7 Gluta sp. Rengas, Inhas, Thitsi, Rengas hutan et al. Gluta Anacardiaceae
8 Acacia sp. Brown salwood, African rosewood et al. Acacia Mimosaceae
9 Koompassia sp. Kempas, Empas, Impas, Mengeris et al. Koompassia Caesalpiniaceae

10 Madhuca sp. Bitis, Betis, Masang Madhuca Sapotaceae

11 Myroxylon balsamum
(L.) Harms Balsamo, Estoraque Myroxylon Fabaceae

12 Tabebuia sp. 1 Tabebuia, Hakia, Guayacan, Ipe et al. Tabebuia Bignoniaceae
13 Tabebuia sp. 2 White cedar, Whitetababuia, Jahoto et al. Tabebuia Bignoniaceae
14 Swintonia sp. Merpauh, Civit, Boilam, Merpau et al. Swintonia Anacardiaceae
15 Cylicodiscus sp. Okan, Buemon, Denya, Edum Cylicodiscus Mimosaceae
16 Dracontomelon sp. Dao, Kaililaki, Seng kuang, Lamio et al. Dracontomelon Anacardiaceae
17 Pericopsis sp. Afrormosia, Assamela, Obang Pericopsis Fabaceae
18 Sterospermum sp. Padretree Sterospermum Bignoniaceae
19 Erythrophleum sp. Tali, Missanda, Sasswood, Alui et al. Erythrophleum Caesalpiniaceae
20 Planchonella sp. White planchonella, Kete Planchonella Sapotaceae
21 Pterocarpus sp. 1 Muniga, Nkula, African padauk Pterocarpus Fabaceae
22 Dipteryx sp. Cumaru, Tonka bean, Almendrillo et al. Dipteryx Fabaceae
23 Dicorynia sp. Angelique, Angelica, Basralocus et al. Dicorynia Caesalpiniaceae
24 Pterocarpus sp. 2 Padauk, Ambila Pterocarpus Fabaceae
25 Apuleia sp. Garapa, Pau mulato Apuleia Caesalpiniaceae

2.2. NIR Spectra and Digital Image Collection

The NIR spectra were measured with an ASD Field Spec® spectrometer (Analytical
Spectral Devices, Boulder, CO, USA) in diffuse reflectance mode at 1 nm intervals over
the wavelength range of 350 to 2500 nm. The fiber optic probe with an 8 mm light spot
was set perpendicularly to the surface of the solid wood cube sample when the spectrum
was acquired. The distance between the fiber optic probe and the surface of the wood
sample was 5 mm. A commercial Teflon® background (Boulder, CO, USA) was used as
a calibration whiteboard. The spectrometer was recalibrated with the whiteboard after
30 min. The sample count/average was set to 30 (30 scans were performed), and they were
averaged into a single spectrum. The NIR spectra were measured on the transverse, radial,
and tangential surfaces. One spectrum was collected from all surfaces of each sample.
There were 1050 samples and 42 spectra for each timber surface. The spectral region of
780–2300 nm was selected for data analysis.

The digital images of the transverse, radial, and tangential surfaces were scanned
using the HP Scanjet 4850 (China Hewlett-Packard Co., Ltd., Shenzhen, China). The scan
sample area was 15 × 15 mm, the image resolution was 512 × 512 pixels with horizontal
and vertical resolutions of 800 dpi, and the image was stored in JPEG format. The surface
of the digital image corresponded to the surface used during the collection of the spectrum.
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2.3. Feature Extraction Analysis and the Fusion Information Model
2.3.1. Principal Component Analysis

PCA is a bilinear modeling and projection method. Data from the original variables
are converted into a smaller number of latent variables called PCs. Each PC explains a
certain amount of the information in the original dataset with the first PC providing the
greatest source of information in the dataset. PC scores are the projected locations of each
sample corresponding to the PC. The loading represents the contribution of each variable
to each PC, so the method reduces the dimensionality of the original variables by selecting
the variable in the PC model [16,17]. NIR bands often overlap with redundancy and noise.
PCA is used to extract the information from a data matrix and reduce noise. The model for
the matrix with a given number of PCs was expressed as

X = TPT + E (1)

where T is the score matrix, P is the loading matrix, and E is the error matrix.
PCA was carried out for the NIR spectra to extract the feature information and reduce

the data matrix dimensions.

2.3.2. Extracting the Textural Feature Based on the GLCM

GLCM is an approach based on statistical calculations of the second-order histograms
in grayscale images. In this method, the texture is formed by the repeated occurrence of
grayscale distribution in the spatial position. GLCM shows that the spatial distribution of
each pixel in the image contains textural information and is expressed as follows:

p (i, j, d, θ) = {[ (x, y), (x + a, y + b)| f (x, y) = i; f (x + a, y + b) = j ]} (2)

where d is distance, θ is the angle (usually 0◦, 45◦, 90◦ or 135◦), i, j is the pixel grayscale of
two points (i, j = 1, 2 . . . . . . g, and g is the gray level of image).

As the GLCM results depended on the g, d, and θ values in this study, g = 8, d = 4, and
the average value of the GLCM feature composed of 0◦, 45◦, 90◦, and 135◦ were used to
ensure the rotation invariant. Four common descriptors—namely, angular second moment
(ASM), contrast, correlation, and entropy, were used [18,19].

The ASM provides the sum of square elements in the GLCM matrix. This value is high
when the frequency of repeated image pixels is high. The ASM describes the thickness of
the texture and the uniformity of the gray distribution [20].

Angular Second Moment (ASM) =
g

∑
i=1

g

∑
j=1

p2(i,j, d, θ) (3)

Contrast measures the intensity linking contrast between a pixel and its neighbor in
the entire image. It describes the strength of the texture and the sharpness of the image [20].

Contrast =
g

∑
i=1

g

∑
j=1

[(i− j)2 × p2(i, j, d, θ)] (4)

Correlation is a measure of gray-tone linear dependence in an image. It specifies how
a pixel is correlated with its neighbor. Correlation can be used to determine the main
direction of the texture [20].

Correlation =
g

∑
i=1

g

∑
j=1

[i× j× p(i, j, d, θ)− µ1 × µ2]/(d1 × d2) (5)

where µ1 =
g
∑

i=1
i

g
∑

j=1
p(i, j, d, θ); µ2 =

g
∑

j=1
j

g
∑

i=1
p(i, j, d, θ);
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d2
1 =

g
∑

i=1
(i− µ1)

2
g
∑

j=1
p(i, j, d, θ); d2

2 =
g
∑

j=1
(j− µ1)

2
g
∑

i=1
p(i, j, d, θ).

Entropy calculates the randomness of the image. A homogeneous image will result in
a lower entropy value. Entropy reflects textural complexity [20].

Entropy = −
g

∑
i=1

g

∑
j=1

(i−m)2 p(i, j, d, θ) (6)

where m is the means value of p(i, j, d, θ).
The SVM model was used. A linear function occasionally cannot separate a model.

The data were mapped into a new feature space and a dual representation was used with
the data from their dot product. A kernel function was used to map from the original space
to the feature space. The function can be more than a single form so that it can handle
nonlinear classification. Kernels are viewed as the mapping of nonlinear data to a higher
dimensional feature space. Kernels provide a computation shortcut by allowing linear
algorithms to work with higher dimensional feature space [21].

3. Results and Discussion
3.1. NIR Spectra and GLCM Features

Figure 1 shows the raw NIR spectra on the transverse surfaces of the first ten wood
samples. The gaps among the different timbers on the spectral curve were so narrow
that it was difficult to distinguish them from the traditional spectral retrieval method. A
multivariate analysis was necessary to classify the wood using the NIR spectra. Table 2
shows the GLCM textural features on the transverse surface. Four GLCM features differed
among the timbers. The range in the contrast value of Manilkara sp. did not overlap with
the ranges of Hymenaea sp., Newtonia sp., Intsia sp., Cluta sp., and Acacia sp. The range of the
Madhuca sp. contrast value did not overlap with the range of Hymenaea sp. and Newtonia
sp. These results indicate that the GLCM textural features can be applied to identify wood
species. The order of the magnitude of difference among the four GLCM features was
remarkable, and the GLCM parameters were normalized.

Table 2. GLCM textural features on the transverse surface of the first 10 wood samples.

Timbers
ASM Contrast Correlation Entropy

Maximum/Minimum

Hymenaea sp. 0.021037/0.018786 6.375925/5.188100 0.021853/0.014081 4.053281/3.985188
Newtonia sp. 0.020758/0.019108 6.693044/5.172383 0.021900/0.012249 4.024226/3.988707

Xylia sp. 0.019930/0.017489 7.674559/5.258430 0.021414/0.006082 4.095178/4.008789
Intsia sp. 0.020517/0.018185 7.118977/5.434322 0.020071/0.009208 4.072709/4.005149

Manilkara sp. 0.018000/0.017299 7.965371/7.124005 0.009527/0.004693 4.101009/4.076876
Piptadeniastrum sp. 0.021096/0.017824 7.796809/5.731049 0.017605/0.005607 4.087183/3.995309

Gluta sp. 0.019714/0.018141 7.004443/5.657133 0.018711/0.010394 4.074391/4.026978
Acacia sp. 0.021110/0.018087 7.053812/4.752345 0.024970/0.009276 4.076896/3.974451

Koompassia sp. 0.019957/0.018405 7.330459/5.964454 0.016465/0.008316 4.069544/4.021759
Madhuca sp. 0.018702/0.017667 8.342526/6.935808 0.010988/0.002389 4.090503/4.059368

3.2. Wood Identification Based on Raw NIR Spectra and GLCM Features

The raw NIR spectra were divided into three bands (band 1: 780–1100 nm, band 2:
1100–2300 nm, and band 3: 780–2300 nm, Figure 1). They were analyzed with the PCA
to obtain the feature information. Table 3 shows the classification results for each timber
based on the NIR, GLCM features, and fusion features. Accuracy was determined by
calculating the proportion of correctly identified samples in the test set. The independent
raw NIR spectra features and the four GLCM features were insufficient to accurately
classify the 25 timbers. The identification accuracy was only 66.86%, 69.43%, and 87.14%
for the three raw NIR spectral band features, respectively, and 93.14% for the four GLCM
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features (Table 3). The accuracy of the NIR and GLCM features combined information
improved significantly compared with the raw NIR and GLCM features alone. Accuracy
was 99.43% after all of the NIR band features and GLCM texture features were combined,
which was about a 6% improvement over the results obtained from the spectra or GLCM
features alone. The combination of the NIR spectral features and the GLCM textural feature
significantly improved classification accuracy. Tabebuia sp. 1 and Tabebuia sp. 2 were from
the same genus in Bignoniaceae. The accuracy of the two species varied greatly when using
an identification model based on a single feature. However, the two species tended to have
the same or similar accuracy when the identification model was based on the combined
features. This result was also found for Pterocarpus sp. 1 and Pterocarpus sp. 2 from the same
genus in Fabaceae (Table 3). Therefore, the feature information of the proposed method is
repeatable even within the same genus sample.
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Although the NIR spectra and GLCM features were useful for identifying the wood,
a single feature did not provide sufficient information. The NIR spectra of wood only
provide the chemical composition and molecular structure. The four GLCM descriptors
describe the digital image textural features. Combining the spectral and textural features
added more useful information to identify the wood and overcome the limitations of a
single feature.
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Table 3. Accuracy of identification based on the NIR, GLCM, and combined features.

Timbers
Band 1 Band 2 Band 3 GLCM Band 1 +

GLCM
Band 2 +
GLCM

Band 3 +
GLCM

Accuracy %

Hymenaea sp. 92.86 100 100 100 100 100 100
Newtonia sp. 85.71 100 100 92.86 85.71 100 100

Xylia sp. 92.86 100 100 78.57 100 100 100
Intsia sp. 71.43 64.29 78.57 100 100 100 100

Manilkara sp. 100 92.86 100 100 100 100 100
Piptadeniastrum sp. 64.29 28.57 92.86 100 100 100 100

Gluta sp. 100 28.57 100 100 100 100 100
Acacia sp. 14.29 7.14 50 100 100 42.86 100

Koompassia sp. 85.71 100 100 85.71 92.86 100 100
Madhuca sp. 85.71 100 100 100 85.71 100 100

Myroxylon balsamum 78.57 64.29 100 100 100 100 100
Tabebuia sp.1 71.43 92.86 100 100 100 100 100
Tabebuia sp.2 64.29 71.43 78.57 50 100 100 92.86
Swintonia sp. 92.86 100 92.86 85.71 100 100 100

Cylicodiscus sp. 7.14 64.29 28.57 100 100 100 100
Dracontomelon sp. 64.29 78.57 85.71 100 92.86 100 100

Pericopsis sp. 64.29 78.57 92.86 57.14 100 100 100
Sterospermum sp. 42.86 100 100 100 100 100 100
Erythrophleum sp. 35.71 57.14 78.57 100 100 100 100
Planchonella sp. 71.43 78.57 100 100 100 92.86 100
Pterocarpus sp.1 57.14 57.14 100 92.86 100 100 100

Dipteryx sp. 92.86 71.43 100 85.71 100 100 100
Dicorynia sp. 35.71 57.14 71.43 100 100 100 92.86

Pterocarpus sp.2 0 7.14 28.57 100 85.71 100 100
Apuleia sp. 100 35.71 100 100 100 92.86 100

Total Accuracy % 66.86 69.43 87.14 93.14 97.71 97.14 99.43

Some limitations were reflected by the experiments. The limited short-wavelength
NIR bands feature combined with the GLCM features was not as good as combining the
entire NIR band and the GLCM features to identify the 25 timbers. Overall, accuracies of
97.71% and 97.14% were obtained from the model based on band 1 and band 2 combined
with the GLCM features, respectively. However, some samples were misclassified into
other wood, particularly in the model of band 2 fused GLCM features, and up to eight
Acacia sp. samples were misclassified into Gluta sp.

3.3. The Influence of Heterogeneity for Identifying Wood

Wood anisotropy and heterogeneity affect wood identification. An early report [2]
showed that the transverse section was better for wood classification with multidimensional
texture analyses. If any surface can be used for identifying wood, the method has more
on-site flexibility.

Figure 2 and Table 4 show the digital images from the three surfaces and four GLCM
features on the three surfaces, respectively. There were large visual differences among
the three surfaces and the GLCM features differed (the sample representative images of
all timbers in this paper are included in the Supplementary Materials Table S1). Figure 3
shows the NIR spectra from the three surfaces of Dipteryx sp. The NIR spectral curves
from the three surfaces varied widely due to the wood structure particularly between the
transverse section and the other two sections. A wood transverse section consists of a cross
section of many fibers and vessels in these hardwoods, and the longitudinal axis of the
fiber and vessel cells is parallel to the direction of the NIR spectra incident light; therefore,
the NIR energy travels further into the wood and more is absorbed [22].
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Table 4. GLCM features of four timbers.

Timbers Sections ASM Contrast Correlation Entropy

Newtonia sp.
Transverse 0.020548 5.590868 0.018861 4.000332

Radial 0.020928 5.338049 0.021251 3.978335
Tangential 0.020488 6.352638 0.015480 3.996089

Cylicodiscus sp.
Transverse 0.018336 7.264176 0.008220 4.070662

Radial 0.018370 6.779222 0.012461 4.064437
Tangential 0.018946 7.023098 0.010805 4.046937

Pericopsis sp.
Transverse 0.020827 5.156918 0.021766 3.978225

Radial 0.019921 6.408489 0.014959 4.012705
Tangential 0.020725 5.080242 0.02263 3.979152

Dipteryx sp.
Transverse 0.019977 5.614030 0.018394 4.011051

Radial 0.020440 5.587884 0.019364 3.992565
Tangential 0.020233 6.059864 0.016631 4.002626

The NIR spectral band wavelength range of 780–2300 nm from the three surfaces was
extracted by PCA and then combined with the three sectional GLCM textural features, re-
spectively. Total accuracies of 99.43%, 96.29%, and 99.14% were obtained for the transverse,
radial, and tangential surfaces, respectively. Figure 4 shows the identification accuracy
with the SVM model. The transverse and tangential sections of the SVM model provided
higher identification accuracy than the radial section model. The transverse section was
slightly better than the tangential section. Thus, the transverse section is recommended
for use in identification. The tangential section can be used if the transverse section is
not available.
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3.4. Wood Identification Based on Shorter NIR Band Fused GLCM Features

A portable NIR spectrometer was used to measure the sample properties on-site, but
it has a limited wavelength range. Shorter raw NIR band-fused GLCM features are inferior
to the entire NIR-band-fused GLCM because raw NIR spectra extract some information
irrelevant to wood identification, such as instrument noise, sample status, and detection of
the environment. Some spectral preprocessing methods have been introduced to reduce
the interference of irrelevant information and ensure that the shorter NIR spectra bands
are useful to identify the wood. Before developing the SVM classification model, the
raw spectral data for the transverse section were preprocessed with the following four
methods: (I) combining the first derivative, standard normal variate (SNV), and mean
center; (II) preprocessed by combining smoothing, first derivative, and the SNV; (III) pre-
processed combining smoothing, the second derivative, and the SNV; (IV) preprocessed
with multiplicative scatter correction (MSC), the first derivative, and the SNV.

The preprocessed NIR band was divided into two segments of 780–1100 nm and
1100–2300 nm. Table 5 shows the identification accuracy of the SVM model based on the
two short NIR spectral bands pre-processed using the four methods and combined with
GLCM features. Compared to Table 2, accuracy was reduced slightly for the model based
on the 780–1100 nm NIR spectra pre-processed by methods II and IV. The identification
accuracies from the other models increased. This result indicates that the selected prepro-
cessing methods effectively reduced the irrelevant NIR spectral information and improved
identification accuracy. The identification accuracy of the shorter 780–1100 nm NIR band
was 99.43% for method III, and accuracy was 100% for the 1100–2300 nm NIR band using
methods I, II, and III. Therefore, the limited short NIR band can be used to identify the
wood after preprocessing.

Table 5. Identification accuracy of the SVM model based on two short NIR bands combined with GLCM features.

Timbers

I II III IV I II III IV

780–1100 nm 1100–2300 nm

Accuracy %

Hymenaea sp. 100 100 100 100 100 100 100 100
Newtonia sp. 85.71 85.71 85.71 85.71 100 100 100 100

Xylia sp. 100 100 100 100 100 100 100 100
Intsia sp. 100 100 100 100 100 100 100 100

Manilkara sp. 100 100 100 100 100 100 100 100
Piptadeniastrum sp. 100 100 100 100 100 100 100 100

Gluta sp. 100 100 100 100 100 100 100 100
Acacia sp. 100 92.86 100 92.86 100 100 100 100

Koompassia sp. 100 100 100 100 100 100 100 100
Madhuca sp 100 100 100 100 100 100 100 100

Myroxylon balsamum 100 100 100 100 100 100 100 100
Tabebuia sp. 1 100 100 100 100 100 100 100 100
Tabebuia sp. 2 100 100 100 100 100 100 100 100
Swintonia sp. 100 100 100 100 100 100 100 100

Cylicodiscus sp. 92.86 100 100 100 100 100 100 100
Dracontomelon sp. 100 78.57 100 78.57 100 100 100 100

Pericopsis sp. 100 100 100 100 100 100 100 100
Sterospermum sp. 100 85.71 100 85.71 100 100 100 100
Erythrophleum sp. 100 100 100 100 100 100 100 92.86
Planchonella sp. 100 100 100 100 100 100 100 100
Pterocarpus sp.1 85.71 85.71 100 85.71 100 100 100 100

Dipteryx sp. 100 100 100 100 100 100 100 100
Dicorynia sp. 92.86 100 100 100 100 100 100 100

Pterocarpus sp. 2 100 100 100 100 100 100 100 100
Apuleia sp. 100 100 100 100 100 100 100 100

Total Accuracy % 98.29 97.14 99.43 97.14 100 100 100 99.71
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Figure 5 shows the NIR spectra after pre-processing by combining smoothing the
second derivative, and the SNV. After pre-processing, the irrelevant information was
minimized leading to a sharper spectral curve compared to Figure 1. This result indicates
that spectra preprocessing revealed key information about the NIR spectral bands.
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The PC-1, PC-2, and PC-3 spectra are shown in Figure 6. Significant peaks at about
1201, 1312, 1427, 1933, 2002, 2078, 2210 and 2264 nm were shown for PC-1. Major ab-
sorption for PC-2 occurred at around 1196, 1312, 1365, 1412, 1633, 1702, 1767, 1917, 1990,
2053, 2205 and 2264 nm. Major absorption for PC-3 occurred at around 1448, 1622, 1675,
1936, 2187 and 2242 nm. PC-1 and PC-2 provided a greater contribution to PCA in the
wavelength ranges of 1100–1450 nm and 1850–2300 nm. The overtones of the O-H and
N-H stretching vibrations and the overtones of the C-H combined bands appeared in the
range of 1100–1450 nm. For example, the peak at around 1,196 was associated with the
second overtone of C-H stretching vibrations from the lignin CH3 groups. The peak at
around 1365 was associated with the first overtone of C-H stretching vibrations and the C-H
deformation vibration combined band from cellulose. The first overtone of aliphatic and
aromatic C-H stretching vibrations and O-H combined bands occurred at 1850–2300 nm. A
significant peak at about 1675 nm occurred in PC-3, which was associated with the first
overtone of Car-H stretching vibrations from the lignin aromatic groups [23]. Park and
Yeon et al. reported that the contents and types of extractives can affect the identification
of softwood using NIR spectra [24–26]. The NIR spectral features contain extractive infor-
mation, and the extractives played an important role in identifying the 25 timbers in the
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proposed method. For example, the peaks at around 1412 (PC-2) and 1447 (PC-3) were
associated with extractives [23].
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3.5. Effects of the GLCM Features on Wood Identification

In order to analyze the effect of the GLCM features on wood identification, the single
GLCM features and their combinations were combined with the 780–1100 nm NIR spectra
band to identify wood, respectively (Table 6). Model 1 was the SVM classification model
developed at the NIR spectra of 780–1100 nm after preprocessing with the combination
of smoothing, second derivative, and the SNV. Based on the 780–1100 nm NIR band, not
all features increased model identification accuracy when only one feature was combined.
Entropy and contrast significantly increased model identification accuracy (models 5 and 3)
and entropy was better than contrast. However, model identification accuracy did not im-
prove when the NIR band was combined with ASM and correlation, respectively, (models
2 and 4). Although ASM and correlation did not individually contribute to identification
accuracy, accuracy increased slightly when ASM and correlation were fused into the NIR
band simultaneously. Thus, entropy and contrast improved model identification accuracy.
The four-parameter features, combined with the NIR spectra, accurately identified the
25 timbers.

Figure 7 shows the change in the spatial distribution of the test set sample before
and after the 780–1100 nm NIR spectral features were combined with the four GLCM
features (A: NIR spectra; B: NIR band fused four GLCM features). The spatial clustering
distribution was significantly transformed after the GLCM features were combined with
the NIR spectra; as the adjacent distance increased, the overlapping range was smaller,
and the clustering effect improved. Thus, the distribution of the feature data changed after
the GLCM features were combined with the NIR spectra. Wood identification accuracy
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further improved after combining the SVM method of the constructed optimal decision
boundaries. The feature information extracted was sufficient to describe the 25 timbers and
characterize their differences.

Table 6. Identification accuracy of the SVM model based on the NIR spectra fused with GLCM.

SVM Model NIR Band (nm) GLCM Features Feature Dimension Accuracy (%)

Model 1 780–1100 None 6 96
Model 2 780–1100 ASM 7 96
Model 3 780–1100 Con 7 98.29
Model 4 780–1100 Cor 7 96
Model 5 780–1100 Ent 7 99.14
Model 6 780–1100 ASM + Con 8 98.29
Model 7 780–1100 ASM + Cor 8 96.57
Model 8 780–1100 ASM + Con + Cor 9 98.29
Model 9 780-1100 ASM + Con + Cor + Ent 10 99.43

ASM: angular second moment; Con: contrast; Cor: correlation; Ent: entropy.
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4. Conclusions

In this study, the NIR spectra and textural features of 25 timbers were combined
after extracting them using PCA and GLCM, respectively, and the SVM model was used
to identify the timbers. The following conclusions were drawn: First, combining the
NIR spectral and textural features was effective for identifying the timbers. Second, four
GLCM features combined with the NIR spectra improved the feature information data
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spatial clustering distribution and enhanced model robustness and accuracy of wood
identification. Third, the combined transverse section feature model achieved better
identification accuracy than the tangential or radial surfaces model. Thus, the transverse
surface is recommended for use in this identification method. Moreover, the limited short
NIR band can be used with the proposed method to identify timbers. The proposed method
identified timbers rapidly without special expertise, and the device is portable and has a
relatively low cost. Therefore, this method has significant research and utility value and
has the potential to be an on-site wood identification tool for market supervision.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12111527/s1, Table S1: The sample representative images of all timbers in this paper.
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published version of the manuscript.
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