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Abstract: Accurately estimating the carbon storage of forest ecosystems and deriving the driving
factors affecting forest carbon storage are the prerequisites and foundations for promoting the
development of global carbon sinks. In order to explore an effective approach for monitoring the
carbon sink of forests in developed coastal areas on a large scale, in this paper, Guangdong Province
was taken as the case study region; eight periods plots of data of national forest resources continuous
inventory were used to estimate the forest carbon storage and carbon density in Guangdong Province
from 1979 to 2012; unary linear regression and standard deviation ellipse were used to analyze the
dynamic change of carbon storage; and the structural equation model was used to study the driving
factors of forest carbon storage. The results showed that: (1) From 1979 to 2012, the forest carbon
storage in Guangdong Province increased by 15,087.93× 104 t, and the forest carbon density increased
by 17.66 t/ha. (2) After 2007, the main body of forest carbon storage changed from coniferous species
to broadleaf species. (3) From 1979 to 2012, the proportion of young and middle-aged forest carbon
storage continued to decline, but it still occupied the dominant component. (4) The forest carbon
storage and carbon density in the northern region of Guangdong Province are higher than those
in the southern region. (5) Stand factors and environmental factors have a positive effect on forest
carbon storage, and understory factors have a negative effect. In conclusion, although forest carbon
storage has fluctuated under the influence of forestry policies and human activities, the overall carbon
storage and carbon density of Guangdong Province have been increasing. Tree species have become
more abundant and the proportion of coniferous forest to broadleaf forest became more rationalized.
The forest age group structure is continuously optimized. We also compared our results with that of
other provinces in China and other countries with approximate latitude and climatic conditions. The
carbon sink potential of Guangdong Province is huge in the future.

Keywords: forest carbon storage; carbon density; spatiotemporal dynamics; structural equation
model; driving factors; Guangdong province

1. Introduction

In order to cope with global climate change, the United Nations formulated the United
Nations Framework Convention on climate change in 1992 in order to comprehensively
control the emission of CO2 and other greenhouse gases [1,2]. The global carbon cycle
has become one of the core issues of global climate change research. As the main body of
the terrestrial ecosystem, the forest ecosystem is the largest carbon pool in the terrestrial
ecosystem. The fixed carbon by forest every year accounts for about two-thirds of the entire
terrestrial system [3–5]. Therefore, forest ecosystem plays an irreplaceable role in keeping
the global carbon balance, alleviating the rise of greenhouse gas concentration such as CO2
in the atmosphere and regulating the global climate [6]. The carbon sequestration capacity
of forest ecosystems depends on the comparison of carbon input rate and carbon output
rate [7]. Forest carbon sequestration capacity, carbon storage and its temporal and spatial
dynamic distribution have become hot topics of forest and ecological research in China
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and abroad [8]. At present, there are still some uncertainties in accurately estimating the
size of the forest ecosystem carbon pool and the carbon flux between the related carbon
pools, and the calculation results are often quite different [9,10]. Accurate estimation of the
carbon storage of forest ecosystems is a prerequisite for a comprehensive understanding
of the status and role of forest ecosystems in the carbon cycle. At this stage, estimation of
forest ecosystem biomass is the basis for forest ecosystem carbon storage estimation [11,12],
so accurate estimation of forest biomass is the great significance the earth’s carbon cycle.

Forest biomass can be converted into carbon storage by the percentage of carbon in
the dry weight organic matter of plants (i.e., carbon conversion coefficient) [13]. When
estimating carbon storage, the first step is to estimate forest biomass. At present, there
are mainly two ways of forest carbon estimation, namely direct measurement and indirect
estimation [14]. Direct measurement is conducted by field survey, which is highly accurate.
However, this measurement is time-consuming, labor-intensive, and extremely destructive
to the ecosystem. Thus, this direct measurement method is usefully adopted at forest stand
or ecological scale only. Stand and ecosystem scale usually adopt the direct method. Indirect
estimation mainly includes three methods: sampling inventory, model simulation, and
remote-sensing based estimation. On large scales, the ground survey data of forest carbon,
together with multi-source remote sensing images are collected to estimate landscape
regional forest carbon. There are many factors affecting the accuracy of remote sensing
estimation, such as variable selection, modeling methods, so the estimation accuracy
varies greatly and the prediction results cannot be extended to other regions. Model
simulation methods [15], such as climate–vegetation models, biogeographic models, and
biogeochemical models, are commonly used to estimation forest carbon at national and
global scales [16,17]. The eddy covariance method is a kind of direct measurement of
carbon fluxes of micrometeorology [18–20]. This method has the advantages of continuous
observation, no interference to the environment and a large observation spatial scope.
However, because of the small number of carbon flux observation stations and the influence
of terrain and air conditions, its application in country and global carbon storage estimation
is limited. Due to the shortcomings of each estimation method, in order to reduce the
estimation error, multiple methods are often combined together to estimate the forest
carbon in the same research area. At the present stage, the method of sample plot inventory
is relatively more accurate, and there are many methods for estimating biomass based on
sample plot data. Due to the differences in tree species and regions, the biomass results
of different methods often have some errors. For example, Brown [21] and Fang [22] et al.
calculated the biomass of different forest types and forests in different countries by biomass
expansion factor. Kim [23] compared of allometric equations and biomass expansion factor
to calculate the subtropical broadleaf species in South Korea. Park [24] used biomass
expansion factor, allometric equation and stand biomass to calculate the biomass of Pinus
thunbergii (Pinus thunbergii Parl.) in Southern Korea. Biomass expansion factor method can
accurately estimate forest biomass. In summary of previous studies [25–31], we selected
the commonly recognized biomass expansion factor method in this work.

Guangdong Province is located in the southeastern part of the Eurasian continent
and borders the Pacific Ocean to the south. It is severely affected by the monsoon climate.
There are many storms and rains in summer. Under this climate condition, forest water
conservation, soil and water conservation and other service functions are particularly
important. As Guangdong Province is less affected by the Quaternary Ice Age, the flora
here has a long history, is rich in forest plant species, preserves many ancient plant species,
and forms a flora with ancient plants and relics plants, including 10 endemic genera
of plants, accounting for about 5.1% of the endemic genera in China. Guangdong is
the gene bank of tropical tree species and animal resources in China and an important
part of the southern collective forest area [32–35]. Since the reform and opening up, the
process of urbanization and industrialization has been accelerating, the forest has been
disturbed and destroyed by human activities for a long time, the proportion of primary
forest vegetation types have been decreasing, and the habitat conditions for endangered
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species have been deteriorating. Therefore, the forest resources in Guangdong Province
are of great significance to the development of forestry carbon sequestration and scientific
forestry research in China.

At present, there is only a small amount of carbon sink function studies based on the
national forest resources continuous inventory data (NFCI) of forest resources at provincial
scales. In these studies, the biomass conversion factor method was always used to carry out
the dynamic analysis of carbon storage and carbon density of different forest types in time
dimension, lacking the analysis of spatial distribution, spatial trend changes, and driving
factors. At present, there are no relevant reports on the analysis of spatial distribution and
spatial change of forest carbon storage based on standard deviation ellipse (SDE) and the
analysis of driving factors of forest carbon density using structural equation model (SEM).
The main objectives of this paper are as follows: (1) to explore an applicable method to
estimate the forest carbon storage on large spatial scale using NFCI plots data; (2) to reveal
the spatiotemporal trend of forest carbon in typical rapidly urbanizing province of China;
and (3) to identify driving factors of forest carbon storage to provide a scientific basis for
making sustainable forest management plan.

2. Materials and Methods
2.1. Study Area

Guangdong Province is located in the southernmost part of mainland China (Figure 1).
The whole territory is bounded by latitude 20◦09′~25◦31′ N, longitude 109◦45′~117◦20′ E.
The total land area is 179,800 km2, accounting for approximately 1.87% of the country’s
land area. The landforms types of Guangdong Province are complex and diverse, including
mountains, hills, and plains, which account for 33.7%, 24.9%, and 21.7% of the total land
area of the province, respectively. Rivers and lakes only account for 5.50% of the total
land area of the province. The provincial terrain is generally high in the north and low
in the south, with mountains and high hills in the north. Guangdong Province belongs
to the East Asian monsoon climate. From north to south, there are central subtropical,
southern subtropical, and tropical climates. It is a province rich in sunshine, heat, and
water resources in China. The precipitation is mainly concentrated from April to September,
with an annual average temperature of 21.9 ◦C and an annual average precipitation of
1790 mm. Affected by climatic conditions, there are a wide range of vegetation and
vegetation communities in Guangdong with banded distribution. From south to north,
there are tropical seasonal rain forest, subtropical monsoon evergreen broadleaf forest,
and typical evergreen broadleaf forest in middle subtropics. By 2020, the forest area of
Guangdong Province was 10,524,100 hm2 [36]. There are many kinds of animals and
plants in Guangdong. The national first-level protected plants include three species of
cyathea (Alsophila spinulosa (Wall. ex Hook.)), cathaya (Cathaya argyrophylla Chun et Kuang),
and tigridiopalma magnifica (Tigridiopalma magnifica C. Chen). The national second-level
protection includes 24 plants species such as metasequoia (Metasequoia glyptostroboides Hu
and W. C. Cheng) and Whitearilyew (Pseudotaxus chienii (Cheng) Cheng).
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Figure 1. Location of Guangdong Province and sample plots.

2.2. Data Acquisition and Preprocessing

This paper estimates the carbon storage of Guangdong Province based on the sample
plots data of 8 consecutive the NFCI in Guangdong Province from 1979 to 2012. The NFCI
takes provinces as the sampling population and adopts systematic sampling. According to
the actual situation of each province, the sampling interval of each province is determined
on the kilometer grid. Permanent sample plots are set up to conduct forest resource surveys.
Guangdong Province conducts systematic sampling based on 6 km × 8 km spacing, with
a total of 3685 fixed sampling plots with an area of 0.067 hm2 each. The attributes of
these plots include slope, slope direction, slope position, altitude, soil name, soil layer
thickness, soil texture, humus thickness, average age, average diameter at breast height
(DBH), average tree height, canopy density, tree species structure, live tree stock, and other
investigation factors.

Before the estimation of forest carbon storage and carbon density, the non-forestland
sample plots with a stock volume of 0, such as water bodies and buildings, should be
deleted from the NFCI. Referring other research methods in China and abroad, the biomass
conversion factor method is adopted to convert the forest stock volume of fixed sample
plots into forest biomass. Different tree species had different carbon content rates, so
biomass was converted into carbon storage based on the carbon content rate of dominant
tree species.

2.3. Research Method
2.3.1. Estimation of Carbon Storage and Carbon Density

In this paper, the biomass expansion factor equation of each tree species provided
by the Guangdong Forest Resources Monitoring Center [37] is used to estimate the forest
biomass. For tree species without corresponding equations, the biomass calculation method
in the article by Yu C [38] is used.

The calculation formula of arbor is:

Wstem = a1 × Db1 × Hc1 ×V (1)

Wbranch = a2 × Db2 × Hc2 ×V (2)

Wleaves = a3 × Db3 × Hc3 ×V (3)

Wroots = a4 × Db4 × Hc4 ×V (4)

W = Wstem + Wbranch + Wleaves + Wroots (5)
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where Wstem is biomass of tree stems in t/ha; Wbranch is biomass of tree branches in t/ha;
Wleaves is biomass of tree leaves in t/ha; Wroots is biomass of tree roots in t/ha; W is the
total biomass in t/ha; D is average DBH in cm; H is average height in m; V is forest stock
in m/ha; and ai, bi, and ci are coefficients. See reference [37,38] for the calculation formula
of biomass of different forest types. Bamboo biomass is calculated according to 22.5 kg per
plant [11].

Forest carbon storage can be calculated by multiplying forest biomass by carbon
content, and the calculation formula is:

Cρ = W × Cc (6)

C0 = Cρ × S (7)

where Cρ is the carbon density in t/ha that is the carbon storage per unit area; W is the
biomass per unit area in t/ha; Cc is the carbon content coefficient with no unit (Table 1); C0
is the total forest carbon storage in t; and S is the forest area in hm.

Table 1. Carbon content coefficient of different tree species (excerpt) [39].

Carbon Content Coefficient

Pinus massoniana 0.544
Cunninghamia lanceolata 0.555
Hard broadleaved forest 0.522
Soft broadleaved forest 0.520

Eucalyptus 0.521

2.3.2. Slope Univariate Linear Regression Analysis

The univariate linear regression equation can be used to analyze the change trend of
carbon storage in the study area with time, and its calculation formula is [40]:

θslope =
n×∑n

i=1 i× Ci −∑n
i=1 i ∑n

i=1 Ci

n×∑n
i=1 i2 − (∑n

i=1 i)2 (8)

where θslope is trend slope; n is the number of study periods (n = 8); and Ci is the forest
carbon storage in the i-th year. If θslope is positive, it indicates that the change of forest
carbon storage is increasing year by year. If θslope is zero, indicating that forest carbon
storage is basically stable during the study period. If θslope is negative, it indicates that
forest carbon storage is decreases during the study period.

2.3.3. Standard Deviational Ellipse

Standard deviational ellipse (SDE) [41–44] is an analysis method to characterize the
spatial distribution characteristics, SDE can accurately reveal the various characteristics of
the spatial distribution pattern of geographical elements that include four basic elements:
the center of gravity coordinate, the rotation angle, and the standard deviation along
the long axis (i.e., Y axis) and the short axis (i.e., X axis). These elements, respectively,
represent the relative position of the spatial distribution pattern of elements, the main
trend direction of development, and the degree of dispersion in the main and secondary
directions. The size of the ellipse reflects the concentration of the overall elements of the
spatial pattern. The Y axis of the ellipse indicates the direction of data distribution, and the
X axis indicates the range of data distribution. The shorter the X axis, the more obvious the
spatial aggregation of the data; the longer the X axis, the greater the degree of dispersion
of the data. That is, the oblateness indicates the degree of clarity of the direction of the
data and the degree of centripetal force. In this paper, ArcGIS 10.3 was used to generate
the standard deviation ellipse of carbon storage in Guangdong Province to identify the
position of the center of gravity and the spatial movement trend of carbon storage from
1979 to 2012.
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Mean center coordinate:

Xw =
n

∑
i−1

wixi/
n

∑
i=1

wi (9)

Yw =
n

∑
i−1

wiyi/
n

∑
i=1

wi (10)

Azimuth:

θ = arctan

( n

∑
i=1

x′i
2 −

n

∑
i=1

y′i
2
) +

√√√√(
n

∑
i=1

x′i
2 −

n

∑
i=1

y′i
2)

2

+ 4(
n

∑
i=1

x′iy
′
i)

2
/2

n

∑
i=1

x′iy
′
i (11)

Axis standard deviation:

δx =

√
n

∑
i=1

(
x′i cos θ − y′i sin θ

)2/n (12)

δy =

√
n

∑
i=1

(
x′i sin θ − y′i cos θ

)2/n (13)

where
(
Xw, Yw

)
is the weighted average center coordinate; (xi, yi) is the spatial position

coordinate of each element; wi is the weight; θ is the ellipse azimuth angle; (x′, y′) is the
relative coordinate of each point from the center of the area; and δx and δy are the standard
deviation along the x-axis and y-axis, respectively.

2.3.4. Structural Equation Model

Structural equation model (SEM) [45–49] is an advanced and robust multivariate sta-
tistical method that combines factor analysis and regression analysis, allowing hypothesis
testing on a complex network of path relationships to analyze the relationship between
measured variables and latent variables, as well as the relationship between each latent
variable. SEM is composed of measurement model and structural model. The former is
used to analyze the relationship between measurement variables and latent variables, and
the latter is used to analyze the relationship between latent variables.

Measurement model:
X = Axξ + δ (14)

Y = Ayη + ε (15)

Structural model:
η = Bη + Γξ + ζ (16)

where X represents the exogenous measurement variable, Y represents the endogenous
measurement variable; ξ represents the exogenous latent variable, η represents the en-
dogenous latent variable; and Ax represents the factor loading matrix of X on ξ. That is,
the coefficient matrix reflecting the strength of the relationship between the exogenous
index and the exogenous latent variable. Ay is the factor loading matrix of Y on η, that
is, the coefficient matrix reflecting the strength of the relationship between endogenous
indexes and endogenous latent variables. δ represents the measurement error of exogenous
measurement variables, and ε represents the measurement error of endogenous measure-
ment variables. B represents the structure coefficient matrix of the relationship between
endogenous latent variables; Γ represents the structure coefficient matrix of the relationship
between endogenous latent variables and exogenous latent variables; and ξ represents the
disturbance or residual in the structural model.

SEM can study not only observable variables, but also the relationship of variables
that cannot be observed directly. It can study not only the direct effect between variables,
but also the indirect effect between variables. It can handle multiple dependent variables
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at the same time. It allows independent variables and dependent variables to contain
measurement errors. It allows independent variables and dependent variables to contain
measurement errors. The relationship between variables can be visually displayed through
the path diagram. Researchers can construct the relationship between implicit variables and
verify whether this structural relationship is reasonable. It can decompose the correlation
coefficient to investigate the direct and indirect effects of one variable on another [50,51].
SEM also has some limitations [52]. The main problem affecting the interpretation ability
of SEM is the specified error, but the SEM program cannot test the specified error at present.
At the same time, SEM has high requirements for sample size, and it also requires that the
model must meet the recognition conditions, and it cannot deal with the real classification
variables. SEM can be evaluated from many aspects, such as model regression coefficient,
load coefficient, and model fitting index. The regression coefficient of the model shows
the influence relationship between the latent variables through the non-normalized and
normalized path coefficients. The load factor is that when the p values show a significant
level and the standardized factor load factor is greater than 0.5, it indicates that the model
measurement relationship is good. If a path does not show a significant relationship
(p > 0.05), or the load factor is too low, it can be considered to delete this factor from
the model. There are many fitting indexes for SEM. In this paper, chi-square degrees of
freedom ratio (χ2/df ) are adopted. Comparative fit index (CFI) and root-mean-square error
of approximation (RMSEA) were used to evaluate the model [53]. The chi-square degree
of freedom ratio is chi-square divided by the value of the degree of freedom, generally
between 1 and 3, indicating that the model fits well. CFI is obtained during the comparison
between the hypothetical model and the independent model, and its value is between 0
and 1. The closer it is to 0, the worse the fitting; and the closer it is to 1, the better the fitting.
Generally, when CFI is greater than 0.9, the fitting of the model is considered to be better.
RMSEA is the index of the evaluation model which is fitted, and the range is between 0
and 1. If it is close to 0, it means that the fitting is good; the closer to 1, it means that the
fitting condition of the model is worse; if RMSEA = 0 it indicates that the model is fully
fitted. When RMSEA is less than 0.05, the model is close to the fully fitting.

3. Results
3.1. Temporal and Spatial Dynamics of Carbon Storage
3.1.1. Temporal Changes of Forest Carbon Storage by Forest Type and Age Group

According to the estimation method mentioned above, the carbon storage and carbon
density of Guangdong Province from 1979 to 2012 years after harvest were calculated
(Tables 2 and 3). It can be seen from Table 2 that from 1979 to 2012, the carbon storage and
carbon density of Guangdong Province decreased slightly only in 1983, and showed an up-
ward trend in other years. The carbon storage in Guangdong Province was 4372.91 × 104 t
in 1979 and increased to 19,460.84 × 104 t in 2012. The total increase in 33 years was
15,087.93 × 104 t, and the average annual increase was 457.21 × 104 t. According to the
forest type, it is divided into four types, arbor forest, bamboo forest, economic forest,
and shrub. In each inventory year from 1979 to 2012, the carbon storage of arbor forests
accounted for 95.86% (1979), 97.93% (1983), 92.95% (1988), 95.05% (1992), 83.13% (1997),
86.42% (2002), 92.27% (2007), and 93.15% (2012) of the total carbon storage of Guangdong
Province, respectively. Bamboo forest accounts for 0.56% (1979), 0.72% (1983), 2.89% (1988),
0.96% (1992), 5.64% (1997), 9.47% (2002), 6.52% (2007), and 5.63% (2012). The percent-
age of economic forest is 3.58% (1979), 1.35% (1983), 4.16% (1988), 3.96% (1992), 11.24%
(1997), 4.10% (2002), 1.17% (2007), and 1.11% (2012). Shrub accounted for 0.03% and 0.11%,
respectively, in 2007 and 2012, and there was no record of shrub species in other years.
Among arbor forests, the largest increase in carbon storage is in the broadleaf mixed forest.
In 1979, the carbon storage of broadleaf mixed forest accounted for 14.48% of the total
carbon storage, and in 2012, the carbon storage of broadleaf mixed forest accounted for
37.00% of the total carbon storage, and the average annual increase of carbon storage was
196.84 × 104 t. The second largest increase of carbon storage is broadleaf forest. In 1979, the
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carbon storage of broadleaf forest accounted for 4.08% of the total carbon storage, increased
to 22.24% in 2012, and the average annual increase of carbon storage was 125.78 × 104 t.
Carbon storage of coniferous and broadleaf mixed forest increased by 32.71× 104 t per year.
The average annual growth rate of carbon storage in coniferous forest was 47.40 × 104 t,
but the percentage of carbon storage in total carbon storage showed a downward trend,
which decreased from 57.80% in 1979 to 21.02% in 2012, with a total decrease of 36.77%.
The average annual increase of carbon storage in coniferous mixed forest was the lowest
(19.55 × 104 t). It can be seen from the above data that the percentage of carbon storage of
broadleaf forest and the total carbon storage have increased steadily. In 2012, the contribu-
tion of broadleaf species has exceeded that of coniferous species to the total carbon storage
in Guangdong Province. It is mainly due to the construction of ecological public welfare
forest and forest stand transformation project in Guangdong Province. The structure of
tree species has been adjusted, the planting area of coniferous species such as Chinese fir
(Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) has
been reduced, while the planting of broadleaf species represented by eucalyptus (Eucalyptus
robusta Smith) has been strengthened, which has increased the planting area of broadleaf
species, improved the forest quality, and steadily increased the forest carbon storage in
Guangdong Province.

Table 2. Carbon storage in Guangdong Province by forest type.

Carbon Storage/× 104 t

1979 1983 1988 1992 1997 2002 2007 2012

arbor

coniferous forest 2527.36 1995.74 3151.39 4498.73 3137.32 4184.37 3631.22 4091.49
broadleaf forest 178.31 262.85 1610.20 2178.37 4011.03 6080.88 7093.22 4328.95

coniferous mixed
forest 260.52 214.38 299.62 455.29 460.29 499.55 565.66 905.72

broadleaf mixed forest 633.38 611.16 614.60 732.34 1120.71 1175.29 2312.27 7128.96
coniferous and

broadleaf mixed forest 592.35 570.73 777.06 1086.41 1234.45 1605.78 1582.78 1671.80

bamboo forest 24.51 26.69 200.74 90.30 675.82 1484.36 1074.56 1095.26

economic forest 156.47 50.20 288.71 372.66 1346.57 643.35 192.99 216.77

shrub 4.83 21.87

total 4372.91 3731.75 6942.32 9414.10 11,986.20 15,673.58 16,457.53 19,460.84

Table 3. Carbon density in Guangdong Province.

Carbon Density/(t/ha)

1979 1983 1988 1992 1997 2002 2007 2012

arbor

coniferous forest 9.04 10.05 12.02 12.26 11.09 16.94 21.42 21.37
broadleaf forest 15.09 12.15 18.35 19.60 22.21 28.65 22.51 22.04

coniferous mixed
forest 11.94 8.09 12.32 14.78 18.57 22.68 24.46 25.91

broadleaf mixed forest 28.2 20.09 30.78 31.44 32.14 34.43 36.09 40.17
coniferous and

broadleaf mixed forest 12.23 6.21 16.24 16.52 17.93 22.52 24.11 25.78

bamboo forest 4.05 8.47 9.99 7.78 20.38 27.83 26.53 30.31

economic forest 4.33 11.73 7.71 6.93 6.92 8.21 7.91 9.28

shrub 0.49 2.98

average 12.28 11.61 14.37 14.45 16.45 22.52 23.02 26.77

It can be seen from Table 3 that the average carbon density of each inventory year in
Guangdong Province from 1979 to 2012 was 12.28 t/ha (1979), 11.61 t/ha (1983), 14.37 t/ha
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(1988), 14.45 t/ha (1992), 16.45 t/ha (1997), 22.52 t/ha (2002), 23.02 t/ha (2007), and
26.77 t/ha (2012), respectively, with an annual average increase of 0.44 t/ha. The increment
of coniferous mixed forest was the highest, with a total growth of 13.97 t/ha. The second
is coniferous and broadleaf mixed forests, with a total increment of 13.55 t/ha. The total
increment of coniferous forest was 12.33 t/ha. The total increment of broadleaf mixed forest
was 11.97 t/ha. The total increment of broadleaf forest is the lowest, which is 6.95 t/ha. The
total increment of carbon density of coniferous mixed forest and coniferous forest is higher
than that of broadleaf mixed forest and broadleaf forest. This is because coniferous species
such as Chinese fir and masson pine are mainly fast-growing forest plantation, so they
increase rapidly. Broadleaf species are mainly natural secondary forest and grow slowly.
The carbon density of broadleaf mixed forest is the highest and the proportion of mature
and over-mature forest is larger, followed by broadleaf forest, coniferous and broadleaf
mixed forest, coniferous mixed forest, and coniferous forest is the lowest. Coniferous
forests in Guangdong are dominated by artificial secondary forests with a large proportion
of middle young forest, so their carbon density is significantly lower than that of broadleaf
forest. Moreover, benefiting from the policy of actively building mixed forests of native
broadleaf species in Guangdong Province; therefore, the carbon density of broadleaf mixed
forest is the highest.

The carbon storage of arbor forest in Guangdong Province is divided into different
age groups for analysis, and the percentage of each age group to the total carbon storage is
analyzed (Figure 2). From 1979 to 2012, the carbon storage of young forests accounted for
22.96%~42.57% of the total forest carbon storage in Guangdong Province, 39.63% ~ 69.29%
was from middle-aged forests, 0.66%~20.53% was from near-mature forests, 1.09%~12.41%
was from mature forests, and 0.01%~2.69% was from overmature forests. The carbon
storage of middle-aged forests accounted for the largest percentage of total forest carbon
storage, followed by young forest, middle-aged forest, mature forest, and overmature
forest. The total percentage of young and middle-aged forest reached the highest value
(97.57%) in 1979 and then decreased slowly. By 2012, the percentage of young and middle-
aged forests reached a value of 64.37%. It can be seen from Figure 2 that the carbon
storage in Guangdong Province is mainly distributed in young and middle-aged forests,
but the percentage of mature and overmature forests has increased in recent years, and the
percentage of age groups tends to be rationalized. Taking the carbon density in 2012 as an
example, counted by age group from high to low, the percentage of overmature forest is
47.62%, mature forest is 38.08%, near-mature forest is 35.43%, middle-aged forest is 32.39%,
and young forest is 15.66%, respectively. It can be seen that there is a positive correlation
between carbon density and tree age, and the carbon density of mature and overmature
forest is much greater than that of young forest. Therefore, Guangdong Province should
increase the percentage of mature and overmature forest in the future forest management
by extending the forest management rotation.

3.1.2. Spatial Dynamics of the Forest Carbon Storage in Guangdong Province

Based on the spline function interpolation theory of ordinary thin disk and local
thin disk, ANUSPLIN [54,55] allows the introduction of covariates (such as elevation) in
addition to independent variables, and the interpolation result is very smooth and has a
strong transition. There is close relationship between forest carbon storage and altitude
in Guangdong Province, the carbon storage in northern mountainous areas with higher
altitude is generally higher and that in southern coastal plain areas with lower altitude
is always lower. Therefore, this paper used ANUSPLIN 4.37 interpolation software to
interpolate the carbon density of Guangdong Province by using elevation as a covariate.
The interpolation results in 2012 was taken as an example to analyze the regional distribu-
tion of carbon storage in Guangdong Province (Figure 3). The carbon density in northern
Guangdong Province is higher, such as Shaoguan, Heyuan, Meizhou, Qingyuan, Yunfu,
and other prefectures. These northern prefectures are mainly mountainous with many
natural mixed forest and less human disturbance. Therefore, the carbon density in this
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part of the province is significantly higher than that in other prefectures. In the Pearl River
Delta, represented by Shenzhen, Dongguan, and Zhongshan, due to the needs of economic
development, the built-up land percentage is higher than that in northern Guangdong, and
the forest area is less. Moreover, the new afforestation is mainly artificial forest, and the
area ratio of young forest is significant. Therefore, the forest carbon density in this area is
significantly lower than the average value of Guangdong Province.
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Formula 8 was used to obtain the slope of temporal variation trend of forest carbon
storage in Guangdong Province from 1979 to 2012. The results showed that θslope were all
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greater than or equal to 0, indicating that carbon storage in Guangdong Province showed
an overall upward trend from 1979 to 2012. The mean value of θslope is 3.01, and the
standard deviation is 0.5. In order to further understand the temporal change of carbon
storage in each prefecture in the study region, four grades are obtained by adding and
subtracting 1 times standard deviation of the average value. At the same time, those with
a slope of 0 are divided into one grade, and finally five trend slope grades are obtained
(Figure 4). The results showed that the area proportions of the five grades of carbon storage
in Guangdong Province are basically stable (2.95%), low growth (6.21%), medium growth at
12.38%, higher growth (34.48%), high growth (43.98%). Seen from Figure 4, carbon storage
in Guangdong has been increasing at higher levels. It can be seen from Figure 4, the growth
of carbon storage in the central and northern regions is higher than that in the southern
regions. This is mainly because the Pearl River Delta region is greatly affected by economic
and human impacts. During 1979–2012, carbon storage declined twice, which affected the
overall increase level. The growth of forest carbon storage in western Guangdong is in
the medium and low level, mainly because the development of agriculture, mineral and
marine industries in this region has limited the growth of forest area, and the growth of
forest carbon storage is relatively slow.
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Figure 5 shows the ellipse and center of gravity of the standard deviation of carbon
storage in Guangdong Province from 1979 to 2012. From 1979 to 1988, the X axis of
the standard deviation ellipse became smaller, the Y axis increased and the oblateness
decreased, indicating that the spatial aggregation of forest carbon storage increased and
the carbon storage distributed in Guangdong Province was no longer uniform, and the
center of gravity shifted to the middle east of Guangdong Province. This is because the
implementation of the Three Determinations of Forestry policy after 1979 led to large-scale
deforestation, which caused serious damage to the forest resources in the low-altitude
areas in the study area, while the forest resources in the high-altitude areas have been
protected due to terrain and transportation conditions, so the forest carbon storage are
gradually concentrated and the center of gravity is shifted. The oblateness of the standard
deviation ellipse increased from 1988 to 1992, decreased from 1992 to 1997, gradually
increased from 1997 to 2012, and the center of gravity shifted from the middle to the
southwest. This may be due to the rise of greening in Guangdong Province in 1985. The
forest area in low-altitude areas increased, and the distribution of carbon storage tended to
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be uniform. From 1993 to 1996, China entered a period of rapid economic development,
the phenomenon of deforestation in low altitude areas increased with urbanization, and
the distribution of carbon storage changed again. Since 1996, China vigorously developed
ecological construction and paid attention to forestry development [56]. In economically
developed areas with low-altitude, afforestation efforts are strong, which reduces the
gap with high-altitude and economically backward areas, and the forest carbon storage
gradually presents a uniform distribution state. Compared with northern Guangdong,
the Pearl River Delta was rapid economic development and less forest area. Therefore,
although the center of gravity of forest carbon storage in Guangdong Province shifts from
1997 to 2012, it is generally close to northern of Guangdong. It can be seen from the
above analysis that the implementation of forestry policies, such as returning farmland to
forest, ecological compensation for public welfare forests, and reform of collective forest
tenure system, has made great contribution to the steady increase of carbon storage. The
dynamic changes of forest carbon storage are greatly affected by forestry policies. Secondly,
economic development and human disturbance also have an impact on the dynamics of
the forest carbon storage.
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3.2. Driving Factors for Forest Carbon Density

From three aspects of environmental factors, understory factors, and forest stand
factors, forest carbon density data in 2012 were chosen as a representative to analyzes
interactions among them and their impacts on forest carbon density. Eight factors including
slope, aspect, position, altitude, landform, humus thickness, soil thickness, and soil texture
were assumed to reflect environmental factors. Six factors, including shrub height, shrub
coverage, herb height, herb coverage, total vegetation coverage, and litter thickness, were
selected to reflect understory factors. Five factors, such as average age, average DBH,
average height, canopy density, and dominant tree species, were chosen to stand for stand
factors. In this paper, the optimization of driving factors is carried out by the statistical
test method, that is, correlation analysis. Correlation analysis refers to the analysis of two
or more related variable elements, so as to measure the degree of correlation between the
two variables [57]. Since forest carbon density in Guangdong Province does not follow
normal distribution, in this paper, SPSS was used to do Spearman correlation analysis, and
the driving factors with significant correlation were selected and added into the SEM. In
SPSS 26.0 [58], the variance inflation factor (VIF) test method is used to delete variables
that have multiple commonalities (that is, VIF > 10). After two screenings, the following
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15 forest carbon density driving factors in Table 4 are finally obtained. The construction
and verification of the SEM (SEM) are carried out using AMOS 22.0.

Table 4. The correlation between driving factor and carbon density.

Driving Factor Correlation Driving Factor Correlation

Slo 0.561 ** Shr_H −0.462 **
Slo_P −0.432 ** Her_H −0.205 **
Slo_A −0.399 ** Ave_A 0.884 **

Alt 0.450 ** Ave_D 0.921 **
Soi_T 0.504 ** Ave_H 0.911 **

Hum_T 0.604 ** Cro_D 0.902 **
Lit_T 0.642 ** Dom_T_S 0.617 **
Shr_C 0.456 **

Note: ** is significant at the 0.01 level. Slo is slope, Slo_P is slope position, Slo_A is slope aspect, Alt is altitude,
Soi_T is soil thickness, Hum_T is humus thickness, Lit_T is litter thickness, Shr_C is shrub coverage, Shr_H is
shrub height, Her_H is herb height, Ave_A is average age, Ave_D is average DBH, Ave_H is average height,
Cro_D is crown density, Dom_T_S is dominant tree species.

The 15 selected driving factors were added to the model of SEM, after repeated
testing, only 13 driving factors are retained, and finally the optimal SEM is built (Figure 6).
χ2/d f is 1.901, GFI is 0.955, and RMSEA is 0.056, indicating that the SEM constructed is
basically ideal. As shown in Table 5, p showing *** means that the two latent variables
are significantly correlated at the level of 0.001. In the process of model testing, since the
forest stand factor is less significant than the understory factors, this relationship is deleted
and the relationship of the forest stand factor and the environment factor as well as the
relationship of the understory factors and the environment factor is retained.
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Table 5. Latent variable correlation.

Estimate of Regression Weight S.E. C.R. p

forest stand factor <
environment factor 0.056 0.005 8.957 ***

understory factors <
environment factor 0.011 0.001 7.802 ***

p showing *** means that the two latent variables are significantly correlated at the level of 0.001.

As illustrated in Figure 6, it can be seen that forest stand factors have the greatest
impacts on carbon density (0.93), the second is the understory factors (−0.28), which are
negatively correlated with carbon density, and the influence of environmental factors is
the least (0.23), while environmental factors have a significant positive impact on stand
factors and understory factors, and the path coefficients are 0.83 and 0.94, respectively. The
SEM showed that all driving factors reached significant levels. The load coefficients of
standardized factors in environmental factors from large to small are slope (0.81), humus
thickness (0.64), altitude (0.57), and slope aspect (−0.53). Among stand factors, the highest
load factor of standardized factor is the average age (0.99), followed by the average DBH
(0.97), the average height (0.95), the canopy density (0.92), and the lowest is dominant tree
species (0.72). Among the understory factors, the load coefficients of standardized factors
from large to small are the average height of shrub (0.93), shrub coverage (0.80), thickness
of litter (0.67), and average vegetation (0.47).

The influence of forest stand factors on the forest carbon effect is very significant,
understory factors and environmental factors have certain influence on forest carbon, forest
stand and environmental factors and forest carbon present positive correlation, understory
and forest carbon negative correlation, and environmental factors can indirectly affect forest
carbon density through influencing forest understory and forest stand. Forest stand factors
have an extremely significant impact on forest carbon density. This is because the average
DBH and average tree height of the forest directly determine the stock volume of the forest
and thus affects the carbon density of the forest. Environmental factors have a significant
correlation with forest stand factors, indicating that the slope, altitude and humus layer of
environmental factors directly affect the absorption of light, heat and nutrients by the forest.
There is a negative correlation between understory factors and forest carbon density. This
may be understory plants compete with arbor trees for nutrition and living space, resulting
in a slower increase in forest carbon density when understory plants are flourishing.

4. Discussion

Based on the NFCI from 1979 to 2012, the biomass conversion factor method is used
to calculate the long-term carbon storage and carbon density in Guangdong Province. The
analysis of temporal and spatial dynamics and driving factors of forest carbon storage and
carbon density can objectively evaluate the long-term effects of forestry policies, human
economic activities and urbanization on the function of forest carbon sink, so as to provide
a certain scientific basis for the making of long-term sustainable management planning at
the provincial level.

The total forest carbon storage in Guangdong Province increased from 4372.91× 104 t in
1979 to 19,460.84 × 104 t in 2012, with an average annual increase of 457.21 × 104 t; carbon
density increased from 12.28 t/ha to 26.77 t/ha, an average annual increase of 0.44 t/ha.
From 1979 to 2012, the proportion of carbon storage of broadleaf forest gradually increased,
and by 2012, the proportion had increased to 58.89%. Although the proportion of carbon
storage in young and middle-aged forest shows a downward trend, it still occupies a
dominant position. The slope univariate linear regression analysis showed that the forest
carbon storage of Guangdong Province presented an overall gradual upward trend. The
standard deviation ellipse analysis showed that the spatial distribution of forest carbon
storage had become gradually uniform, and the center of gravity shifted to the northern
Guangdong. The results of SEM showed that forest carbon storage was significantly
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positively correlated with forest stand factors such as average age, average DBH, average
height, and canopy density, and negatively correlated with understory factors.

In this study, the forest carbon storage and carbon density in Guangdong Province
show an overall upward trend, which is the same as the change trend of the national forest
carbon storage during the same period. In 2007, the forest carbon density of Guangdong
Province was 23.02 t/ha, which was very close to the research results of other scholars
(23.11 t/ha) [59]. Compared with the forest carbon density in other countries in the same
period, the forest carbon density of eastern Asia was 34.40 t/ha, that of Oceania was
54.80 t/ha, that of central America was 90.40 t/ha, that of north America was 55.00 t/ha,
and that of west-central Africa was 116.90 t/ha [60,61]. Compared with carbon density in
national average and other provinces in China, the national average forest carbon density
was 38.05 t/ha [62], the carbon density in Fujian Province was 65.65 t/ha [63], in Yunnan
Province it was 50.58 t/ha [64], in Jiangxi Province it was 25.38 t/ha [65], and in Hunan
Province it was 18.53 t/ha [66]. The carbon density in Guangdong Province is significantly
lower. The huge difference of forest carbon density between Guangdong and other regions
is mainly related to forest type, forest origin, and management intensity in different regions.
The proportion of natural forests in Oceania and central America is dominant, while
artificial secondary forests are the majority in Guangdong Province, which are mainly
young and middle-aged forest. At the same time, the area percent of rural collective owned
and farmer owned forest in Guangdong is over 90%. Due to the long rotation and the low
rate of economic return, farmers are not willing to actively manage the forest, resulting
in low forest management intensity and low stock volume per unit area. Compared
with other provinces at the same latitude range, the forest carbon density in Guangdong
Province is lower and significantly lower than the national average, mainly due to the large
number of young and middle-aged forest and small volume per unit area. Therefore, we
should actively adjust the age group structure, actively carry out forest tending increase
the proportion of over mature forests, prolong the rotation period of trees, and select
native broadleaf trees with long life span and highly efficient carbon sequestration ability
for planting and cultivation. At the same time, plant mixed forest to improve the full
cycle coverage of forests, properly control the tree density reasonably improve the stand
quality, and enable trees to obtain sufficient light and nutrients to improve photosynthesis
efficiency and reduce carbon emissions. The growth of understory vegetation should be
controlled reasonably, the thickness of litter should be maintained, and the carbon storage
capacity of forest should be brought into full play. The temporal and spatial dynamics of
forest carbon storage and carbon density in Guangdong Province are greatly influenced
by forestry policies and socio-economic conditions. Therefore, forestry policies such as
returning farmland to forest, building beautiful villages and compensating for ecological
benefits of public welfare forests should be strengthened to reduce the negative impact of
social economic development and urbanization process on forest carbon sink.

At this stage, there is still a big gap in the results of forest carbon storage calculated
by different methods in the same region. In this study, since the biomass expansion factor
equation of each tree species provided by Guangdong Forest Resources Monitoring Center
does not include all tree species in the study area, the national biomass expansion factor
equation is used to supplement, and there may be errors in the results. However, compared
with the research results of other scholars, the results are very close, so the estimation
results can be adopted. In the future, different research methods will be used to estimate
carbon storage in Guangdong Province, so as to find the most accurate estimation method
and provide a more accurate scientific basis for accounting provincial carbon sequestration.
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