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Abstract: The conflicts that arise between natural resources consumption and the desire to preserve
them make the multicriteria decision theory necessary. Brazil, one of the 10 largest timber producers
globally, uses optimization models that represent the growth of forests integrated with decision
support systems. Brazilian forest plantation managers often face conflicts when continuously seeking
efficiency gains (higher productivity at lower costs) and efficacy (higher profits with minimum
social and environmental impacts). Managers of leading producing countries on timber, pulp, and
fiberboard constantly interact to fine-tune industry processing demands vis-a-vis the demands
of highly productive fast-growing forest plantations. The decision process in such cases seeks
a compromise that accommodates short-term industry productivity optimization and long-term
forestry production capacity. This paper aims to apply a forest management decision support system
(FMDSS) to a case study that represents the challenges that industrial plantations in Brazil usually
face. A vertically integrated pulp company situation was simulated to provide a real scenario. In
this scenario, forest managers tend to shorten the rotations due to Brazil’s usually high-interest
rates; meanwhile, industrial managers tend to ask for longer ones due to the positive correlation
between age and wood density. Romero®, a Forest Management Decision Support System, developed
by following the multi-criteria decision theory, was used to process the case study. Expressly, the
hypothesis that mill managers initially have, that older ages rotation could improve mill production,
was not confirmed. Moreover, mill managers lean towards changes in the short term, while the case
study shows that changes in rotation size and genetic material take time, and decisions have to be
made involving both interests: forest and mill managers.

Keywords: multicriteria decision making; forest management decision support system; collaborative
decision making; compromise programming

1. Introduction

Forest management science encompasses the challenge of working with the forests
that produce required benefits now without compromising future benefits [1]. Due to the
need for disruption with business-as-usual approaches and the adoption of sustainable pro-
duction patterns [2] (p. 13), there is an increasing trend for participation and transparency
to improve planning processes [3,4] (p. 58; p. 217).

Environmental concerns, including sustainable production, bring challenges and
opportunities to the forest industry. South America has continued expanding pulpwood
production with an increasing number of new mills being built in Brazil, Chile, and
Uruguay. These countries in 2016 accounted for 15% of global pulpwood production and
33% of exports. Pulp and paper demand are expected to grow by 2.7% annually, reaching
747 million tons by 2030 [5]. Following this trend, the Brazilian pulp industry has increased
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by 5.9% a year in the last 15 years, guaranteeing its position in the international scenario [6]
(p. 41). Meanwhile, eucalyptus timber became expensive; sectoral inflation was 1.5 times
higher than average Brazilian inflation over the last 10 years [6] (p. 18).

Since the 1970s, the Brazilian pulp industry has invested in plantations quality, such as
photosynthetic capacity and higher wood density. These efforts resulted in the availability
of a variety of suitable genetic materials for plantations. Genetic variability may now
contribute to further productivity growth [7–9].

However, Eucalyptus clones that respond well in nurseries are not necessarily the best
options to perform well during the first years after establishment [10]. Additionally, genetic
material prepared to perform excellently in the fields is often not the best alternative for
industry processing [11–14].

In this scenario, forest managers want to maximize their profits through operational
efficiency and more productive genetic materials [15]. Otherwise, industry managers want
to receive a regular and suitable mix of wood-density materials to maximize their pulp
productivity [13]. Therefore, forest management may optimize the use of forest resources
considering pulp tons per ha per year.

Optimized forest management began in the 1960s in North America and Europe and
in the 1980s in Brazil [16]. It has expanded its scope to address new needs from preliminary
harvest scheduling models over the last five decades [17]. Furthermore, a growing number
of papers after 2000 show the widening application of Multicriteria Decision Making
(MCDM) techniques to forest optimization models [18,19]. The literature agrees on the
suitability of the MCDM to address increasing conflicts arising from environmental issues
and production sustainability [20–22].

MCDM techniques might be applied to achieve sustainable forest resources through
conflict resolution support [23–25]. Belavenutti et al. [18] analyzed 203 articles, from 1986
to 2016, on operations research applications into forest management. In total, 76 (37%)
are related to industrial forest plantations (IFP) and were published in this century. A
total of 25 (12%) are about IFP in Brazil and were published after 2000, most using classic
optimization techniques. Furthermore, among those 76 on IFP, only 10 articles mention
group decision-making (GDM) techniques, and none were among Brazilian case studies.

According to Acosta and Corral [19], the more participatory the process is, the better
the decision-making process will be. Therefore, the application of interactive GDM has
increased in the last decade [26]. Thus, this research work embedded models and methods
in an FMDSS, allowing the interaction among decision-makers. They promote conveying,
debating opinions, and committing to the impacts of the decisions.

In this context, given the state-of-the-art (Figure 1), this paper presents a case study of
a Brazilian pulp industry situation where forest managers have pushed for high volumes
of wood, prescribing six to seven-year-old rotations, with mean annual increment (MAI)
generally reaching its peak. Due to the positive correlation between age and wood density,
low wood density logs are usually delivered to the mill. Mill managers complain about
low densities, as they typically lead to a lower content of cellulose fibers per ton of dry
wood. Moreover, forest managers tend to shorten the rotations due to the usually high
market interest rates.

This conflict scenario is represented by a multiple objective linear programming
(MOLP) model used to calculate trade-off curves among conflicting criteria, commonly
called the Pareto frontier. On top of those Pareto efficient solutions, this research uses
compromise programming to reveal the best compromise interval between the main groups
of stakeholders: forest managers and industrial managers.

This paper aims to demonstrate a decision process involving an industrial forest
plantation case supported by an FMDSS that allows interactions among stakeholders with
divergent interests. Specifically, this paper intends to present (i) the principles of the MOLP
model that represents an industrial forest plantation case, (ii) the decision process from
the preliminary results until the compromise solution, and (iii) a reasonable compromise
between industrial and forest managers involving wood density and forest genetic material.
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2. Material and Methods
2.1. Case Study

In Brazil, the yearly production of pulp mills ranges from 200,000 to 2 million tons
of pulp per mill. In 2019, Brazil produced 19.7 million tons, 16.9 of short fiber, 100% from
Eucalyptus planted in 2 million hectares, where MAI varies from 30 to 50 m3/ha-year,
averaging 35.3 m3/ha-year [27].

In 2016, Brazil produced 69 million m3 of non-coniferous pulpwood [28]. The indus-
trial short fiber average consumption was 4.34 m3 of wood to produce one ton of pulp.
The literature mentions productivities from 3.5 to 5.1 m3 per ton of dry pulp [13]. To
sustain their high level of productivity, Brazilian pulp mills’ main concerns regarding wood
quality are (i) wood density [13], (ii) size uniformity of the chips [29], and (iii) chemical
composition [30].

The case study refers to a hypothetical pulp mill that replicates actual conditions in
Brazilian pulp mills. The main aspects of the plantation supplying wood to the mill are
presented in Table 1. Due to the short rotation plantation being around six years, the length
of the planning horizon was set to 19 years to guarantee the completion of at least three
entire rotations [31].

Table 1. Plantation case study.

Area 21,400 ha

Management units 18

Area of each unit From 500 to 1900 ha

Allowable harvest ages 6 and 7 years old

Silvicultural costs R$9500.00/ha

Pulpwood price R$50/m3

Discount rate 7%

Groups Average Productivity
(m3/ha.year at 7 years old)

Average Wood Density
(kg/m3 at 7 years old)

Species
Eucalyptus spp.

GenMat1 42 580
GenMat2 48 500
GenMat3 52 420
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The total area is 21,400 hectares distributed in 18 management units. The smallest
unit has 550 hectares, and the largest one has 1900 hectares. Each management unit
is homogeneous in terms of region, species, cycle, and age. The silvicultural costs are
R$9500/ha over the years to complete one entire Eucalyptus plantation cycle, the pulpwood
price is R$50/m3, and the annual nominal interest rate is 7% [32].

Wood density was used to classify clones into three groups. Group GenMat3 is the
lower density class (average 420 kg/m3). The other two GenMat2 and GenMat1 classify
clones into mid-density (500 kg/m3) and high density (580 kg/m3), respectively. The
productivity varies from 42 to 52 m3/ha-year at seven years old. In the business-as-usual
scenario, harvesting ages are limited to only two alternatives: six and seven years old.

Lopes and Garcia [14] isolated the effect of age into the density of some species
of eucalyptus. Foekel [33] also found a good correlation between wood density and
pulp production efficiency. The hypothetical curves for wood density as a function of
age shown in Figures 2 and 3 were created, fixing the slope coefficient and varying the
intercept. Figure 3 presents the efficiency after the pulp digester; the efficiency was
measured considering two moments in the process: (i) how many m3 of wood had entered
into the mill, and (ii) how much pulp had been produced in dry tons of pulp.
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The GenMat3 group is equivalent to the Eucalyptus grandis average wood density [14].
The GenMat2 (500 kg/m3) group and GenMat1 (580 kg/m3) density are equivalent to E.
grandis × E. urophilla hybrids and E.urophilla, respectively. These species are widely used in
genetic improvement programs in Brazil to boost volume productivity [34,35].

The after-digester efficiency has a positive correlation with wood density and a nega-
tive with the size regularity of the chips [33]. The chip size regularity does not correlate
with any forest management variables. Therefore, for simplicity, the same average reg-
ularity was used for all groups. Average wood density values per age of the GenMat1,
GenMat2, and GenMat3 groups were used to build the curves shown in Figure 3.
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The initial situation of the plantation, in hectares per age class and GenMat groups,
reflects the characteristics of the three groups of genetic material (Figure 4). GenMat1, the
most desirable group by mill managers due to its high density, is less represented in each
age class. Group GenMat3, which has a higher volume productive clone but lower wood
density, prevails in most age classes.
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2.2. Brief Description of Romero®

2.2.1. Forest Harvest Schedule Formulation

Since the beginning of the 1960s, forest researchers have been using mathematical
programming to address forest planning. The harvest schedule is one of the most appropri-
ate models used for long-term strategic forest planning worldwide [17,36–44]. This model
consists of looking for the best alternative to intervene in forest growth. Decision variables
are related to when, where, and how interventions would be made to maximize profits,
ecosystem services, or production [45]. In those models, interventions are often linked to
several types of forest establishments, restoration, silvicultural treatments, cuts, thinning,
and non-wood product pickups.

Johnson and Scheurman [46] offered three alternatives for linear programming formu-
lations to address a harvest scheduling model. From those three formulations, two have
been often used to formulate a harvest schedule since then.

In the Model I formulation, the decision variable Xur is an area of a unit u managed
according to a prescription r, where prescription refers to a sequence of interventions that
can happen within the planning horizon. In the Model II formulation, the decision variable
is an area of a unit u where one complete forest cycle occurs. Romero® encompasses an
extension of Model II formulation where the decision variable is an area of a unit u in which
a management intervention changes the previous course of the forest [47]. The formulation
proposed by Nobre [47] is described in Appendix A.

2.2.2. Multicriteria Concepts Embedded in Romero®

Essential multicriteria concepts, described by Ballestero and Romero [48], are the
foundation of Romero®’s model formulation. They are implemented according to the
following descriptions.

(a) Attributes. These values are calculated independently from any stakeholder’s choice.
In our case study, a “Production” accounting variable could be written using the

expression,
I

∑
i=1

U
∑

u=1

K
∑

k=1
ViupkXiupk which is the total production within the horizon. It

is called xTotalProd.
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(b) Objectives. They are all available to be selected by the user. If the user selects
the attribute xTotalProd to form a maximization objective, then the model creates
statements as follows:

Max Z =
P
∑

p=1
xTotalProdp

subject to :

Initial Area)...

Conservation o f Area)...

Production)
I

∑
i=1

U
∑

u=1

K
∑

k=1
ViupkXiupk − xTotalProdp = 0 ∀ p , p = 1, 2, . . . . P

(1)

(c) Targets and Goals. In statement (1), in the line “Goal”, the value vMinp is a tar-
get; decisionmakers want at least vMinp of production in period p. In Romero®’s
implementation, targets are parameters that are saved in a database and ready to
be updated.

Production)
I

∑
i=1

U
∑

u=1

K
∑

k=1
ViupkXiupk − xTotalProdp = 0 ∀ p , p = 1, 2, . . . . P

Goal) xTotalProdp ≥ vMinp ∀ p , p = 1, 2, . . . . P (2)

Moreover, deviation variables can be included in the “Goal” line. The objective function
should be modified to minimize the sum of the deviation variables to turn the model into a
Goal-programming model, which is not the case when compromise programming is the
selected multicriteria technique. In this case study, Romero® calculates the deviations but
does not minimize them.

(d) Criteria. In statements (1) and (2) the Production criterion means that the attribute
xTotalProd is used to calculate the objective MaxTotalProd.

Romero® controls attributes, objectives, targets, and goals. It always calculates many
other attributes like in the Production line of the statement (2). Depending on the decision-
makers choices, the attributes will be used in goals or objectives.

The acceptable technique for considering multiple objectives is multiobjective mathematical
programming (MOLP). The MOLP notation proposed by Romero [49] states that the model
seeks a set of efficient solutions that satisfy the objective functions f 1, f 2, . . . , fn, and they are
subject to a set of constraints represented by a vector of functions Q(x) (statement (3)).

E f f f (x) =
[

f 1(x), f 2(x) , . . . ., f n(x)
]

subject to :
Q(x)

(3)

In this case study, f 1and f 2 of statement (3) are the mill production and the forest
profits, respectively. The function Q(x) will be the entire Model formulation proposed by
Nobre [47]. To do so, Romero® implements the two following steps.

The first step of a MOLP consists of (i) optimizing one criterion at a time, using the
same scenario, and (ii) calculating all attributes related to the other criteria (the ones that
are not being optimized). After calculations, a payoff matrix shows the level of conflicts
among the objectives. The second step is to figure out what happens among the extreme
points presented in the payoff matrix, which are optimal for each criterion using the Pareto
optimality concept. Figure 5 summarizes the Romero® calculation process.

The most common methodology for calculating Pareto-optimal solutions [48,49] is
the constraint method because it has the lowest computational cost. This method consists
of optimizing one of the objectives while the others are placed as parametric equality
constraints. We generate one Pareto-optimal solution for each vector of values to be used
as a right-hand side in the parametric constraints.
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Romero® shows the payoff matrix and the Pareto frontier as described above and saves
the entire MOLP solution of each point along the curve; however, the decision process
needs to go further. The next phase is to select a small set of solutions that could best fit a
specific group of decision-makers along the Pareto frontier. One of the most productive
ways to accomplish this task was proposed in 1973 by Yu and Zeleny under the name of
Compromising Programming [48,49].

2.2.3. Compromise Programming (CP)

The ideal point is the point where all criteria have their best level, which is never
achievable because all criteria cannot assume the best level at the same time in a conflict
context. The fundamental concept of CP, the Zeleny axioma, says that efficient solutions
closer to the ideal point would be preferred to those farther. Moreover, a rational choice is
as close as possible to the ideal point [49–51].

Therefore, we need to calculate the distance to the ideal point [52] and deal with the
decision-maker’s preferences regarding staying closer to one best attribute level than to
another. Additionally, to avoid meaningless comparisons between attribute values due to
their different measurement units, the attribute values must be normalized [52]. Distance,
normalization, and preference concepts [49,50] are described in Appendix B.

According to Ballestero and Romero [48], the optimum choice for the decision-maker
is given by the feasible solution where the utility function reaches its maximum value,
i.e., the Lagrangian maximum tangency between the Pareto frontier and the family of
iso-utility curves. CP defines a compromise set as the portion of the Pareto frontier where
the tangency with the iso-utility curves will occur; that is, something like a landing area of
the utility curve. The limits of the compromise set are Min(L1) and Min(L∞), which are also
described in Appendix B.

Therefore, Romero® calculates both distances to the ideal point, with a minimum of L1
and a minimum of L∞ [53]. That is to say, the compromise set is a closed interval of the
Pareto frontier, and Romero® shows the distances Min(L1) and Min(L∞) along the Pareto
frontier, later shown graphically in the results section.

As all attribute values of each efficient solution are saved in a database, there is no
need to build and run the linear models of the statements (A10) and (A11) described in
Appendix B. To find the two points Min(L1) and Min(L∞) along the Pareto frontier, Romero®

implemented the following sequence of steps:
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• The user inputs how many points he wants to calculate in the Pareto-efficient set. The
user should set as many points as possible depending on the time each run (to obtain
one point) takes.

• Romero®

o distributes those points between the best and worst values of each attribute,
o runs the MOLP model to calculate the efficient point using the constraint

methodology,
o saves the results (attribute values, decision variables, and deviation variables)

of all points into the database.

• The user updates the decision-makers’ weights for each criterion according to their
preferences.

• Romero®:

o calculates L1 and L∞ for each efficient point,
o finds the minimum L1 and minimum L∞ using as SQL to implement and find

a proxy of the linear programming models of the statements (A8) and (A9) in
Appendix B.

2.2.4. Romero® Architecture

This section describes Romero®architecture and embedded mathematical program-
ming. Most importantly, this section focuses on how the system guarantees the interactive
MCDM principles.

According to Kanojiya and Nagori [54] guidelines, a DSS, and any other type of model-
driven system, should include, at least, these general components: (i) a user interface, (ii) a
database, knowledgebase, or data repository to handle with inputs and outputs (iii) model
base, and (iv) a rule engine. To follow the literature guidelines, Romero® comprises the
general components shown in Figure 6.
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The first component, the database, deals with many types of information. A SQL
Database Management System controls information such as parameters, results, and rules.
The user’s optimization process and set-up information choices are stored in XML files.
The model is saved in Pyomo© source files. The second component, the user interface,
comprises a set of screens to communicate with users. The third component includes the op-
timization modules written in Pyomo©, Python©, and its libraries to read parameters, gen-
erate forest interventions, run the model, and save results. Finally, the fourth component,
the inference engine named iGen, covers the generation of the possible forest interventions.

In the optimization modules, while optimization for each criterion is running, Romero®

prepares the results to calculate the payoff matrix and automatically sets the parameters
to the Pareto frontier. Two steps are needed to use the constraint method: (1) get the
range from minimum and maximum values of all attributes and (2) use these range values
as constraints. Romero® can recreate a solution when decision-makers choose any point
along the Pareto frontier because it saves all decision variable results. To calculate the two
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points Min(L1) and Min(L∞), Romero®runs a minimization SQL query from results stored
in the database.

The main objective of the inference engine iGen is to generate the indexes i (inter-
ventions) of the model described in Appendix A. The initial area information and rules
regarding changes in a specific forest project feed the engine. iGen’s first step is to create a
structure according to the initial area. The possible transitions are generated based on the
rules and the initial situation of the forest. The last step schedules the possible transitions
along the horizon using the information about periods and ages. Scheduled transitions get
the name of intervention.

2.3. Romero’s® Application to the Case Study

Due to the high productivity in volume, and general low wood densities, the case
study considers that pulp mill managers require higher densities and want to evaluate the
hypothesis that longer rotations would increase mill productivity. Romero® was configured
to evaluate the consequences of harvesting the eucalyptus plantations at older ages.

The case study demands older ages of alternative prescriptions. New rules were
set to iGen, allowing genetic material changes after clear-cuts, as shown in Figure 7. The
transition types cl1, cl2, and cl3, represent clear-cuts; the cl1 clear-cuts and re-establishes the
plantation with GenMat1, cl2 with GenMat2, and cl3 with GenMat3. After a cl1 intervention,
it will be alternatively possible to have interventions of all three types (cl1, cl2, and cl3).
Figure 7 shows the ina transition type, which represents the initial forest status. After an
intervention of the ina type, interventions cl1, cl2, or cl3 may follow; ina does not change
the value of any forest attribute.
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Figure 8 shows that the transition types cl1, cl2, and cl3 are possible in this scenario.
They all end a forest cycle, reset the age to zero, renew plantations, and define the produc-
tive transition according to the corresponding production parameter. All transition types
(cl1, cl2, and cl3) trigger changes in the values of attributes c, r, and sp for the forest planta-
tion (Figure 7). Attribute u (management unit) remains the same u. However, attribute c
(cycle) turns into c + 1, attribute r (rotation) turns to 1, and attribute sp (species) turns to cl1,
cl2, or cl3, depending on the transition type.
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Furthermore, cl1, cl2, and cl3 interventions may be repeated for a set of possible
harvesting ages. This case study considers three scenarios for a distinct set of ages described
(Table 2).

Table 2. Allowable harvesting ages.

Scenarios Allowable Ages

216 5, 6, 7
217 6, 7, 8
218 6, 7, 8, 9

iGen uses rules to generate alternative forest prescriptions that can potentially meet
mill requirements regarding higher wood density. Besides wood quality, the mill also
imposes further requirements such as:

• regulated wood flow,
• genetic diversification to mitigate risk exposure to plagues and diseases, and
• production sustainability.

From period two onwards, wood delivery cannot decrease above 10% or decrease
above 25%. The planted area should simultaneously have (i) less than 60% covered by one
single genetic material and (ii) at least 20% of each of the three genetic materials to avoid
plagues and diseases.

Regarding production sustainability, the age class constraints were included in the
model to guarantee a reasonably well-regulated plantation forest. Therefore, one age class
can have up to 10% more or less area than the following age class. Table 3 summarizes the
mill requirements.

Table 3. Mill requirements.

Mill Requirements Implementation

Regulated wood flow
From period 2 onwards
No decrease above 10%
No increase above 25%

Genetic material safety 60% maximum area for any GenMat type
20% minimum area for any GenMat type

Production sustainability Age class control
10% flexibility

The initial situation, the forest managers’ demands, and the mill requirements were
applied by setting Romero’s® parameters and constraints. After setting the parameters
and acceptable prescriptions for future management, it is possible to define the prime
conflicts accurately.

MaxNPV (maximize Net Present Value), listed among available criteria in Romero®©
(Table 4), was chosen to represent forest managers’ aspirations. At the same time, mill man-
agers’ aspirations are represented by MaxMillPrd (Maximize Mill Production). MaxNPV
and MaxMillPrd are determined using accounting xTotalNPV and xTotalMillPrd.

Table 4. Available Criteria.

Objectives Objective Description Attribute (Accounting Variable)

MaxNPV Maximize Net Present Value xTotalNPV

MaxMillPrd Maximize Mill Production xTotalMillPrd

MaxStck Maximize Final Stock xTotalStock
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Additionally, one more criterion represents the environmental concerns since envi-
ronmental issues pressure both sides. MaxStck (Maximize Final Stock) can represent the
environmental concern; MaxStck expresses wood stock at the end of the planning horizon
employing the accounting variable xTotalStock.

The objective functions built to calculate the three objectives (MaxNPV, MaxMillPrd,
MaxStck) depend on decision variables xi, which refers to the area in which the intervention
i will occur. Romero® was used to set up the parameters, handle parameter combinations,
run different scenarios, and report the results.

Finally, upon the definitions mentioned in previous paragraphs, it is possible to
summarize the model that represents the case study. Statement (4) is a brief schema of the
resulting formulation, which shows a multiobjective linear programming (MOLP) model
designed to address the described case study.

The first sentence in the statement (4) states that this model seeks efficient solutions
using variable xi. Likewise, the following list of the constraints defines the feasibility, which
depends on the same decision variables xi.

E f f f (xi, ) = [MaxNPV(xi),
MaxMillPrd(xi),
MaxStck(xi)]

Subject to :
Initial Area
Conservation o f Area
...
Calc o f accounting variables

production
all Multicriteria attribute variables

...

(4)

3. Results

This section initially presents a subset of three scenarios created by iGen combining
different ages (Table 2), limiting the choice of ages considering only short, medium, or
long rotations as forest management prescriptions. For each scenario, the corresponding
multiobjective linear programming (MOLP) problem optimized all three criteria, one at a
time. Table 5 shows the main results of the three scenarios.

Table 5. Case study main results.

Scenario Ages
(Years)

Highest
NPV (M R$)

Lowest NPV
(M R$)

Forest NPV
Reduction

Highest Pulp
Production (K t)

Lowest Pulp
Production

(K t)

Mill Production
Reduction

216 5, 6, 7 262,293 224,246 16.97% 5149 4845 6.29%
217 6, 7, 8 266,445 232,677 14.51% 5022 4671 7.51%
218 6, 7, 8, 9 266,612 232,677 14.58% 5022 4656 7.85%

Due to the conflicting nature of these two criteria, as mill production increases, the
forest net present value (NPV) decreases. Table 5 shows the differences observed between
the highest and lowest NPV as Forest NPV Reduction. The differences observed between
the highest and the lowest pulp production are reported as Pulp Production Reduction.

The results demonstrate how conflicting interests expressed by forest managers and
industrial managers can create fairly different outcomes. Consequently, the multi-criteria
approach is adequate to evaluate the case study. Additionally, Romero® could support the
multi-stakeholders simulated teams, starting by defining the minimum and maximum
ages that foresters would be allowed to harvest.

Considering the three scenarios presented in Table 5, and as described in Section 2,
the simulation would start by confirming the parameter and asking Romero® to run. The
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simulation finishes when Romero® shows the results window. Table 6 summarizes the
running information of Romero® after each scenario.

Table 6. Romero® running information.

Scenarios

216 217 218
number of
constraints 53,304 23,280 38,049

number of
variables 76,588 33,145 55,096

time consumption (min:s)
iGen 00:01.0 00:01.0 00:02.0
Mem structure
optimization 00:01.0 00:00.0 00:00.0

Building abstract
model 00:01.0 00:00.0 00:00.0

Building
concrete model 21:21.0 03:44.0 12:33.0

Solving 1st
criteria and save
results

MaxNPV 00:19.0 00:07.0 00:11.0

Solving 2nd
criteria and save
results

MaxStck 00:18.0 00:06.0 00:12.0

Solving 3rd
criteria and save
results

MaxMillPrd 00:19.0 00:07.0 00:12.0

Table 6 shows the data processing as time-consuming; the more variables and con-
straints Romero® had to deal with, the more time-consuming the data processing became.
The most time-consuming step is the concrete model building routine when Pyomo builds
an abstract model. Naturally, the larger the model, the longer it took to build it.

As observed in Table 6, the short-rotation scenario took 21 min to build, while the
smallest one took only three minutes. It is worth noting that although lengthy, this is not
relevant when it gets to the phase when stakeholders seek a consensus. At that point,
with the model built, Romero® will cycle through solving, changing the values of a few
parameters defining the next objective, and solving again. These latter steps run faster
than the model building steps (6–7 s for the smallest problem and 18–19 s for the biggest
problem).

Scenario number 217 illustrates the analysis provided by Romero® to facilitate the
search for consensus between stakeholders. The third criterion, maximize final stock, was
included to add more substance to the analysis. It considers the consequences of regulating
the annual pulpwood demand and maximizing the standing wood stock at the end of the
planning horizon. NPV and pulp parameters were only calculated and left unconstrained.

A payoff matrix was built to evaluate the scenario and to allow us to see in detail the
conflicting results in terms of NPV (MaxNPV), pulp production (MaxMillPrd), and final
wood stock (MaxStck). Table 7 shows the resulting payoff matrix. The test was done using
the midrange rotations scenario, considered a good starting point due to its conciliatory
nature of not tending to either of the two extremes (very short or very large rotations). It
allows for harvests to happen in 6-, 7-, and 8-year-old stands.
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Table 7. Scenario 217 payoff matrix.

Criteria Clear-Cut
Area (ha)

Production
(K m3)

Productivity
(m3/ha) %Max Stock Forest NPV

(M R$)

Pulp
Production

(K t)

Final Stock
(K m3)

MaxNPV 82,992 19,708 237 88.42% 266,445 4671 624
MaxMillPrd 84,622 18,856 223 91.79% 232,677 5022 648

MaxStck 81,695 18,335 224 239,414 4801 706

The first column of Table 7, “Clear-cut area”, refers to a summation of all areas
harvested during the planning horizon. Additionally, the “Production” column reports the
total volume produced in these cuts. From these two pieces of information, it is possible to
get average productivity along with the horizon.

It is assumed that foresters and mill managers agree on how far they would like to be
from the final stock constraint. Therefore, from this point on, for simplicity, the results are
shown considering only the two original groups of stakeholders.

Figure 9 shows the annual flow of pulpwood when each criterion is maximized. It
is worth noting the striking differences in how the plantations evolve along the planning
horizon in terms of the area of GenMat groups distributed annually. Visibly, the MaxNPV
criterion conducts the management units to the more extensive sharing of GenMat3 (the
lower density group). On the other hand, the MaxMillPrd strategy gradually replaces Gen-
Mat3 with GenMat1 and manages the plantations to more significant sharing of GenMat1
in the future.
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Figure 10 shows the quality of the pulpwood in terms of the age classes at which the
logs were harvested. Conversion rates were higher, though density increases with age,
and the use of logs from longer rotations would be more significant. More substantial
participation of logs from older trees seems to be a trend in the future but is not so evident
at the beginning and middle of the horizon. Nevertheless, maximizing pulp changes the
annual composition of logs in terms of age classes.
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An agreement would not be on extreme points; therefore, the two stakeholder groups
might be willing to verify the trade-offs between the two criteria. Twenty points were
calculated between the two extremes to create the Pareto frontier between the two criteria
(Figure 11).
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The Pareto frontier can give further support to negotiation. It visually expresses the
tendency of the consensus solution toward one stakeholder or the other. It may also help
as a tool during the discussion to mitigate eventual tendencies of one part becoming more
influential than the other.

In this analysis stage, compromise programming (CP) can lead one step closer to-
ward the consensus. Figure 12 shows the compromise set, considering that the relative
importance between forest and industrial managers is even. Table 8 demonstrates how the
distances were calculated.
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Table 8. Compromise programming.

Point Criterion Value Best Value Worst Value Interval Distance Sum Max

(M R$)

9 MaxMillPrd 4879 5022 4671 350 a 0.4071
9 MaxNPV 254,004 266,445 232,677 33,767 b 0.3684 0.7755 0.4071 L∞

10 MaxMillPrd 4900 5022 4671 350 0.3479
10 MaxNPV 252,227 266,445 232,677 33,767 0.4210 0.7690 0.4210

11 MaxMillPrd 4919 5,022 4671 350 c 0.2929
11 MaxNPV 250,449 266,445 232,677 33,767 d 0.4736 0.7666 0.4736 L1

NPV and pulp production assume the higher values in the theoretical optimum point,
reported as “Optimum”, in Figure 12, R$266,445,003 and 5,022,290, respectively. The
distance function calculates the distance from any point over the Pareto frontier to this
theoretical optimum point.

Line segments a and c (Figure 12) are the distances from points L∞ and L1 to the
industrial managers’ best value. Likewise, b and d are the distances from L∞ and L1 to
forest managers’ best value. The sum of the distances from point L∞ to the Optimum point
is a + b. The sum of the distances from point L1 to the Optimum point is c + d. Herein, these
distances (a, b, c, and d) from the Optimum point are called losses.

L1 is the point where the sum of both losses is at its minimum along the Pareto frontier
(line segments c + d). In other words, L1 is the point where stakeholders lose less together.
On the other hand, L∞ is the minimum of the max between them, which corresponds to line
segment a in Figure 12. At L∞, there are no noteworthy losses for any of the stakeholders.

Table 8 shows details of only three points of the Pareto frontier. The 9th point is the
L∞, and the 11th point is the L1. The columns “Best Value” and “Worst Value” repeat the
optimum point’s values. The “Interval” column refers to the difference between the best
and the worse values. The Distance column presents the distances between the point on the
Pareto front and the line that crosses the optimum point. These distances are calculated
according to statement (A2).

According to CP concepts, the utility curve touches the Pareto frontier between L∞ and
L1. Point 10 of Table 8, which is located between L∞ and L1 (Figure 12) can be considered
a good compromise in this case study. Even if the decision-makers agree to select point
10, they might need a more in-depth understanding of this particular solution. Therefore,
point 10 should be examined to determine if it meets the needs of the decision-maker.



Forests 2021, 12, 1481 16 of 23

The graphs shown in Figures 9 and 10 are rebuilt using data from the solution of the Pareto
frontier point 10. While previous figures show the extreme solutions, in Figures 13 and 14, it is
possible to see a balanced solution that might be taken as a compromise.
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In this particular point, the solution strategy emphasizes the adoption of GenMat2,
which is the intermediate group of genetic material in terms of forest productivity in
volume, wood density, and industry efficiency. Gradually, the plantations with GenMat3
and GenMat1 were replaced with GenMat2 until it reached the maximum possible for each
group, 60%.

Meanwhile, the other two groups, GenMat1 and GenMat2, achieve the lowest level
for each group with 20%. The solution strategy leads to younger ages at the beginning of
the planning horizon and, gradually, guides to 100% of the median age.

4. Discussion

Among the scenarios presented in the previous section, the differences between the
best and worst outcomes, from the forest managers’ perspective, cause losses in NPV,
ranging from 14.51% to 16.97%. On the opposite side, from the mill managers’ perspective,
the differences between the best and worst outcomes cause decreases in pulp production,
ranging from 6.29% to 7.85%.

Table 5 presents interesting and unexpected results. The first is the most significant
reduction in NPV, which occurs in the shorter-rotations scenario 216, precisely what
prevails in Brazil. Another impressive result is that the value of total NPV increases in the
midrange and more extended rotation scenarios. That seems counterintuitive to the current
preferences for shorter rotations expressed by Brazilian forest managers; leverage for mill
managers favors optimizing pulp production.
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Contrary to mill managers’ expectations, the best mill performance does not come
from longer rotations but from the possibility of cutting at five years old at the beginning of
the horizon and replacing the genetic material as soon as possible. Scenario 217 shows this
effect clearly (Figure 10). It is assumed that, in scenario 216, this effect was more intense
because the model allowed cutting at five years old.

These results indicate that five-year-old cuts are good, paradoxically, only for the mill
due to the opportunity to replace GenMat3. An in-depth analysis of forest yield curves
might show that the maximum MAI is closer to seven years old than five years old.

It is worth mentioning that no improvements happen when age nine is added to
alternative cut ages (Table 5). One of the reasons might also be the need for MatGen3’s
replacement. However, there is one more significant reason in this context. Figure 4 shows
that there is 2000 ha of age five and 2000 ha of age six. At the beginning of the planning
horizon, it would not be possible to cut at ages eight or nine to achieve the required flow
production. Cuts in older ages can only be possible from the fourth period on (Figure 10).

Therefore, results demonstrate more gains in changing the genetic material than
in cutting at older ages, given the industrial efficiency curves (Figure 3). Both extreme
solutions show that the model conducts replacing genetic material according to the criterion
that is being maximized. Even in the compromise solution, the model led to the maximum
possible, a 60% area of the intermediate genetic material group.

The results illustrate how CP embedded in an FMDSS with the characteristics of
Romero® can support large-scale multi stakeholders’ decision processes. Any harvest-
schedule-based problem involving diverse objectives can be addressed by the approach
when parties involved in the negotiation are willing to seek consensus interactively driven
by the compromise programming principle.

Romero® can guide to a compromise solution where stakeholders assume responsibili-
ties regarding the decisions’ impact as prescribed by Bruña-García and Marey-Pérez [4]
and other authors [20,21].

Forest monitoring information and knowledge usually indicate improvements in
how the forest is managed [55]. The presented case study gave an example of this kind
of dynamics through the age rotation analysis when stakeholders ask for a new forest
management shape; not to mention that the attributes calculated under the multicriteria
conceptual framework provide the stakeholders with the means to test their hypotheses
and achieve their aims.

Despite the literature recommendation [4,19,56–58], only a few FMDSS implemented
MCDM, including interactive participatory planning [17,59]. Regarding the application of
MCDM techniques, CP concepts embedded in Romero® contribute to filling the gap on the
use of MCDM techniques into FMDSS capable of supporting participatory processes.

5. Conclusions

From this discussion, we conclude that the initial hypothesis that cutting in older
ages could improve mill production was not confirmed. Secondly, changes in rotation
size and genetic material take time, and decisions should be made involving both long-
term interests: forest and mill. Thirdly, Romero®’s support was essential to consider and
inspect all aspects of the solution; it was an information-based decision-making process as
preconized by literature.
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Romero® and its embedded models and methods, when applied to an industrial forest
plantation case involving interactions among groups with diverse interests, demonstrated
that incorporating MDCM techniques in a participatory process could improve the decision-
making process and the quality of the decisions. Expressly, the hypothesis proposed in
the study case that longer rotations could improve mill production, as expected by the
mill managers, could not be confirmed. Nevertheless, Romero® led the compromise to an
unexpected point where the possibility of harvesting in younger ages allowed an earlier
replacement of less efficient genetic material.

Additionally, a specific MOLP integrated into an MCDM framework can produce
the necessary elements for a comprehensive multicriteria analysis, such as efficiently
reporting (i) pay-off matrices, (ii) the efficient solutions of the Pareto frontier, and (iii) the
compromise set. Therefore, the Compromise programming approach proved suitable for
dealing with cases in which different stakeholders have conflicting views on managing
production forests. Furthermore, Romero® was shown capable of promoting interaction
among stakeholders while seeking consensual decisions.

The Romero® approach can be packed as applying rigorous multicriteria principles to a
MOLP harvest schedule formulation. It employed an interface that promotes compromise
and consensual planning. Furthermore, Romero® demonstrated through the case study
application that strategic scenario analysis is still an essential tool to evaluate future impacts
of short-term decisions.

This case study model demands an empiric correlation between after-digester pro-
ductivity and wood ages or other wood attributes. Further and more specific case studies
should be conducted to increase the integration between pulp mill requirements and for-
est management, which will undoubtedly contribute to the effective use of the natural
resources dedicated to pulp production.

Author Contributions: Conceptualization, S.R.N. and L.D.-B.; methodology, S.R.N.; software, S.R.N.;
validation, S.R.N., L.C.E.R. and L.D.-B.; formal analysis, S.R.N.; investigation, S.R.N.; resources,
L.C.E.R. and L.D.-B.; data curation, S.R.N.; writing—original draft preparation, S.R.N.; writing—
review and editing, S.R.N., L.C.E.R. and L.D.-B.; supervision, L.D.-B. and L.C.E.R.; project admin-
istration, L.D.-B.; funding acquisition, L.D.-B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: romeromulticriteria.com/RomeroThesis.db; romeromulticriteria.com/RomeroThesis-
Results.xlsx; romeromulticriteria.com/RomeroThesis.zip. The database is an SQLite file; it can be
open using the free software SQLite Studio (RomeroThesis.db) and the spreadsheet is an Excel file
that contains the analysis of the result (RomeroThesis-Results.xlsx).

Acknowledgments: The first author gratefully acknowledges the support of CNPq–Brazilian Na-
tional Research Council—scholarship 202017/2015-0. Additionally, this research was partially funded
by the European Union’s H2020 research and innovation program under the Marie Sklodowska-Curie
grant agreement No 691149–SuFoRun and grant agreement No 101007950—DecisionES. Moreover,
Luis Diaz-Balteiro was funded by the Ministry of Economic and Competitiveness of Spain under
project AGL2015-68657.

Conflicts of Interest: The authors declare no conflict of interest.



Forests 2021, 12, 1481 19 of 23

Appendix A. Model Formulation

Max Q =
I

∑
i=1

U
∑

u=1

P
∑

p=1

K
∑

k=j+n
EiupkXiupk

subject to :

Initial Area)
I

∑
i=1

P
∑

p=1
Xiupk = Au ∀ u , u = 1, 2, ..., U

where k = 0

Conservation o f Area)
I

∑
i=1

J
∑

j=p+n
Xiujp −

I
∑

i=1

K
∑

k = 1
Xiupk = 0 ∀ p , p = 1, 2, . . . . ., P

∀u, u = 1, 2, . . . . ., U

Production)
I

∑
i=1

U
∑

u=1

K
∑

k=1
ViupkXiupk − TotalProdp = 0 ∀ p , p = 1, 2, . . . . P

Where : Xiupk is the area (ha) o f the unit u, in which intervention i has

occurred in period p, linked to the last intervention (ik)

that happened in period k

Eiupk is a per− ha NPV o f all costs and incomes associated to

the intervention i that has occurred in period p linked to

the last intervention (ik) happened in period k

Au is the size (ha) o f the unit u

Viupk is a per− ha outcome obtained f rom unit u

in which intervention i has occurred in period p

linked to the last intervention (ik) happened in period k

n is the number o f periods between interventions i and (ik),

n assumes di f f erent values depending on the type o f i

K and J assume di f f erent values depending on the type o f i

I can assume di f f erent values depending on u

P will be the higher value o f p f or each unit u, that is, whenit

the latest alternative intervention

(A1)

Appendix B. Compromise Programming Definitions

The Ideal point is the point where all criteria have their best level, and this point
is never achievable because all criteria cannot assume the best level at the same time in
a context of conflict. Efficient solutions closer to the ideal point would be better than
those that are farther, precisely the Zeleny axioma content and the fundamental concept of
compromise programming. Moreover, to be as close as possible to the ideal point is the
rationale of human choice [49,50].

Therefore, to go further in defining a compromise, there are questions to answer, such
as (a) how to calculate the distance to the ideal point [52], and (b) what if the decision-
makers have preferences regarding staying closer to one attribute best level than to another.
Additionally, to avoid meaningless comparisons between attribute values due to their
different measurement units, the attribute values must be normalized [52].

Normalized Distance =
∣∣∣∣ (BestValue − Value)
(BestValue − WorstValue)

∣∣∣∣ (A2)

The normalized distance from an efficient point along the Pareto frontier to the ideal
point can be determined as follows:
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Na(x) = | f ∗a − fa(x)|
| f ∗a − f∗a |

where :
Na(x) a normalized distance o f the attribute a
f ∗a the best value o f the attribute a when the objective a is optimized
f∗a the worse value o f the attribute a when other objectives are optimized
fa(x) the attribute a value in a speci f ic Pareto− e f f icient point

(A3)

The set of techniques to measure this distance, inside the CP context, is called “a
family of distance functions” Lp. This text does not intend to go deep into the Lp definitions;
however, it is crucial to have a clear understanding of the distance concepts [49] to sanction
the use of the two limits of the compromise set: Min(L1) and Min(L∞).

The starting point is the geometric distance defined by Pythagoras theorem that is
the minimum distance between two points in two-dimensional space named “Euclidean
distance”. It is easy to generalize the “Euclidean distance” to an n-dimensional space where
the distance between two points x1 = (x1

1 , x2
2 , ... , x1

n ) and x2 = (x2
1 , x2

2 , ... , x2
n ) can be

written as follows:

d =

√√√√ n

∑
j=1

(
x1

j − x2
j

)2
(A4)

However, the most acceptable generalization of the n-dimensional “Euclidean dis-
tance” [49] is given by the following expression:

L1 =
n

∑
j=1

∣∣∣x1
j − x2

j

∣∣∣ (A5)

where Lp represents the family of distance functions. For each value of p, there is a different
distance value Lp for the same pair of points x1 and x2. A particular case Lp is for p = 2
when the two-dimensional “Euclidean distance” is obtained. A second particular case of Lp
is for p = 1, called “Manhattan distance”, which, in a two-dimensional space, is the sum of
the cathetus lengths. Therefore, L1 is the largest distance between x1 and x2, while L2 is the
shortest one according to Pythagoras theorem.

L1 =
n

∑
j=1

∣∣∣x1
j − x2

j

∣∣∣ (A6)

when the metrics p tends to ∞, L∞ is called “Chebysev distance” and tends to the value that
can be calculated as follows:

L∞ = Maxn
j=1

(∣∣∣x1
1 − x2

1

∣∣∣, ∣∣∣x1
2 − x2

2

∣∣∣, ...,
∣∣∣x1

n − x2
n

∣∣∣) (A7)

The statement (A7) means that the L∞ is given by only one deviation of the set of
n deviations: the larger one. If L1 and L∞ are calculated for each point along the Pareto
frontier, it is possible to determine two shorter distances, the Min(L1) and Min(L∞).

The Yu theorem, presented in the literature in 1974 [49] demonstrated that for a
two-criterion problem, the compromise solutions calculated with Lp (statement (A5)) are
contained in a “compromise set”, which is a subset of the efficient solutions set (Pareto
frontier). In addition, the limits of this subset are given by L1 and L∞ (statements (A6) and
(A7)). Two years later, Freimer and Yu demonstrated similar conditions to a more than
two-criterion problem. Moreover, according to the traditional economic analysis and the
theorems of Yu, the utility functions intercept a Pareto frontier in one of the points of the
“compromise set”.

L1 is a summation of the deviations between each attribute value from this ideal value
(statement (A6)). The minimum L1 is the maximum efficiency point, where the best point is
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achieved considering the value of the attributes. However, this point may be unbalanced,
that is to say, in that point; one attribute can have much more value than others. Moreover,
if the decision-makers have different preferences that can be translated into weights (from
0 to 1), L1 could be mathematically represented as follows using previous definitions of
statements (A3) and (A6):

L1 =
A
∑

a=1
wa Na(x)

where :
wa is the wheight o f the attribute a
Na(x) is the normalized distance

(A8)

On the other hand, to obtain L∞, it is necessary to select the maximum deviation
between attribute individual deviations. That is, only the largest deviation of each at-
tribute from its best value is considered. Considering all previous definitions, L∞ could be
mathematically represented as follows:

L∞ = Maxa(wa Na(x)) (A9)

A linear programming model to calculate Min(L1) is presented by Romero (1993) and
can be written as follows, based on statements (A3) and (A8).

Min L1 =
A
∑

a=1
wa

(
| f ∗a − fa(x)|
| f ∗a − f∗a |

)
Subject to :

x ∈ F

(A10)

Additionally, to calculate Min(L∞) a linear programming model can be written as follows:

Min L∞ = d
Subject to :

x ∈ F
wa

(
| f ∗a − fa(x)|
| f ∗a − f∗a |

)
≤ d ∀a

(A11)

References
1. Wang, S. One hundred faces of sustainable forest management. For. Policy Econ. 2004, 6, 205–213. [CrossRef]
2. UNDP Human Development Indices and Indicators. 2018 Statistical Update. Rev. Mal. Respir. 2018, 27, 123.
3. Secco, L.; Da Re, R.; Pettenella, D.M.; Gatto, P. Why and how to measure forest governance at local level: A set of indicators. For.

Policy Econ. 2014, 49, 57–71. [CrossRef]
4. Bruña-García, X.; Marey-Pérez, M.F. Public participation: A need of forest planning. IForest 2014, 7, 57–71. [CrossRef]
5. FAO. Global Forest Products 2016: Facts and Figures; FAO: Rome, Italy, 2017.
6. IBÁ. Relatório 2017. Available online: https://www.iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf (accessed

on 26 September 2021).
7. De Morais, P.H.D.; Longue Júnior, D.; Colodette, J.L.; Morais, E.H.D.C.; Jardim, C.M. Influência da idade de corte de clones de

Eucalyptus grandis e híbridos de Eucalyptus grandis × Eucalyptus urophylla na composição química da madeira e polpação kraft.
Cienc. Florest. 2017, 27, 237–248. [CrossRef]

8. Gomide, J.L.; Colodette, J.L.; de Oliveira, R.C.; Silva, C.M. Caracterização tecnológica, para produção de celulose, da nova geração
de clones de Eucalyptus do Brasil. Rev. Árvore 2006, 29, 129–137. [CrossRef]

9. Queiroz, S.C.S.; Gomide, J.L.; Colodette, J.L.; Oliveira, R.C. de Influência da densidade básica da madeira na qualidade da polpa
kraft de clones hibrídos de Eucalyptus grandis W. Hill ex Maiden X Eucalyptus urophylla S. T. Blake. Rev. Árvore 2004, 28,
901–909. [CrossRef]

10. Nobre, S.R.; Rodriguez, L.C.E. Integrating Nursery and Planting Activities. In The Management of Forest Plantations; Borges,
G.J., Diaz-Balteiro, L., McDill, E.M., Rodriguez, C.E.L., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 347–371.
ISBN 978-94-017-8899-1.

11. Kelty, M.J. The role of species mixtures in plantation forestry. For. Ecol. Manag. 2006, 233, 195–204. [CrossRef]

http://doi.org/10.1016/j.forpol.2004.03.004
http://doi.org/10.1016/j.forpol.2013.07.006
http://doi.org/10.3832/ifor0979-007
https://www.iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf
http://doi.org/10.5902/1980509826462
http://doi.org/10.1590/S0100-67622005000100014
http://doi.org/10.1590/S0100-67622004000600016
http://doi.org/10.1016/j.foreco.2006.05.011


Forests 2021, 12, 1481 22 of 23

12. Kavaliauskas, D.; Fussi, B.; Westergren, M.; Aravanopoulos, F.; Finzgar, D.; Baier, R.; Alizoti, P.; Bozic, G.; Avramidou, E.; Konnert,
M.; et al. The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems.
Forests 2018, 9, 133. [CrossRef]

13. Mokfienski, A.; Colodette, J.L.; Gomide, J.L.; Carvalho, A.M.M.L. Relative Importance of Wood Density and Carbohydrate
Content on Pulping. Cienc. Florest. 2008, 18, 401–413. [CrossRef]

14. Lopes, G.A.; Garcia, J.N. Basic density and natural moisture content of Eucalyptus saligna Smith, from Itatinga, associated to the
population bark patterns. Sci. For. 2002, 1, 13–23.

15. Gomide, J.L.; Fantuzzi Neto, H.; Regazzi, A.J. Análise de critérios de qualidade da madeira de eucalipto para produção de
celulose kraft. Rev. Árvore 2010, 34, 339–344. [CrossRef]

16. Rodriguez, L.C.E. Programa Cooperativo em Planejamento Florestal—Relatório Final; IPEF-Instituto de Pesquisas e Estudos Florestais:
Piracicaba, Brazil, 1988.

17. Eriksson, L.O.; Garcia-Gonzalo, J.; Trasobares, A.; Hujala, T.; Nordström, E.M.; Borges, J.G. Computerized decision support
tools to address forest management planning problems: History and approach for assessing the state of art world-wide. In
Computer-Based Tools for Supporting Forest Management: The Experience and the Expertise World-Wide; Borges, J., Nordström, E.-M.,
Garcia Gonzalo, J., Hujala, T., Eds.; SLU: Umea, Sweden, 2014; pp. 3–25.

18. Belavenutti, P.; Romero, C.; Diaz-Balteiro, L. A critical survey of optimization methods in industrial forest plantations management.
Sci. Agric. 2018, 75, 239–245. [CrossRef]

19. Acosta, M.; Corral, S. Multicriteria decision analysis and participatory decision support systems in forest management. Forests
2017, 8, 116. [CrossRef]

20. Esmail, B.A.; Geneletti, D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods
Ecol. Evol. 2018, 9, 42–53. [CrossRef]

21. De Castro, M.; Urios, V. A critical review of multi-criteria decision making in protected areas. Econ. Agrar. Y Recur. Nat. Agric.
Resour. Econ. 2016, 16, 89–109. [CrossRef]

22. Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Goal programming in forest management: Customising models for the
decision-maker’s preferences. Scand. J. For. Res. 2013, 28, 166–173. [CrossRef]

23. Diaz-Balteiro, L.; Romero, C. Making forestry decisions with multiple criteria: A review and an assessment. For. Ecol. Manag.
2008, 255, 3222–3241. [CrossRef]

24. Ananda, J.; Herath, G. A critical review of multi-criteria decision making methods with special reference to forest management
and planning. Ecol. Econ. 2009, 68, 2535–2548. [CrossRef]

25. Giménez, J.C.; Bertomeu, M.; Diaz-Balteiro, L.; Romero, C. Optimal harvest scheduling in Eucalyptus plantations under a
sustainability perspective. For. Ecol. Manag. 2013, 291, 367–376. [CrossRef]

26. Ortiz-Urbina, E.; González-Pachón, J.; Diaz-Balteiro, L. Decision-Making in Forestry: A Review of the Hybridisation of Multiple
Criteria and Group Decision-Making Methods. Forests 2019, 10, 375. [CrossRef]

27. IBÁ Anuário Estatístico do IBÁ. Ano Base 2019. Available online: https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-
2020.pdf (accessed on 26 September 2021).

28. FAO FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 22 June 2019).
29. Camargo, S.A.C.; José, T.; Moura, D. De Influência da dimensão e qualidade dos cavacos na polpação. Influence the size and

quality of chips in the pulping. 1 Introdução Revisão Bibliográfica. Rev. Eletrônica Em Gest. Educ. E Tecnol. Ambient. 2015, 19,
813–820.

30. Alves, I.C.N.; Gomide, J.L.; Colodette, J.L.; Silva, H.D. Caracterização TEcnológica da Madeira de Eucalyptus para produção de
Celulose Kraft. Cienc. Florest. 2011, 21, 167–174. [CrossRef]

31. Clutter, J.L.; Forston, J.C.; Pienaar, L.V.; Brister, G.H.; Bailey, R.L. Timber Management, A Quantitative Approach, 1st ed.; John Wiley
& Sons: New York, NY, USA, 1983; ISBN 0-471-02961-0.

32. Brasil Ministerio da Economia Taxa de Juros Selic. Available online: http://receita.economia.gov.br/orientacao/tributaria/
pagamentos-e-parcelamentos/taxa-de-juros-selic (accessed on 23 June 2019).

33. Foekel, C.E.B. Rendimentos em celulose sulfato de Eucalyptus spp em função do grau de deslignificação e da densidade da
madeira. IPEF Piracicaba 1974, 9, 61–77.

34. Stape, J.L.; Binkley, D.; Ryan, M.G.; Fonseca, S.; Loos, R.A.; Takahashi, E.N.; Silva, C.R.; Silva, S.R.; Hakamada, R.E.; de Ferreira,
J.M.A.; et al. The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood
production. For. Ecol. Manag. 2010, 259, 1684–1694. [CrossRef]

35. Binkley, D.; Campoe, O.C.; Alvares, C.; Carneiro, R.L.; Cegatta, Í.; Stape, J.L. The interactions of climate, spacing and genetics on
clonal Eucalyptus plantations across Brazil and Uruguay. For. Ecol. Manag. 2017, 405, 271–283. [CrossRef]

36. Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.; Borges, J.G. A decision support system for assessing trade-offs between ecosystem
management goals: An application in portugal. Forests 2015, 6, 65–87. [CrossRef]

37. Garcia-Gonzalo, J.; Borges, J.G.; Palma, J.H.N.; Zubizarreta-Gerendiain, A. A decision support system for management planning
of Eucalyptus plantations facing climate change. Ann. For. Sci. 2014, 71, 187–199. [CrossRef]

38. Borges, J.G.; Diaz-Balteiro, L.; Rodriguez, L.C.E.; McDill, M. The Management of Industrial Forest Plantations, 1st ed.; Borges, J.G.,
Diaz-Balteiro, L., Rodriguez, L.C.E., Mcdill, M., Eds.; Springer: London, UK, 2014; Volume 33, ISBN 978-94-017-8898-4.

http://doi.org/10.3390/f9030133
http://doi.org/10.5902/19805098451
http://doi.org/10.1590/S0100-67622010000200017
http://doi.org/10.1590/1678-992x-2016-0479
http://doi.org/10.3390/f8040116
http://doi.org/10.1111/2041-210X.12899
http://doi.org/10.7201/earn.2016.02.04
http://doi.org/10.1080/02827581.2012.712154
http://doi.org/10.1016/j.foreco.2008.01.038
http://doi.org/10.1016/j.ecolecon.2009.05.010
http://doi.org/10.1016/j.foreco.2012.11.045
http://doi.org/10.3390/f10050375
https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf
https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf
http://www.fao.org/faostat/en/#data/FO
http://doi.org/10.5902/198050982759
http://receita.economia.gov.br/orientacao/tributaria/pagamentos-e-parcelamentos/taxa-de-juros-selic
http://receita.economia.gov.br/orientacao/tributaria/pagamentos-e-parcelamentos/taxa-de-juros-selic
http://doi.org/10.1016/j.foreco.2010.01.012
http://doi.org/10.1016/j.foreco.2017.09.050
http://doi.org/10.3390/f6010065
http://doi.org/10.1007/s13595-013-0337-1


Forests 2021, 12, 1481 23 of 23

39. Garcia-Gonzalo, J.; Palma, J.H.N.; Freire, J.P.A.; Tome, M.; Mateus, R.; Rodriguez, L.C.E.; Bushenkov, V. A decision support
system for a multi stakeholder’s decision process in a Portuguese National Forest. For. Syst. 2013, 22, 359–373. [CrossRef]

40. Borges, J.G.; Marques, S.; Garcia-Gonzalo, J.; Rahman, A.U.; Bushenkov, V.; Sottomayor, M.; Carvalho, P.O.; Nordström, E.M.
A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For. Sci. 2017, 63,
49–61. [CrossRef]

41. McDill, M. An Overview of Forest Management Planning and Information Management. In The Management of Industrial Forest
Plantations; Borges, G.J., Diaz-Balteiro, L., McDill, E.M., Rodriguez, C.E.L., Eds.; Springer: Dordrecht, The Netherlands, 2014;
pp. 27–59. ISBN 978-94-017-8899-1.

42. Borges, J.G.; Nordström, E.M.; Garcia-Gonzalo, J.; Hujala, T.; Trasobares, A. Computer-Based Tools for Supporting Forest Manage-
ment. The Experience and the Expertise World-Wide, 1st ed.; Department of Forest Resource Management, Swedish University of
Agricultural Sciences: Umea, Sweden, 2014.

43. McDill, M.E.; Toth, S.F.; St:John, R.; Braze, J.; Rebaine, S.A. Comparing Model I and Model II Formulations of Spatially Explicit
Harvest Scheduling Models with Adjacency Constraints. For. Sci. 2016, 62, 28–37. [CrossRef]

44. Garcia-Gonzalo, J.; Pais, C.; Bachmatiuk, J.; Barreiro, S.; Weintraub, A. A progressive hedging approach to solve harvest scheduling
problem under climate change. Forests 2020, 11, 224. [CrossRef]

45. Ware, G.O.; Clutter, J.L. Mathematical Programming System for Management of Industrial Forests. For. Sci. 1971, 17, 428–445.
46. Johnson, K.N.; Scheurman, H.L. Tequiniques for precribing optimal timber harvest and investment under different objectives—

Discussion and synthesis. For. Sci. 1977, 23, a0001–z0001.
47. Nobre, S.R. Forest Management Decision Support System for Forest Plantation in Brazil: A Multicriteria Apporach. Ph.D. Thesis,

Univesidad Politécnica de Madrid, Madrid, Spain, 2019.
48. Ballestero, E.; Romero, C. Multiple Criteria Decision Making and Its Applications to Economic Problems, 1st ed.; Kluwer Academic

Publishers: Boston, MA, USA, 1998; ISBN 0-7923-8238-2.
49. Romero, C. Teoría de la Decisión Multicriterio, 1st ed.; Alianza Universidad Textos: Madrid, Spain, 1993; ISBN 84-206-8144-X.
50. Steuer, R.E. Multiple Criteria Optimization—Theory, Computation, and Application, 1st ed.; John Willey & Sons: New York, NY, USA,

1986; ISBN 0271-6232.
51. Ballestero, E.; Romero, C. A theorem connecting utility function optimization and compromise programming. Oper. Res. Lett.

1991, 10, 421–427. [CrossRef]
52. Diaz-Balteiro, L.; Belavenutti, P.; Ezquerro, M.; González-Pachón, J.; Nobre, S.R.; Romero, C. Measuring the sustainability of a

natural system by using multi-criteria distance function methods: Some critical issues. J. Environ. Manag. 2018, 214, 197–203.
[CrossRef] [PubMed]

53. Beula, T.M.N.; Prasad, G.E. Multiple Criteria Decision Making with Compromise Programming. Int. J. Eng. Sci. Technol. 2012, 4,
4083–4086.

54. Kanojiya, A.; Nagori, V. Analysis of Architecture and Forms of Outputs of Decision Support Systems Implemented for Different
Domains. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational
Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 346–350.

55. Reynolds, J.H.; Knutson, M.G.; Newman, K.B.; Silverman, E.D.; Thompson, W.L. A road map for designing and implementing a
biological monitoring program. Environ. Monit. Assess. 2016, 188, 399. [CrossRef] [PubMed]

56. Ezquerro, M.; Pardos, M.; Diaz-Balteiro, L. Operational research techniques used for addressing biodiversity objectives into forest
management: An overview. Forests 2016, 7, 299. [CrossRef]

57. Segura, M.; Maroto, C.; Belton, V.; Ginestar, C. A New Collaborative Methodology for Assessment and Management of Ecosystem
Services. Forests 2015, 6, 1696–1720. [CrossRef]

58. Diaz-Balteiro, L.; González-Pachón, J.; Romero, C. Measuring systems sustainability with multi-criteria methods: A critical review.
Eur. J. Oper. Res. 2016, 258, 607–616. [CrossRef]

59. Rodriguez, L.C.E.; Nobre, S.R. The Use of Forest Decision support System in Brazil. In Computer-Based Tools for Supporting Forest
Management. The Experience World-Wide; Borges, J.G., Eriksson, L.O., Nordström, E.M., Garcia-Gonzalo, J., Eds.; Department of
Forest Resource Management, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2014; pp. 33–47.

http://doi.org/10.5424/fs/2013222-03793
http://doi.org/10.5849/FS-2016-035
http://doi.org/10.5849/forsci.14-179
http://doi.org/10.3390/f11020224
http://doi.org/10.1016/0167-6377(91)90045-Q
http://doi.org/10.1016/j.jenvman.2018.03.005
http://www.ncbi.nlm.nih.gov/pubmed/29525752
http://doi.org/10.1007/s10661-016-5397-x
http://www.ncbi.nlm.nih.gov/pubmed/27277094
http://doi.org/10.3390/f7100229
http://doi.org/10.3390/f6051696
http://doi.org/10.1016/j.ejor.2016.08.075

	Introduction 
	Material and Methods 
	Case Study 
	Brief Description of Romero® 
	Forest Harvest Schedule Formulation 
	Multicriteria Concepts Embedded in Romero® 
	Compromise Programming (CP) 
	Romero® Architecture 

	Romero’s® Application to the Case Study 

	Results 
	Discussion 
	Conclusions 
	Model Formulation 
	Compromise Programming Definitions 
	References

