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Abstract: Process-based biogeochemical models are valuable tools to evaluate impacts of environmen-
tal or management changes on the greenhouse gas (GHG) balance of forest ecosystems. We evaluated
LandscapeDNDC, a process-based model developed to simulate carbon (C), nitrogen (N) and water
cycling at ecosystem and regional scales, against eddy covariance and soil chamber measurements of
CO2 and N2O fluxes in an 80-year-old deciduous oak forest. We compared two LandscapeDNDC
vegetation modules: PSIM (Physiological Simulation Model), which includes the understorey explic-
itly, and PnET (Photosynthesis–Evapotranspiration Model), which does not. Species parameters for
both modules were adjusted to match local measurements. LandscapeDNDC was able to reproduce
daily micro-climatic conditions, which serve as input for the vegetation modules. The PSIM and
PnET modules reproduced mean annual net CO2 uptake to within 1% and 15% of the measured
values by balancing gains and losses in seasonal patterns with respect to measurements, although
inter-annual variations were not well reproduced. The PSIM module indicated that the understorey
contributed up to 21% to CO2 fluxes. Mean annual soil CO2 fluxes were underestimated by 32%
using PnET and overestimated by 26% with PSIM; both modules simulated annual soil N2O fluxes
within the measured range but with less interannual variation. Including stand structure information
improved the model, but further improvements are required for the model to predict forest GHG
balances and their inter-annual variability following climatic or management changes.

Keywords: process-based modelling; simulations; forest management; forest soils; greenhouse gas
fluxes; eddy covariance; chamber flux measurement

1. Introduction

The long-lived GHGs that contribute most to global warming with high radiative
forcing values are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) [1].
Forests are net sinks for CO2 and are estimated to store 861 ± 66 Pg C globally, of which
44% resides in the soil to a depth of 1 m [2]. Temperate forests occupy an area of 767 Mha
and contribute 0.8 ± 0.1 Pg C year−1 to global C sinks [2]. Studies suggest that continuing
or increasing C sequestration from temperate forests is likely in future decades unless
major disturbances by management increase in severity or frequency [3]. In European
forests, C density is higher than in other continents, possibly as a result of management
with low harvest rates [4].

Soil microbiological processes that result in fluxes of GHGs are reasonably well under-
stood. CO2 is produced by autotrophic respiration of roots and heterotrophic respiration
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of soil-dwelling macro- and micro-organisms that decompose soil organic material. Deni-
trification under anaerobic conditions and nitrification in aerobic conditions are the main
soil processes that produce N2O. Many laboratory studies have contributed to the under-
standing and quantification of these soil processes (e.g., [5–7]), and field measurements
have helped to understand their spatial and temporal variability, and differences between
forest types (e.g., [8,9]). Soil environmental conditions of temperature and moisture and
nutrient levels are the primary controls of microbiological processes that lead to GHG
fluxes, and are influenced directly and indirectly by secondary factors such as tree shading
and density.

Process-based biogeochemical models such as LandscapeDNDC [10] have been de-
veloped to study how soil processes, vegetation type and their controlling factors interact
to influence the C and N cycles and related ecosystem and soil gas fluxes at local and
regional scales, and to consider the effects of future climate scenarios [11]. LandscapeD-
NDC combines a choice of vegetation modules with microclimate and soil process modules
in a framework that behaves functionally as a single model. In the case of forest veg-
etation, two modules are available: Photosynthesis–Evapotranspiration (PnET) [12,13]
and Physiological Simulation Model (PSIM) [14,15]). PnET has been used in numerous
studies, including many in which it was combined with the soil process model DNDC
(DeNitrification–DeComposition [16–18]), but is limited in only being able to describe a
single vegetation species type for a given site.

There is a silvicultural trend away from forest monocultures, and in Europe 70% of
forests are now dominated by two or more tree species [19], partly due to a move away from
a management focus on yield, resulting from reduced demand for timber products [20],
towards conservation, biodiversity and recreation [21]. Many forests naturally develop an
understorey of smaller trees (including canopy offspring) and/or shrubs. Modelling these
intermixed and understorey species, together with local environmental factors, requires
compromises in the choice of values of parameters originally designed to model a single
canopy species [22]. Molina-Herrera et al. [23] compared statistically derived site-specific
and general parameter sets for three tree species in continental Europe, beech, spruce and
pine, which typically have no understorey. It was concluded that the use of site-specific
parameters consistently simulated measured CO2 fluxes better than generic parameters,
but the latter can reproduce C uptake reasonably accurately when averaged monthly over
several years. The current PnET parameters defined for oak species are mainly derived
from oak in North America (Harvard Forest) or continental Europe (Matra Mountains,
Hungary) [8]; the milder, maritime UK climate merits evaluation of GHG models for these
conditions. Furthermore, oak has been identified as a temperate species likely to adapt
well to warming climates [24].

The PSIM module can be substituted for PnET within the LandscapeDNDC framework
to enable the modelling of separate vegetation types within an ecosystem, and thus simulate
the main canopy trees separately from understorey trees. It can simulate different responses
in canopy and understorey trees following changes, whether in climate or management,
and compensatory mechanisms that can be triggered when the canopy is disturbed and
the two vegetation types compete for light, water and nutrients. Such a linking of canopy
and understorey models is deemed to be essential to predict the impact of global change
on temperate forest composition and structure and hence the functioning of such forests in
the future [25].

Data to evaluate biogeochemical models are provided by eddy covariance (EC) es-
timates of CO2 fluxes calculated from continuous measurements at field and ecosystem
scales. In Europe, there are relatively few such forest datasets longer than 10 years, most of
which are from spruce (e.g., Hoeglwald, Germany; Norunda, Sweden), pine (e.g., Hyytiala,
Finland; Loobos, Netherlands) or beech forests (e.g., Höglwald, Germany; Hesse, France;
Sorø, Denmark), set up as part of the EUROFLUX project [26,27]. In the British Isles, the
oak plantation of the Straits Inclosure, in Alice Holt Forest in south east England, is the
only EC measurement site in a deciduous forest with more than 20 years of data.
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This study evaluates the LandscapeDNDC model with measured GHG flux data from
eddy covariance and soil chamber studies in the Straits Inclosure where N deposition is
relatively low at approximately 12 kg N ha−1 year−1 [28]. Some parameter changes were
necessary and sensitivity analyses were carried out to identify which parameters and input
values most influenced the resulting modelled GHG fluxes. The aims of this study were
to determine the suitability of a widely used process-based ecosystem model to represent
gas exchange fluxes of an oak stand with a substantial understorey by (i) quantifying
differences between simulated and measured ecosystem and soil fluxes of CO2 and N2O
using two different vegetation modules, (ii) evaluating the sensitivity of the model to
changes in key input values and parameters, and (iii) comparing the model’s ability to
simulate the ecosystem responses to thinning events using the two vegetation modules.

2. Materials and Methods
2.1. Site Description

The Straits Inclosure GHG flux measurement site, with its eddy covariance tower, is
in the centre of a managed oak plantation of approximately 90 ha in the SE of England
(51◦09′ N, 0◦51′ W), with an elevation of 80 m AMSL. The Inclosure is a flat area with
an annual precipitation of 877 mm and temperature of 10.3 ◦C averaged over the period
simulated, 1995 to 2014, and was replanted in the 1930s. It is located at the SW corner of
the larger Alice Holt Forest (850 ha) and is surrounded on three sides by agricultural land
(both arable and sheep pasture). The forest is a site for the UK Environmental Change
Network (www.ecn.ac.uk (accessed on 29 October 2021)) and has a long-term forest health
observation plot within the European ‘Level II’ Network (ICP Forests, www.icp-forests.net
(accessed on 29 October 2021); further details are given in [29], and site characteristics used
for model input are shown in Table 1.

Table 1. Site and vegetation properties in 1995 with average climate and air chemistry data (1995–2014)
input to initiate the LandscapeDNDC model specifically for the Straits Inclosure, Alice Holt Forest.

Property Value

Latitude 51◦ 09′ N
Longitude 0◦ 51′ W

Average annual rainfall 877 mm
Average annual temperature 10.3 ◦C
Annual N deposition as NH4 0.89 g m−3

Annual N deposition as NO3 0.51 g m−3

Total annual N deposition 1.4 g m−3

Slope 0◦

Altitude 80.0 m AMSL

Upper storey trees: main species Pedunculate oak (Q. robur)
Number of trees per hectare 442

Height 16.5 m
Diameter at breast height 0.233 m

Understorey trees: species
(aggregated, for PSIM only)

European Ash (F. excelsior)
(representing hazel, hawthorn, ash and holly)

Number of trees per hectare 8000
Height 3.0 m

Diameter at breast height 0.03 m

Modelling start date 1/1/1995
Thinning event (eastern half of Inclosure) 20/9/2007

Proportion of stemwood removed by thinning 0.3 for upper storey;
0.6 for understorey

The tree species in the Straits Inclosure are mainly pedunculate oak (Quercus robur L.)
with about 10% basal area and a number of other deciduous species including ash (Fraxi-
nus excelsior L.), sessile oak (Q. petraea) (Mattuschka) Liebl. and Turkey oak (Q. cerris L.).

www.ecn.ac.uk
www.icp-forests.net
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There is a small area of mixed conifers (Pinus nigra subsp. laricio Maire.) and Scots Pine
(P. sylvestris L.) on the NW edge of the plantation. The understorey is substantial, domi-
nated by hazel (Corylus avellana L.), hawthorn (Crataegus monogyna Jacq.) and regenerating
canopy species. There are also climbers and ground flora, including grasses, sedges and
herbs [30].

The forest soil is a surface water stagno-gley [31], classified by the FAO as a eutric
vertisol, silty clay in texture, 80 cm in depth, and developed on a bedrock of Cretaceous
Gault Clay. Table 2 summarises the site soil information used in the modelling, derived
from previous measurements at the site. With prevailing winds from the SW, wet and dry
N deposition of 12.3 kg N ha−1 year−1 averaged over 1995–2002 [28] is relatively low for
northern Europe.

Table 2. Soil property initialisation for the Straits Inclosure for use with the LandscapeDNDC model. Soil texture: silty clay;
Humus type: mull; Hydraulic conductivity (in horizons A–C): 0.00006 cm min−1. Water table: 1.1 m; no stones.

Horizon Thickness
mm Organic C Organic N pH

Bulk
Density
g cm−3

Field
Capacity
mm m−3

Wilting
Point

mm m−3

Clay
Fraction

O 20 0.2162 0.0114 5.1 0.0670 - - 0.035
A 80 0.0560 0.0038 5.4 0.7043 530 240 0.520
E 80 0.0287 0.0023 5.2 0.9682 530 240 0.516
B 200 0.0159 0.0010 5.4 1.1334 480 240 0.510

BC 380 0.0108 0.0003 6.2 0.9350 530 240 0.601
C 260 0.0146 0.0005 5.4 1.0123 520 240 0.578

2.2. LandscapeDNDC Model Framework

LandscapeDNDC is a model framework that assembles process-oriented biogeochemi-
cal models of C-, N- and water cycling in grassland, arable and forest ecosystems applied at
site and regional scales [10]. Each site is considered as a one-dimensional, vertical grid cell,
structured into above- and belowground layers as found appropriate to represent a specific
site heterogeneity. A vegetation type or cohort is represented by the distribution of foliage
and fine root biomass within these layers [32]. The framework is composed of modules that
calculate microclimate variability, physiological processes, decomposition processes, water
fluxes and dimensional vegetation changes. Modules of different purposes are combined
and modules for the same task can be exchanged according to land use and process detail
required. The modules used were canopy ECM for microclimate [14], Treedyn (modified)
for tree structural changes [33] and either PnET [12,34] or PSIM [15,35,36] for vegetation
physiology. The remaining modules for water cycle and soil biogeochemistry were derived
from the original DNDC model and have also been evaluated at various sites [16,37].

This study used LandscapeDNDC version 0.36.1 (win64). We focus on the two
physiology-oriented modules PnET and PSIM to estimate ecosystem fluxes and soil gas
emissions. PnET calculates C uptake, or gross primary production (GPP), from a di-
rect dependence of the maximum photosynthetic rate (AMAXB) on leaf N concentra-
tion [38,39], and determines respiration first from actual photosynthesis and second from
the temperature-related activity of roots, wood and foliage (BASEFOLRESPFRAC, ROOTM-
RESFRAC). In contrast, PSIM uses the Farquhar, von Caemmerer and Berry model [40,41]
for photosynthesis with the potential carboxylation rate at 25 ◦C as a key parameter (VC-
MAX25), and the Thornley and Cannell [42] approach, which determines respiration rate
from temperature and N-content, controlled by a Michaelis–Menten coefficient (KM20).
Therefore, PSIM allows for a direct optimisation of stomatal conductance, while in PnET
transpiration is empirically related to photosynthesis using a fixed water use efficiency.
With PSIM, it is also possible to simulate more than one vegetation cohort [32], thus
considering the impact of competition based on cohort-specific spatially and temporally
distributed tissue.
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Since the canopy is very heterogeneous, making it impossible to derive all necessary
parameters on a species basis from the literature, we parameterised the upper canopy
assuming basic properties of oaks (Quercus robur). However, parameters that could be
directly or indirectly derived from measurements at the site were specifically defined
(Table 3). These were in particular the measured peak foliage biomass and foliage devel-
opment. Additionally, gas exchange measurements from about half of the investigation
period (for EC measurements, the period between 1999 and 2007; for the chambers that
were installed in 2008, the period until 2012) were used to adjust selected photosynthesis
and respiration parameters, using an incrementally best fit method. In the case of the
PSIM runs with structured canopy, only parameters for canopy trees were adjusted, using
literature parameters of ash trees for the understorey vegetation.

Table 3. LandscapeDNDC vegetation modules’ species parameters adjusted to simulate GHG fluxes for pedunculate oak at
the Straits Inclosure.

Parameter Description Units PnET PSIM (Understorey Value)

CO2 exchange parameters

BASEFOLRESPFRAC Dark respiration as fraction of photosynthesis 0–1 0.15 na
AMAXB Maximal net photosynthetic rate nmol CO2 g−1 s−1/%N 55 na

RESPQ10 2 Temperature dependency of leaf respiration - 2 na

ROOTMRESPFRAC Ratio of fine root maintenance respiration to
biomass production - 2 na

VCMAX25 Maximum RubP saturated rate of carboxylation at
25 ◦C for leaves in full sun µmol m−2 s−1 na 90 (85)

KM20 Respiration maintenance coefficient at
reference temperature 0–1 na 0.3 (0.1)

Phenology-related parameters

GDDFOLSTART3 Daily temperature sum for start of foliage budburst ◦days 500 500 (0)

GDDFOLEND 3 Daily temperature sum for end of foliage growth
(maximum leaf area)

◦days 1100 na

MFOLOPT 1 Foliage biomass under optimal, closed
canopy conditions kg DW m−2 0.47 0.47 (0.36)

NDFLUSH 3 Time required to complete growth of new foliage days na 45 (40)
NDMORTA 4 Time required to complete leaf fall days na 100 (40)

DLEAFSHED 4 Day by which leaf fall is complete day of year na 330 (310)
SENESCSTART 4 Day of year after which leaf death can occur day of year 300 na

Resource acquisition parameters

NCFOLOPT Optimum nitrogen concentration of foliage g N gDW−1 0.024 0.024 (0.032)
EXPL_NH4 Relative exploitation rate of NH4 % 0.3 na
EXPL_NO3 Relative exploitation rate of NO3 % 0.16 na

EXT 5 Light extinction (attenuation) coefficient 0–1 0.4 0.4 (0.65)
1. Based on measured LAI = 5.92 m2 m−2 between 1999 and 2010 [29], assuming a specific leaf area of 12.6 [43]. 2. Q10 for vegetation
respiration varies between 2.26 and 4.72, with mean 3.0 (SD = 0.78) [29]. 3. Average start of growing season (1999–2007) at day of year
132 [29]. 4. Average end of growing season (1999–2007, at day of year 298) of litterfall [29]. 5. Light extinction factor = 0.4 [44]. DW = Dry
Weight, of which 50% is assumed to be carbon.

The simulation is driven by climate input and a management file that includes the
timing and intensity of events. The model is run with daily weather data that are inter-
nally converted into hourly values to drive the model processes (except tree dimensional
changes that were calculated once a year). Weather input for 1995–1998, comprising mean,
maximum and minimum air temperature, precipitation, global radiation and wind speed,
has been provided by the UK Meteorological Office affiliated climatology station, situated
in an open area 1.8 km from the Straits Inclosure site. Since 1999, weather data were directly
measured at the Straits EC Tower Site itself and provided model input as listed above, with
additional vapour pressure deficit and air pressure data for 1999–2011. Overall, simulations
were run from January 1995 to December 2014, with results of the first 4 years discarded
from further analysis to avoid effects of potential pool transitions to equilibrium conditions.

Regarding management impacts, thinning is considered as a defined number and
volume of trees removed at a particular day. At the Straits Inclosure site, a thinning took
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place in September 2007 in the eastern half, removing about 30% of the commercially
valuable, main stem timber volume, with foliage and branches left on the ground [45].
Since the thinning was not homogeneously distributed across the site, the effects of 0%, 15%
and 30% canopy tree removal were simulated, both to be compared with EC measurements
during particular wind directions. The simulation considers that only stem wood was
removed and foliar as well as fine root biomass was added to the respective litter pools.
In the PSIM simulations, thinning in the understorey was also considered, representing
a removal of 0%, 15% and 60%. In contrast to the upper canopy trees, all understorey
above ground biomass was left at the site and transferred to litter compartments. No such
distinction was made when using PnET.

Model output is provided as daily and annual values. GPP is simulated directly as
carbon uptake by photosynthesis, while terrestrial ecosystem respiration (TER) is calculated
by summing the model output of soil heterotrophic respiration and vegetation autotrophic
respiration, composed of carbon releases due to growth and maintenance. Net ecosystem
production (NEP) is then calculated as the difference between GPP and TER, which is
positive if there is a net uptake of CO2. Eddy covariance methods conventionally define
net ecosystem exchange (NEE) as negative when there is a net uptake of CO2. Although
NEE may include other sinks and sources of carbon, we here assume them to be negligible
so that modelled NEP equates to measured NEE with opposite sign.

2.3. Model Evaluation

The model was evaluated using measured GHG soil fluxes and EC data recorded
between 2008 and 2014. In addition, soil temperature and soil moisture data that had
been recorded continuously since 2008 near the tower at depths of 10 cm and 30 cm are
compared with simulated output.

Since EC data comprise both fluxes from the thinned and unthinned sectors, monthly
mean measured fluxes were separated into wind direction sectors according to Wilkin-
son et al. [45]. Daily simulations were assigned to the appropriate sector depending on
whether climate data showed wind predominantly from east or western sectors for that
day, and these data were compared to simulations that assumed either no thinning (if the
wind direction was from the western sector) or 30% (if wind direction was from the eastern
sector) canopy tree removal. For the statistical analysis, we used the freely available statis-
tical package ModEval v2.0, and methods outlined in [46] to quantify differences between
simulated and measured daily averaged and annual ecosystem GPP, TER and NEP, and
monthly and annual soil fluxes of CO2 and N2O. Model outputs produced with optimised
parameters derived from the same site cannot be considered as fully independent, but
t-tests can still be used to examine if there are significant differences between simulated and
measured values [46]. Subsequent standard errors were calculated using EC measurements
between 2008 and 2014 and soil flux measurements between 2013 and 2014 only (with
six replicate chambers, which were used to put 95% confidence limits on the Root Mean
Squared Error (RMSE)). As described by Smith et al. [46], this information is used to assess
if simulated values were within the 95% confidence intervals of measurements. Modelling
efficiency (ME), also known as Nash–Sutcliffe efficiency [47], was calculated to assess the
predictive power of the model. A perfect simulation gives an ME value of 1.0, while values
below zero (no limit on size) suggest the mean of observations would be a better predictor
than the simulation. Thus, an ‘efficient’ model is one where ME is between zero and 1.0.
The coefficient of determination (CD), which represents the proportion of total variance in
observed data explained by simulated data, was also calculated, and bias assessed for the
mean difference, M, and the relative error, E [46].

In the case of GPP, TER and NEP, measurements were not replicated and therefore no
statistical significance could be derived for differences from simulated values, but RMSE
values could be calculated. However, Oren et al. [48] have estimated that most EC data
have an error of 10%–15%, when measurement and gap-filling errors and spatial variability
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are considered, an error of 15% was therefore used to estimate the statistical significance
of RMSE.

A sensitivity analysis was carried out to identify those input variables which had
the largest influence on simulated GHG fluxes. The method for so-called simple models,
as described by Smith et al. [49], was used in which each set of input variables that
describe soil characteristics, N deposition or climate were changed individually by ± 10%.
Input variables that produced differences of more than ± 10% in annual total GHG fluxes
averaged over 1999–2007 using PnET and PSIM were considered to be sensitive. The same
method was used to quantify the contributions of selected vegetation module parameters.

2.4. Soil Gas Flux and Environmental Measurements

Soil chamber measurements of CO2 and N2O fluxes were made at the EC Tower Site.
Measurements were made using six soil chambers placed temporarily on fixed frames,
inserted 5 cm into the soil. Data were taken from April 2013 to Aug 2014 at intervals of
approximately 2 weeks, except in December and January when measurements were made
monthly. Prior to this, fluxes were measured monthly from Sept 2007 to Aug 2012 using
four chambers at the same site [50]. CO2 and N2O fluxes were measured with a non-steady
state, non-flow-through chamber method, and analysed as described by Yamulki et al. [51].
The opaque PVC chambers (40 × 40 × 25 cm) were closed, and three replicated air samples
were taken from the chamber headspace at 0, 20, 40 and 60 min for subsequent analysis
by gas chromatography (GC). The rate of concentration change after chamber closure was
calculated using linear regression to determine the flux. Fluxes for all gases were rejected
for individual samples in which the rate of increase in CO2 concentration was judged to
be anomalous (resulting in R2 < 0.8), as this was judged to indicate gas leakage in the
chamber headspace.

During flux measurements, soil temperature was measured with a Hanna model
Checktemp 1 probe (Hanna Instruments, Bedfordshire, UK) at 0.5, 10 and 15 cm depths
around all four sides of each chamber and averaged for each depth. Volumetric soil
moisture was measured at a depth of 6 cm around each chamber, as above, using a Theta
probe ML3 attached to a Delta-T Devices Ltd. (Cambridge, UK) HH2 moisture meter with
default mineral soil settings. Replicated soil samples were collected from 0–10 cm depth
near the 6 chamber frames and aggregated; 5 sub-samples were analysed for soil water
content by weight to produce a daily average. The soil moisture calculated by weight was
converted to % by volume using the soil bulk density at the appropriate depth. In addition,
wet and dry bulb air temperature (model DTS-5, ELE International, Loveland, CO, USA)
and soil temperature at 10 cm depth (2K Thermistor, Delta-T Devices) were recorded at
10 s intervals and averaged half-hourly using data loggers (DT 500, DataTaker, Thermo
Fisher Scientific, Rowville, VIC, Australia).

For comparison with measured fluxes, monthly simulated fluxes were calculated by
summing the simulated daily values within each calendar month.

2.5. CO2 Flux Data from Eddy Covariance

Net CO2 flux data measured by EC were used to validate the C balance within the
LandscapeDNDC model at the level of the whole ecosystem. The EC tower at Alice Holt
Forest, Hampshire, UK is part of FLUXNET, with the identifier ‘UK-HAM’, and started
recording data in 1998. It is located in the centre of the Straits Inclosure, with a fetch over
the woodland between 350 m to the south and 700 m to the east. The system is described
in full in [29], and uses procedures, including data quality checking, that follow those
standardised in the CarboEurope project [27]. TER was derived using night-time flux
measurements and temperatures, adjusted according to day-time air temperatures [29,52],
and GPP was calculated as the sum of TER and -NEE. Gap filling for annual totals used the
normal marginal distribution sampling (MDS) method and on-line tool [53].
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3. Results
3.1. Data–Model Comparisons and Model Adjustment
3.1.1. Environmental Conditions

Simulated daily mean soil temperature data at 10 cm depth from January 2007 to
December 2012 were similar to measurement data (Figure 1a, y = 0.8x (measured) + 2.1,
R2 = 0.90), although they do not quite show the same degree of variation and have a 5–6 ◦C
lower amplitude range, particularly in earlier years. Soil temperatures simulated at 30 cm
depth were in closer agreement with measurements (Figure 1b, y = 0.9x − 0.6, R2 = 0.97).

Figure 1. Daily mean measured and simulated soil temperature for years 2007–2013 at the Straits
Inclosure, Alice Holt Forest. Measured data are from a fixed automatic probe at the Tower Site.
Scheme (a) temperatures at 10 cm soil depth, (b) temperatures at 30 cm soil depth, (c) residuals
(measured–simulated with PnET) at 10 cm and 30 cm, (d) temperatures at 10 cm recorded manually
and from fixed probe during 2013–2014 soil gas sampling. Error bars on manual measurements are
1 SD from 24 measurements made each day.
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The differences between temperatures simulated with the PnET and PSIM modules
were small (<1 ◦C at 10 cm and <0.5 ◦C at 30 cm) with near equivalent R2 values. Residual
values based on PnET data (Figure 1c) illustrated that the largest differences between mea-
surements and simulations were at 10 cm, mainly in the winter months, when simulated
soil temperatures were mostly 1–5 ◦C higher than measured. Still, there was a good match
between both (linear regression: y = 1.1x − 1.1, R2 = 0.90). At 30 cm depth, simulated
temperatures were mostly 1–2 ◦C lower than measured, particularly in the winter. It should
be noted that there was also good agreement between soil temperature recorded manually
at 10 cm depth near the soil chambers during flux measurements and the mean daily
data measured nearby with a fixed probe, strengthening the confidence in measured data
(Figure 1d).

Simulated daily mean soil moisture data at 10 cm depth for January 1999 to December
2008 showed a general agreement with available measurements from 1999–2003 (Figure 2),
including during the dry summer of 2003 (y = 0.5x + 23.7, R2 = 0.59). However, simulated
values were only 2–5% higher in summer and 2–3% lower in winter. Data simulated with
PSIM and PnET were similar except during summer 2003 when PSIM simulated lower soil
moisture values, closer to measurements. Spikes of high simulated soil moisture (60–65%)
from both modules indicate occasions when heavy rainfall has caused surface water to
accumulate in the model, although this is not observed at the site, probably because of
a slight slope or due to preferential flows that were not visible in the soil profiles used
for initialisation.

Figure 2. Daily soil moisture measured at the Tower Site, Straits Inclosure during 1999–2003 and
simulated by LandscapeDNDC (with PnET and PSIM as the vegetation modules). Measured data are
from a fixed probe at the Tower Site.

3.1.2. Ecosystem CO2 Fluxes

Annual totals of GPP, TER and NEP for 1999–2007 derived from EC were compared to
simulations using either the PnET or PSIM modules after parameter adjustment (Table 4).
The differences between mean measured annual values and those simulated by PnET
were less than 15% (−8.5%, −6.7% and −14.1%, for GPP, TER and NEP, respectively).
Interestingly, underestimation of GPP (and consequently NPP) occurred particularly in the
years 2003 and 2006 and did not fully recover in the subsequent years. Closer agreements
were obtained with PSIM, with differences between mean measured and simulated values
of less than 1% for each CO2 flux component, with no particular high divergence in specific
years. While PSIM standard deviations were smaller than those for EC measurements,
indicating a low sensitivity to inter-annual variations in environmental influences, PnET
deviation was similar for TER and NEP but higher for GPP, reflecting an overestimation of
drought susceptibility.



Forests 2021, 12, 1517 10 of 27

Table 4. Annual CO2 fluxes for 1999–2007 at the Straits Inclosure measured by eddy covariance and
simulated by PnET and PSIM. ‘%Difference’ is the percentage difference between the mean annual
simulated and measured values.

Year GPP (g C m−2 year−1) TER (g C m−2 year−1) NEP (g C m−2 year−1)
EC PnET PSIM EC PnET PSIM EC PnET PSIM

1999 1983 2440 2204 1625 1805 1638 357 634 566
2000 2346 2127 2046 1940 1641 1588 406 487 458
2001 2227 2089 2037 1670 1600 1576 557 489 462
2002 2180 2062 2171 1767 1545 1650 412 517 521
2003 2223 1666 2173 1606 1360 1542 617 307 631
2004 2172 1856 2102 1573 1423 1599 600 433 503
2005 1992 1697 2109 1441 1348 1601 551 349 508
2006 1862 1671 2077 1374 1385 1635 488 286 442
2007 2094 1851 2148 1466 1386 1614 629 466 534

Mean 2120 1940 2119 1607 1499 1605 513 441 514
SD 151 261 59 175 158 34 101 111 59

% Difference −8.5 −0.06 −6.7 −0.13 −14.1 0.17

Statistical analysis of annual GPP, TER and NEP totals for 1999–2007 using ModE-
val [46] showed lower RMSE values when using the PSIM module (7.8, 10.7 and 19.5%
for GPP, TER and NEP, respectively) than when using PnET (14.8, 10.9 and 37.4%, respec-
tively) (Table 5a). However, the RMSE values for both modules were all within the 95%
confidence intervals of the measured values, and the t-test showed no significant difference
between the mean simulated and measured values. Modelling efficiency (ME) values were
negative for these annual PnET simulations and coefficients of determination (CD) < 1,
which indicates that the PnET-simulated annual totals described the data less well than
the mean of the observations, and emphasises that the measured inter-annual variations
were not well simulated. PSIM also had negative ME values (though closer to zero) but CD
values > 1, which indicates that this model described the measured data better than the
mean of the measurements.

Simulated monthly totals for GPP, TER and NEP show a better fit to measured equiv-
alents with high positive ME, CD > 1, no significant bias and high correlation (Figure 3,
Table 5b) than annual data (Table 5a). Monthly GPP was particularly well simulated with
an ME of 0.94 using PSIM and 0.92 using PnET. RMSE% values were large, particularly
for NEP, but were all within the measured 95% confidence intervals, and t-test of mean
difference also showed no significant bias in each case. Whereas PnET simulated a reduced
GPP and TER in 2003, which was a dry year with Feb–Oct rainfall 50% of the average for
that period and high summer temperatures (maximum 33.8 ◦C), the EC measurements
indicated that GPP and TER were higher than average. Although there was a reduction in
moisture in the upper soil layers (Figure 2), the site has heavy clay soil (see Table 2) and the
previous year was wet with an above average annual rainfall of 1094 mm, suggesting trees
had access to subsurface water not represented in the model. PSIM simulations showed
little change in GPP for 2003 over the previous year.

The seasonal patterns of the daily GPP averaged over 1999–2007 were quite well
simulated by both PnET and PSIM (Figure 4a). Understorey plants produce leaves earlier
than canopy trees, and PSIM is able to model the two plant cohorts separately. However, the
averaged data from EC suggest that PSIM overestimated this GPP contribution by a factor
of approximately 2 during March, although the overestimation is small in comparison
with total annual GPP. For TER (Figure 4b), averaged values from the PnET module were
closest to measurements in spring and early summer when respiration increases rapidly
during canopy growth (April–July), whereas averaged PSIM values were closest in late
autumn and winter (November–March). Simulated NEP (the difference between GPP and
TER) combines the differences of the other two values (Figure 4c). Averaged daily PSIM
NEP showed the largest differences from EC NEP values during May due to a poor match
with TER, but a better match with TER during winter months resulted in PSIM producing
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averaged annual total NEP values close to those measured. These net values are arguably
the most important as they determine whether the ecosystem is a net sink or source of CO2
for the year.

Table 5. Statistical analysis using ModEval v 2.0 [46] for comparison of CO2 fluxes simulated by PnET and PSIM with
(a) annual (n = 9) and (b) monthly (n = 108) eddy covariance measurements of GPP, TER and NEP, (c) monthly soil chamber
measurements of CO2 and N2O fluxes. ‘Average total error’ is (RMSE% * Measured mean/100).

(a)

Statistic
Annual GPP

1999–2007 Annual TER 1999–2007 Annual NEP
1999–2007

PnET PSIM PnET PSIM PnET PSIM

RMSE (%) 14.8 + 7.8 + 10.9 + 10.7 + 37.4 + 19.5 +

RMSE (au) 313.1 165.1 174.5 172.3 191.8 99.9
ME −3.85 −0.35 −0.13 −0.10 −3.05 −0.10
CD 0.22 6.52 0.80 26.3 0.56 2.92

Relative Error (E; %) 8.24 * −0.44 * 6.34 * −0.92 * 7.91 * −3.84 *
Mean Difference (M; au) 180.0 1.33 107.7 2.11 72.11 −0.89

Student’s t of M (t) 2.0 * 0.02 * 2.22 * 0.03 * 1.15 * −0.03 *
Correlation coefficient (r) 0.21 −0.25 0.62 −0.15 −0.58 0.21

(b)

Statistic
Monthly GPP

1999–2007 Monthly TER 1999–2007 Monthly NEP
1999–2007

PnET PSIM PnET PSIM PnET PSIM

RMSE (%) 27.81 + 23.30 + 36.6 + 28.9 + 115.6 + 110.4 +

RMSE (mu) 49.13 41.16 49.0 38.7 49.4 47.16
ME 0.92 0.94 0.47 0.67 0.82 0.83
CD 1.04 1.02 0.49 0.96 2.23 1.19

Relative Error (E; %) 39.3 * 17.83 * 18.6 * −2.63 * 34.0 * −52.9 *
Mean Difference (M; mu) 14.99 0.10 8.98 0.18 6.08 −0.05

Student’s t of M (t) 1.49 * 0.01 * 1.93 * 0.05 * 0.87 * −0.01 *
Correlation coefficient (r) 0.96 0.97 0.88 0.84 0.95 0.91

(c)

Statistic
Monthly Soil CO2 Monthly N2O

2008–2012 2013–14 2008–2012 2013–14
Model PnET PSIM PnET PSIM PnET PSIM PnET PSIM

RMSE (%) 60.1 + 87.4 + 28.9 68.1 154 + 147 + 61.0 42.0
RMSE (mu) 47.2 68.5 18.8 44.4 14.4 13.8 2.8 1.9

ME −0.16 0.38 0.08 −4.11 −0.19 −0.09 −2.25 −0.54
CD 1.19 1.20 0.52 0.14 5.16 5.89 0.83 0.83

Relative Error (E; %) 36.2 * −24.0 * 14.4 * −49.0 76.6 * 50.9 * −15.3 * 13.4 *
Mean Difference (M; mu) 33.1 −8.1 8.25 −31.9 5.6 5.2 0.06 0.87

Student’s t of M (t) 6.77 −1.64 * 1.89 * −3.99 2.75 2.70 0.09 * 2.00
Correlation coefficient (r) 0.66 0.68 0.76 0.68 0.03 0.36 −0.47 0.35

No. of values 48 48 16 16 44 44 16 16
+ No significant total error, * No significant bias; au = g CO2-C m−2 year−1; mu = g CO2-C m−2 month−1 or g N2O-N m−2 month−1.

Differences between measured and simulated daily GPP, TER and NEP (i.e., residuals)
were calculated using the PnET and PSIM modules for 1999–2007 (Figure S1). For each
component (GPP, TER and NEP), residuals were mostly between ±5 g C m−2 d−1 for both
PnET and PSIM, but the summer residuals were larger in many years, with a maximum GPP
residual of −13 g C m−2 d−1 in 2006. Residual TER values showed the clearest distinction
between PnET and PSIM, mainly due to the absence of autotrophic soil respiration from
roots during winter in PnET simulations. The years 2004 and 2006 show the largest summer
residuals (negative) for TER from both modules.
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Figure 3. Monthly CO2 fluxes at the Straits Inclosure simulated by PSIM and PnET and measured by
eddy covariance (EC): (a) GPP, (b) TER, (c) NEP.

The PnET and PSIM module parameters were adjusted to optimise the fit of the
simulations to measurements of annual EC data for GPP, TER and NEP for the period
1999–2007. For the evaluation period, simulations using these parameters were less mean-
ingful because disturbances such as infestations of defoliating moth caterpillars in 2009 and
2010, which are not considered in the simulations, reduced the GPP, TER and, to a lesser
extent, NEP, especially in 2010 [28]. It also seems that EC measurements during 1999 to
2010 also showed a significant long-term decrease in annual GPP (−46.1 g C m−2 year−1,
p < 0.01) and annual TER (−44.7 g C m−2 year−1, p < 0.001), with no resultant trend for
NEP [29]. These decreasing trends in annual GPP and TER are also represented in the
simulations (Figure 3), although this might be partly due to the thinning event in 2007.
Simulated annual values show larger declines when using PnET (from linear regression:
−86.4 g C m−2 year−1 for GPP, R2 = 0.83, and −48.4 g C m−2 year−1 for TER, R2 = 0.87)
than when using PSIM (from linear regression: −26.0 g C m−2 year−1, R2 = 0.52, and
−21.7 g C m−2 year−1, R2 = 0.55, respectively) (see also Section 3.3).
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Figure 4. Average seasonal time course of ecosystem CO2 flux components for the Straits Inclosure
for 1999–2007: (a) GPP, (b) TER, (c) NEP. Each plot shows average daily values of measured eddy
covariance fluxes with simulated PnET and PSIM data. Error bars shown on every tenth eddy
covariance value are 1 standard deviation of annual variation.

3.1.3. Soil CO2 Effluxes

Measured soil CO2 effluxes occasionally showed large variation between chambers, as
indicated by the error bars in Figure 5a, but the seasonal cycle was clear, from a minimum
of 1 g C m−2 d−1 in winter to a maximum of 4–6 g C m−2 d−1 in summer. The seasonal
cycle in the measured effluxes was well reproduced by the simulated mean daily CO2
efflux, as indicated by the high correlation coefficients for monthly values in Table 5c,
although the PSIM module estimated CO2 effluxes up to two times greater than the PnET
module (Figure 5a). The PnET module substantially underestimated the mean daily soil
CO2 effluxes measured during 2008–2012 (significant bias in mean monthly values, M, in
Table 5c) but better matched measurements in 2013–2014 (no significant bias). In contrast,
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the monthly statistics in Table 5c show that PSIM module results more closely matched
2008–2012 measurements (ME = 0.38, CD = 1.20), but significantly overestimated the
smaller soil CO2 effluxes measured in 2013–2014.

Figure 5. Daily soil fluxes simulated by LandscapeDNDC with PnET (red) and with PSIM (blue) and
measured by chambers (black) at the Tower Site, Straits Inclosure; (a) CO2 and (b) N2O. Standard
error bars (for 6 chamber replication) shown on CO2 and N2O measurements.

PnET-simulated annual total soil CO2 effluxes from 1999–2007 (before thinning) av-
eraged 619 g C m−2 year−1 (range 546–745 g C m−2 year−1), whereas equivalent PSIM-
simulated effluxes averaged 1042 g C m−2 year−1 (range 979–1081 g C m−2 year−1). The
proportion of simulated annual soil CO2 effluxes contributed by autotrophic respiration
when using PSIM was 27.5% compared to 32.3% for PnET. For 2008–2014, averages of
547 g C m−2 year−1 were obtained using PnET and 1018 g C m−2 year−1 using PSIM,
compared to a measured value of 807 g C m−2 year−1 (Table 6).

Table 6. Annual soil gas fluxes for 2008–2014 at the Tower Site of the Straits Inclosure comparing
measured soil chamber (SC) data with data simulated using PnET and PSIM. Results from a simulated
30% thin in Sept 2007 are also given. Mean values given are averaged over years after thin, 2008–2014.

Year
Soil CO2 (g C m−2 year−1) Soil N2O (mg Nm−2 year−1)

SC PnET PnET PSIM PSIM SC PnET PnET PSIM PSIM

Thinning: 0% 30% 0% 30% 0% 30% 0% 30%

2006 Na 571 571 1081 1081 Na 49.1 49.1 57.3 57.3
2007 Na 561 629 1059 1026 Na 47.0 41.7 55.2 52.7
2008 1015.5 514 758 1033 904 Na 52.6 56.5 60.3 61.1
2009 697.0 543 682 1046 888 155.7 43.8 61.1 52.3 61.3
2010 797.3 496 547 934 793 33.8 38.9 51.8 40.7 37.6
2011 835.8 598 586 1078 926 15.4 41.4 51.6 43.9 37.1
2012 Na 1 514 488 1007 884 Na 1 48.2 50.5 44.7 36.4
2013 689.3 2 523 473 941 871 57.4 2 41.7 43.3 36.9 32.7
2014 Na 638 554 1087 998 Na 55.2 52.1 51.5 46.1

Mean 807 547 584 1018 897 65.6 46.0 52.4 47.2 46.0
SD 132.6 52.0 103.0 61.2 67.3 62.5 6.2 5.5 8.0 12.6

Difference - −32% 26% - −30% −28%
1 = Annual fluxes for 2012 of CO2 (816.6 g C m−2 year−1) and N2O (83.5 mg N m−2 year−1) not included
because they were measured only from Jan–Aug 2012; 2 = April 2013–April 2014, (Aug 2013–Aug 2014:
CO2 = 775.8 g C m−2 year−1, N2O = 52.4 mg N m−2 year−1); Na = Not available.
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3.1.4. Soil Gaseous N Fluxes

Daily soil N2O fluxes simulated with PnET showed seasonality, ranging from 30–50 µg
N m−2 d−1 to summer peaks of 200–300 µg N m−2 d−1 with rain-related spikes on several
occasions (Figure 5b). Excluding rain-related spikes, PnET N2O simulations showed a
positive correlation with temperature, (r = 0.53, p < 0.01), resulting in high values in the
summer; similarly, PSIM N2O simulations were not correlated with temperature (r = 0.04)
and the timing of annual maximum values varied from year to year. Measured soil N2O
fluxes showed much greater variation and no obvious seasonality, particularly during
2008–2012, and there was no correlation with temperature [50]. On occasions, negative
N2O fluxes were measured, but the LandscapeDNDC version used could not simulate
soil uptake of N2O. Peak effluxes of 500–1700 µg N m−2 d−1 were measured (Figure 5b).
Under wet soil conditions, both PnET and PSIM simulated short-lived spikes in N2O
fluxes of 700–900 µg N m−2 d−1 that did not necessarily coincide in time, magnitude or
with measured spikes. For example, in early January 2014, PnET simulated N2O fluxes
of 600 µg N m−2 d−1, but only fluxes of 300 µg N m−2 d−1 were simulated by PSIM.
Annual N2O fluxes, adjusted to calendar year and estimated from approximately monthly
measurements, ranged from 15.4 to 156 mg N m−2 year−1 during 2009–2011 [50] and
57.4 mg N m−2 year−1 in 2013 measured during this study. Fluxes simulated with PnET
and PSIM for the same periods were less varied but within the range of 38.9–55.2 mg
N m−2 year−1 and 36.9–52.3 mg N m−2 year−1, respectively (Table 6), and closer to the
measured annual flux for 2013.

Monthly measured N2O flux totals were compared with those simulated using PnET
and PSIM modules with data from 2008–2012 analysed separately from 2013–2014 data
(Table 5c). For both PnET and PSIM, the RMSE% values were large, and for 2008–2012,
within the 95% confidence intervals of the measured means despite being >100%, due to
larger variations in the fewer measured values than in 2013–2014 when the RMSE was
significantly different from measurements. ME was negative and CD < 1 for 2013–2014
simulated N2O flux results from both models, suggesting that in this case, the measured
data are better described by the mean. However, both simulations showed CD values > 1
for 2008–2012, which highlights the impact of the high degree of variability in soil N2O
fluxes and the relative frequency of measurements. It also indicates there is considerable
uncertainty in annual totals calculated from these measurements.

3.2. Model Sensitivity Analysis

Figure 6 illustrates the effect of changes to key input variables and parameters on
annual GPP, TER, NEP and soil CO2 and N2O fluxes simulated using PnET and aver-
aged over 1999–2007 (Table S1a). The simulated annual CO2 flux components showed
rather little sensitivity to changes in soil parameters, but more to changes in temperature
and precipitation.

Changing the bulk density (BD) input values by 10% produced a disproportionate
change in N2O fluxes. This value controls the initial organic C (and N) stock in the soil as
well as soil porosity. A higher BD (given in g cm−3) results in higher organic C content
(input to model as a fraction of BD) and lower porosity (input as % of BD), which provides
more substrate for microbes and results in more anaerobic conditions during wetting. The
hydraulic conductivity of the soil was uncertain, as it was not determined. Although the soil
is clay-rich, tree roots promote conduits for water percolation. Values of 10 and 100 times
higher than the selected value of 0.0006 mm min−1 were shown to reduce the simulated gas
fluxes by less than 5%. Changing the daily climate variables of minimum, maximum and
mean temperature (in a single simulation) or precipitation by ± 10% produced changes to
gas fluxes of <10%, with a shift from litter layer to mineral soil nitrification due to reduced
microbial activity in the litter layer. Changes in N deposition of ± 10% changed soil N2O
fluxes by less than 4%. Increasing N deposition by 100% to 2.46 g N m−2 year−1, which is
similar to values of 2.0–3.5 g N m−2 year−1 recorded for a broadleaved forest at Hoeglwald
in central Europe [54], resulted in large, simulated increases in N2O fluxes of 17.7%. This
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analysis therefore showed that simulated soil fluxes were particularly sensitive to initial
organic C content (via bulk density) and to factors that control soil moisture and thereby
anaerobic conditions, i.e., bulk density and field capacity. It also showed that stand-scale
CO2 fluxes were relatively insensitive to changes in input values, which may explain the
low interannual variations simulated.

Figure 6. Sensitivity tests showing % change in simulated annual CO2 and N2O fluxes with input
values (a) increased by 10% and (b) decreased by 10% (except pH: changed by 1 unit, soil hydraulic
conductivity: changed as shown, and N dep: ±10% and +100% or −50% change). Simulations using
PnET module.

Model sensitivity to selected PnET parameters is shown in Figure 7 (Table S1b).
Changes of ±10% to GDDFOLEND (daily temperature sum for end of foliage growth; see
Table 3) produced >10% change in all simulated soil fluxes; increasing SENESCSTART
(leaf death timing) by 30 days decreased simulated GPP, TER and soil CO2 fluxes by >10%,
which indicates the importance of defining the start and end of the growing season to
simulated respiration and soil processes. Changing these parameters affects the allocation
of carbon at the end of the year and hence the amount available for leaf development the
following year, which has a cumulative effect after several years. However, SENESCSTART
defines a day of year and therefore is not comparable to % change in outputs, whereas
changing GDDFOLEND affects leaf N uptake and therefore the intensity rather than timing
of soil emissions.

Figure 8 shows model sensitivity to PSIM parameters (Table S1c). No single parameter
had a disproportionate effect on the simulated results. Comparison of the PSIM module
with and without a vegetation understorey, modelled as different sets of carbon pools
(as defined in Table 1), showed that the understorey contributed 20%, 17% and 20% of
simulated TER, GPP, and soil CO2 emissions, respectively, and 14% of simulated soil
N2O emissions. However, the understorey vegetation characteristics vary substantially
across the Inclosure; there are few measurements of understorey parameters to inform the
choice of values, and no measurements to evaluate its proportional contribution to fluxes.
Therefore, there are considerable uncertainties in the contribution of the understorey to the
TER, GPP and soil fluxes of CO2 and N2O in this forest.
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Figure 7. Sensitivity tests showing % change in simulated annual CO2 and N2O fluxes with chosen
PnET module parameter values (a) increased by 10% and (b) decreased by 10% (except SENESC-
START: changed by 30 days).

Figure 8. Sensitivity tests showing % change in simulated annual CO2 and N2O fluxes with chosen
PSIM module parameter values (a) increased by 10% and (b) decreased by 10% (except DLEAFSHED:
changed by 10 days and 20 days).

3.3. Thinning

Following 30% thinning, annual GPP simulations showed an initial decline in both
modules, and then a recovery over several years (Figure 9a). Using the PSIM module, the
largest difference from unthinned simulations was in 2009 with a 17% reduction in GPP,
which recovered fully to that of the unthinned by 2013. For PnET, the largest difference
from unthinned simulations was in 2008 with a 20% reduction and, although this difference
reduced by 2010, it maintained a similar difference (4–11% lower) for the duration of the
simulations. The initial small change in GPP after thinning in the PSIM module more
closely fit the measured changes than did the PnET module equivalent, which had a larger
initial decline. Annual TER simulation (Figure 9b) also showed a decline in PSIM following
the thin (maximum difference 15% in 2009), which recovered gradually but not completely
by the end of the study (6% difference in 2014). For PnET, simulated TER increased slightly
(by 5%) in 2007 and 2008 after thinning, before declining, and the difference in simulated
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values continued to increase thereafter to 12% by 2014. For PSIM, the maximum change
in NEP was small (28%) compared to PnET, which showed a maximum reduction in NEP
of 131%, resulting in negative NEP (i.e., a net loss of CO2) in 2008 (Figure 9c). PnET
simulations produced a 47% increase in soil CO2 efflux in 2008, whereas PSIM simulated a
12% decrease, increasing to 15% in 2009 and 2010 (Figure 9d). Both modules also showed
an increase in simulated N2O emissions after the thin, and although relatively small in
absolute values, the proportional increase was larger in PnET (39%) than for PSIM (17%)
(Figure 9e). It should be noted that although soil CO2 and N2O flux measurements are
shown in Figure 9d,e, these were from the Tower Site and will not have been directly
affected by the thinning.

Figure 9. Annual eddy covariance CO2 and soil gas flux measurements at the Straits Inclosure Tower
Site for: (a) GPP, (b) TER, (c) NEP, (d) soil CO2 and (e) soil N2O compared with simulated values
from PnET, and PSIM with a 0%, 15% and 30% thinning event in September 2007 (marked with
black arrow).

For the 15% simulated thinning, the differences in simulated fluxes followed the
same trends as those produced by the 30% thin. For PSIM simulations, the 15% thin
closely matches whole-stand EC measurements immediately after the thin in 2007–2009
(Figure 10a–c). The significant decrease in both measured GPP and TER in 2010 has been
attributed to a defoliating caterpillar infestation [29], which may explain a poor model
fit for 2010 and possibly subsequent years. However, both PSIM and PnET simulations
showed a decrease in GPP and TER in the same year, suggesting an environmental effect
may also have contributed to the low measured values in 2010.
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Figure 10. Monthly TER at the Straits Inclosure for 2009 (a,b) and 2012 (c,d). Measured EC TER
data are separated into data originating from the eastern (thinned) sector and western (unthinned)
sector [45]. Equivalent simulated TER data are shown for PnET (a,c) and PSIM (b,d) with 0% and
30% thinning after separating results depending on the daily wind direction.

Wilkinson et al. [45] reported changes in measured stand CO2 fluxes after the thinning
event in 2007; while fluxes in 2008 were little changed, there were markedly increased respi-
ration rates in 2009 from the eastern thinned area, likely to be caused by the decomposition
of brash and stumps. Monthly measured TER data partitioned into eastern (thinned) and
western (unthinned) sectors from [45] in 2009 and 2012 were compared with 0% and 30%
thinning simulated using PnET and PSIM (Figure 10). To account for the small differences
in weather conditions when the wind is from east or west, simulated daily data were
separated into east and west sectors. In 2009, two years after thinning, measured TER
was predominantly higher throughout the year during easterly winds. However, PnET-
simulated monthly TER hardly differed for 0% and 30% thinning and was most similar
to measured fluxes from the west sector (Figure 10a). In contrast, PSIM-simulated TER
showed a clear reduction for 30% thinning, compared with 0% thinning between January
and November 2009, and higher simulated TER values after June than those measured
from the west (Figure 10b). In 2012, 5 years after the thinning, measured TER values were
similar in the western and eastern sectors, except that the summer peak in the eastern
sector lagged behind that of the western sector by a month. PnET-simulated TER values
were substantially lower than measured values throughout the year and, unlike in 2009,
simulated thinning decreased TER slightly between May and October 2012 (Figure 10c).
As in 2009, PSIM-simulated TER was reduced by the 30% thinning, particularly in summer
months (Figure 10d).

For the above comparison of simulated and measured data, model efficiency (ME)
values were consistently >0; coefficient of determination (CD) values were >1 in all PSIM
simulations except 0% thinning in 2009 and were <1 in all PnET simulations (Table 7). PSIM
produced better simulated monthly results, giving slightly higher CD values and similar
or lower RMSE than PnET, except for the 2009 simulations with 0% thinning. However,
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for both years, the unthinned model output gave a better match to the western sector
measured data than the thinned model output did to the eastern sector measured data.

Table 7. Results from ModEval statistical analysis [46] of monthly TER data for 2009 and 2012
simulated with PnET and PSIM and compared with eddy covariance measurements at the Straits
Inclosure. Results from modelling with 0% thin are compared with measurements from the western,
unthinned sector and those from modelling with 30% thin are compared with the eastern, thinned
sector (EC data from [45]).

PnET PSIM
Level of Thinning: 0% 30% 0% 30%

2009
RMSE (%) 28.8 + 39.2 + 36.5 + 39.3 +

Average total error 31.7 57.9 40.1 58.2
Modelling efficiency 0.73 0.46 0.56 0.45

Coefficient of determination 0.61 0.83 0.69 1.16
Correlation coefficient, r 0.92 0.85 0.88 0.80

No. of values 12 12 12 12

2012
RMSE (%) 39.4 + 48.1 + 26.5 + 33.5 +

Average total error 54.9 68.8 37.1 47.8
Modelling efficiency 0.51 0.18 0.78 0.60

Coefficient of determination 0.91 0.78 1.31 1.19
Correlation coefficient, r 0.91 0.90 0.89 0.92

No. of values 12 12 12 12
+ No significant total error.

4. Discussion
4.1. Simulation of Environmental Conditions

As soil temperature and soil moisture are major controls on GHG fluxes from soils,
accurate simulation of these values is important, especially in the uppermost soil layers
(0–30 cm) where most biological activity takes place [55,56]. Simulated soil temperature,
using both PnET and PSIM, had a lower annual amplitude than measured data for most
years. The only year studied when simulated temperature amplitude exceeded measured
amplitude, 2013, had an anomalously dry summer (68 mm, compared with average summer
rainfall of 167 mm) and a cold Jan–Mar (average temperature of 3.3 ◦C, compared with
the equivalent for 1995–2013 of 5.8 ◦C), which suggests a link with climatic conditions.
DNDC calculates soil temperature from soil properties including thermal conductivity
derived from a combination of solid and water phases, depending on moisture content [34].
It seems that when the moisture content is high, the simulation of soil temperature is
less accurate. The small difference of <1 ◦C in extreme values of PSIM and PnET soil
temperatures is probably generated in the ECM air chemistry module due to differences
in canopy structure, which causes shading, and evapotranspiration, before soil surface
temperatures are calculated in the DNDC soil microclimate module.

Soil moisture measurements at the Straits Inclosure Tower Site have been unreliable
at times, especially following dry conditions in the clay-rich soils when cracks reduce the
probe accuracy, and spatial variation from proximity to vegetation is expected (relative
standard error was 1–6%). As with soil temperature, simulated soil moisture generally
showed a reduced seasonal range, with the exception of peaks (often one day long) follow-
ing heavy rainfall events. The original aim of DNDC was to predict seasonal or annual
N2O emissions [16] and therefore the timing of simulated rain events was not important:
they start at midnight and continue at the same pre-defined intensity until daily rainfall
has finished [37].

The vegetation module takes account of canopy interception and evapotranspiration,
and then rainwater saturates the soil, layer by layer, at a rate determined by each layer’s
soil hydraulic conductivity (K). Altering K at model setup changes soil moisture during
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and after rainfall events, but a 100-fold change in K (from 0.0006 to 0.06 mm min−1) only
changed simulated soil moisture by 1–2% on most days. Results with the higher input
K were still 2–3% different from the measured values and did not affect the simulated
soil temperature. However, the effect of simulating rainfall in this way in a clay-rich
soil was to create more occasions when surface water accumulates and hence more times
when anaerobic conditions were simulated for denitrification. This simplification therefore
probably contributed to the overestimation of N2O peak emissions at this site. Many of
the studies using combined PnET and DNDC models have involved forests on loams and
sandy loams, e.g., [57], for which simplified rainfall and drainage models produced N2O
emission values within 4% of measurements in one site studied. Saggar et al. [58] and
Li et al. [59] modelled clay-rich agricultural soils with DNDC, and modified soil moisture
processes in order to obtain better matches with measured soil moisture and soil drainage.
Following field experiments in a temperate oak forest, Liu et al. [60] suggest drought
intensity enhances the response of soil respiration to a precipitation pulse, as the length
of drought had a greater effect on soil CO2 efflux than the amount of precipitation. This
is not represented in the model used here but would be important for modelling climate
change scenarios.

4.2. Vegetation Species Parameters and Simulation of CO2 Fluxes

Simulations using the standard species parameters for pedunculate oak (Q. robur)
resulted in annual GPP values approximately half those estimated by EC, indicating that
customisation was required. However, if the model is to be applicable at more than one
site, the number of parameters altered should be minimal. For PnET, the principal control
on a species’ C uptake is the parameter AMAXB (optimal photosynthetic rate), together
with MFOLOPT (optimal foliage biomass), which determines LAI. These two parameters
directly control the simulated GPP values and were changed incrementally until annual
EC GPP was matched. Simulated autotrophic respiration is summed from the growth and
maintenance of three C pools (leaves, wood and roots), and four parameters define the
fractions of photosynthesis and biomass used to calculate respiration, together with a Q10
and three C allocation parameters. There is no parameter that controls heterotrophic soil
respiration. Therefore, matching TER from EC data was less straightforward and required
balancing with resultant NEP values derived from GPP and TER. Although sub-optimal
GPP values may be necessary to ensure both TER and NEP are optimised, it is most
likely that there will be a better fit for GPP than both TER and NEP when modelling with
PnET. For PSIM, there are also two key parameters that control photosynthesis (VCMAX25
and MCFOLOPT), but only one key parameter that controls respiration (KM20), which
simplifies the optimisation process.

These gas exchange parameter values were selected to match averaged annual values
for GPP, TER and NEP. Changing phenology-related parameters helped match seasonal
variations but not inter-annual variations, particularly in PSIM data. PnET uses daily
temperature, through cumulative growing degree days (GDD), to control the start and
end of leaf unfolding, whereas PSIM only uses GDD at the start and a parameter-defined
number of days to complete the process. Similarly, the timing and length of leaf fall remain
constant for each year in PSIM, but in PnET these can vary according to conditions. Thus,
PnET simulated a larger inter-annual range (205–252 days of non-zero C uptake) in growing
season length (GSL) compared to PSIM canopy trees (210–248 days), which contributes to
differences in their simulated inter-annual variations. PnET and PSIM both show a positive
correlation between GSL and simulated annual GPP (PSIM, r = 0.78, p < 0.01; PnET, r = 0.52,
p < 0.05). GSL has been reported by Goulden et al. [61] to be a controlling factor on annual
GPP in a deciduous forest in New England. However, Wilkinson et al. [29] did not find any
such correlation between observed GSL and EC GPP. The strongest correlation they found
to explain inter-annual variation was between peak LAI and GPP in Straits data from 1999
to 2010. Conversely, simulated LAI shows very little annual variation in peak values (PnET
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range: 4.85–5.79; PSIM canopy range: 5.47–5.86, understorey: 3.16–3.92, total: 8.64–9.69)
and no correlation with simulated GPP or TER.

Thus, it seems the inability to vary peak LAI appropriately in both models may cause
the poor match in inter-annual variability. However, the exfoliating caterpillar infestations
of 2009–2010 were known external factors that affected the forest LAI and therefore GPP,
and there may have been other factors (e.g., disease, storm damage) that are not simulated
but account for some of the mismatch. No correlation was found between annual rainfall
and GPP in either PnET or PSIM, but drought stress affected PnET outputs more than
those of PSIM in 2003, although EC measurements showed the Straits Inclosure was not
adversely affected.

The annual biomass increment for the Straits Inclosure between 1997 and 2011 was
estimated as 347 g C m−2 year−1 from measurements of the canopy trees [29], although
this was an underestimate of total stand NEP as it did not include the understorey. Sim-
ulated biomass from end of year C pools of wood and coarse roots, following loss of
leaves and fine roots with no thinning, gave broadly comparable values for an aver-
age annual increment between 1999 and 2011 of 374 g C m−2 year−1 using PnET and
439 g C m−2 year−1 using PSIM. At the end of 2010, biomass was estimated from mea-
surements as 16.5 kg C m−2 (Forest Research, personal comm.), which compares well with
simulated values of 16.7 kg C m−2 using PNET and 18.4 kg C m−2 using PSIM (of which
1.5 kg C m−2 was understorey).

4.3. Simulating Soil Gas Fluxes and Measurement Uncertainty

Soil chamber measurements are known to be subject to errors and both spatial and
temporal variability are expected [62,63]. Measurements during this study were made
once every 2–4 weeks; therefore, estimated annual fluxes may have compounded errors
resulting from diurnal and short-term temporal variations. Overall, the results show that
PSIM-simulated soil CO2 effluxes matched the measured effluxes more closely than those
simulated by PnET. PSIM gave a mean ratio of soil CO2:TER of 0.67 for 2008–2011 with and
without thinning, which is similar to the mean ratio of 0.61 and 0.60 in measurements by
Yamulki and Morison [50] and Heinemeyer et al. [64], respectively. The equivalent ratio for
the PnET simulations was 0.47 for 2013–2014. PSIM simulated a greater annual maximum
total root mass of 0.9 kg DW m−2 than did PnET (0.25 kg DW m−2) due to the addition
of understorey vegetation. We suggest that the differences in total CO2 efflux are largely
due to the simulation of root exudates that occurs in PSIM, generating extra substrates for
heterotrophic respiration, but is not modelled in PnET.

Chamber measurements of soil N2O fluxes are subject to similar measurement errors
as soil CO2 effluxes [65,66]. The overestimation of N2O peak fluxes by the model has
been discussed above as an effect of the simplification of rainfall simulation and resulting
moisture content. The presence of the understorey affects the intensity of simulated fluxes,
rather than seasonal pattern, and is linked to simulated N uptake. A constant N deposition
was assumed in the simulation, but Vanguelova et al. [67] report decreases in NH4-N
throughfall at Alice Holt from 1995 to 2006 of approximately 0.7 NH4-N eq ha−1 year−1,
which would result in a decrease in N2O fluxes if continued during the period simulated
here and may also have contributed to the mismatch between measured and modelled data.

The inability to model the uptake of N2O is a further simplification that contributes to
poor agreement with measurements.

4.4. Simulating Thinning/Response to Management Change

Evaluating the simulated thinning event alone was complicated by the fact that
thinning took place over only half of the plantation and there was only one EC tower to
measure the change. Furthermore, there is heterogeneity across the site, particularly in the
understorey species and density, which has not been quantified. Differences in weather
conditions coming from the western and the eastern sectors contribute to different GPP
and TER rates in addition to the thinning status. However, the PnET-simulated negative
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NEP in 2008 (Figure 9c) was caused by simulated GPP being too low. Measured TER
was higher in the thinned sector from 2009 (i.e., after a lag, Figure 10a); although PnET
also simulated an increase in TER after thinning (Figure 9b), principally as a result of
increased soil respiration (Figure 9d), this started in 2007 and by 2009 TER had returned
to unthinned sector values. In contrast, PSIM simulated a decrease in TER from the 2007
thin. The main difference between the modules was the simulated soil respiration, which
increased with PnET due to increased litter input, causing higher heterotrophic respiration
from increased mineralisation, but decreased in PSIM because mineralisation remained
unchanged and root respiration decreased. Both modules simulated an increase in soil
N2O fluxes following the thin, which is in agreement with Yamulki and Morison [50], in
which the least thinned areas of the Straits Inclosure recorded the lowest soil N2O fluxes
during 2010–2012.

5. Conclusions

LandscapeDNDC with the two different tree growth modules, PnET and PSIM, was
evaluated for application in an oak forest in southern England by modifying a limited set
of species parameters that define tree physiology. The PnET module simulated annual GPP,
TER and NEP rates averaged over 1999–2007 to within 8.5%, 6.7% and 14.1%, respectively,
of values derived from EC measurements, which is within the estimated uncertainty
of the EC method of 10–15% suggested by Oren et al. [48]. The PSIM module, which
included an understorey component, simulated these mean annual data to within < 1%.
For both modules, the measured inter-annual variability of GPP, TER and NEP was not well
simulated, and comparison with measurements indicated negative modelling efficiency
(ME) values. However, when monthly CO2 fluxes were compared, the model efficiency
for PnET and PSIM improved to positive values. These annual and monthly comparisons
suggest that while the main processes in the forest CO2 balance are included, neither
module has appropriate sensitivity to key drivers to respond to interannual variations.

Annual soil CO2 fluxes were consistently underestimated by PnET by 32% compared with
average soil chamber measurements, but were overestimated by 26% by PSIM. Measured soil
N2O fluxes exhibited considerable inter-annual variation of 15.4–156 mg N m−2 year−1, which
was not reproduced by PnET or PSIM, but in both cases simulated annual totals were of the
same order of magnitude as measurements (PnET: 38.9–55.2 mg N m−2 year−1 and PSIM:
36.9–60.3 mg N m−2 year−1). Comparison between monthly simulated and measured
N2O soil flux data showed poor agreement for both modules. For soil CO2 fluxes, PSIM
produced better results when compared with measurements from 2008–2012.

For soil N2O fluxes, LandscapeDNDC was most sensitive to initialisation values of
bulk density, which also affects soil organic carbon content and field capacity. Of the climate
variables, decreasing the temperature by 10% had a greater effect on N2O emissions than
increasing temperature or changing precipitation by 10%. The PnET parameter to which
simulated soil N2O and CO2 fluxes were most sensitive, increasing over the duration of
the simulation, was GDDFOLEND, which defines the cumulative temperature required
to reach maximum leaf area. There was no single PSIM parameter to which simulated
fluxes were particularly sensitive, but inclusion of the understorey contributed 14–22% to
simulated flux outputs of GPP, TER, soil CO2 and N2O.

The simulation of forest thinning showed that PSIM produced a better match to mea-
sured GPP and NEP data than PnET, although the latter simulated a more realistic response
for the TER rate through increased soil respiration. Both modules reproduced monthly
variations in TER well for two separate years following thinning (PnET ME = 0.46 and 0.18;
PSIM ME = 0.45 and 0.60), but neither module reproduced the details of the measured time
course. The simulated increases in N2O gas emissions could not be assessed accurately but
agreed broadly with observations made at the site by Yamulki and Morison [50].

This study shows that the LandscapeDNDC model can simulate monthly and av-
eraged annual ecosystem CO2 fluxes measured at the Straits Inclosure well when key
parameters have been optimised for local conditions. The PSIM module performed better
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than PnET and its ability to simulate the significant understorey component present at the
site may have contributed to the improvement, although there is insufficient information
to provide robust understorey parameter values or to evaluate the understorey simulation.
While monthly soil CO2 fluxes have been shown to be well simulated by PSIM, particularly
compared to 2008–2012 measurements, N2O fluxes and variability were not. Improvements
to the model in order to better simulate the observed inter-annual variability would be
necessary before either module is used to predict impacts of changes due to climate and/or
management at this site.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12111517/s1, Figure S1. Daily residual values (measured–simulated) for: (a) GPP, (b) TER and
(c) NEP at the Straits Inclosure, modelled with PnET (red circles) and PSIM (blue circles) modules
1999–2007. Table S1. Sensitivity test results showing % change in simulated annual total GHG fluxes
averaged over 1999–2007 for (a) input variable changes simulated with PnET (see Tables 1 and 2
for initial input values), (b) parameter value changes simulated with PnET and (c) parameter value
changes simulated with PSIM. Parameter value units are given in Table 3. Changes >10% shaded.
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