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Abstract: Full understanding and control of pine wilt disease (PWD) is a work in progress and
breeding for disease resistance constitutes an essential management strategy for reducing its impact,
as evidenced by advanced breeding programs in countries such as Japan. Since Pinus radiata is
one of the most commercially relevant species in northern Spain, we designed a study to assess
genetic variation in susceptibility to this pathogen using 44 P. radiata half-sib families from the
Galician breeding program. Three Bursaphelenchus xylophilus (pinewood nematode, PWN) inoculation
experiments were performed to evaluate disease-related variables, estimate genetic parameters, and
study sources of genotype by environment interaction (G × E). We also looked at differences in the
constitutive chemical compounds of susceptible and non-susceptible individuals. The results showed
great variation in PWN susceptibility, with survival rates for P. radiata families ranging from 0% to
90%. In addition, heritability estimates (hi

2 = 0.43, hf
2 = 0.72) and genetic gain (>26% selecting 50%

of the families) were both moderately high for survival. Significant differences in several constitutive
chemical compounds were found between susceptible and non-susceptible seedlings in the two
susceptibility groups considered. These results confirm the potential of breeding to obtain P. radiata
genotypes that are resistant to pine wilt disease and open possibilities for mitigating its future impact
on P. radiata stands.

Keywords: heritability; tree breeding; disease resistance; pine wilt disease; genotype by environment
interaction; genetic gain

1. Introduction

Monterey pine, Pinus radiata D. Don, is a tree species native to very limited areas of
the California coast in the United States and Baja California in Mexico [1]. However, as
one of the most widely planted tree species in the world, it is cultivated in Australia, New
Zealand, Chile, South Africa, and southwest Europe. In the latter region, plantations are
mainly located in northern Spain, specifically in the Basque Country and Galicia, which
contain 47.6% and 33.3% of the total area covered by P. radiata in Spain, respectively. In 2019,
2.2 million m3 of this species were harvested in the Basque Country and 1.8 million m3 in
Galicia, representing 95.2% and 46.2% of the total conifer harvest volume in each region,
respectively [2].

Tree species are under increasing threat worldwide from diseases and insect pests,
many of which are non-native. One health menace to P. radiata is Bursaphelenchus xylophilus
(pinewood nematode, PWN), the organism that causes pine wilt disease (PWD). Although
P. radiata is only weakly affected by PWN in its native area [3], mortality in planted areas
was reported in the outbreak that occurred in Sancti-Spiritus (Salamanca, Spain) [4]. In
previous experiments under greenhouse conditions, this species experienced mortality
rates of 40–95% following exposure to the pinewood nematode [5].
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With the increasing temperatures and droughts that accompany global warming,
P. radiata stands in northern Spain—where average summer temperatures reach 20 ◦C—will
be at high risk of being affected by PWD [6]. The spread of PWN also threatens countries
such as Australia and New Zealand, where this pine species constitutes a significant
component of the forest industry [7]. Careful monitoring of coniferous forests and strict
inspections of wood trade are ongoing in these countries to prevent the establishment of
this pest.

Since the first report of B. xylophilus being introduced in Japan in 1905 [8], this pathogen
has spread widely and has been reported in China [9], Korea [10], and Taiwan [11]. In
Europe, PWD was first reported in Portugal [12], where the pathogen continues to cause
irreparable damage to forest ecosystems and severe economic losses [13]. Spain declared
the first outbreak in 2008 [14], and five other foci have been declared to date [4,15], two of
which are currently eradicated.

All countries affected by PWD have dedicated significant effort to stopping it, but none
have been able to fully control the disease. Management measures, such as aerial spraying
of insecticides, removing dead or infected trees, and stand management, have only slowed
down the spread of the disease. However, combining some of these measures with the
deployment of PWN-resistant genotypes might be an important strategy for mitigating the
impact of PWD [16]. Breeding for resistance to PWD has been successfully developed in
Asian countries. The first PWN resistance breeding program began in Japan in 1978 with
the selection of surviving trees within severely PWD-damaged stands of susceptible Pinus
thunbergii Parl. and Pinus densiflora Siebold & Zucc [17,18]. More recently, the potential for
breeding PWN-resistant Pinus pinaster Ait. individuals has also been confirmed [19,20] and
PWN resistance has been included as a selection trait in the Galician P. pinaster breeding
program [20].

Genetic variation in susceptibility to PWN has not been broadly studied for P. radiata,
though some studies have shown variation in resistance to other pests, such as the pine
aphid Essigella californica Essig [21], and to diseases such as dothistroma needle blight [22] or
Cyclaneusma needle cast [23]. In fact, resistance to Dothistroma pini Hulbary is an important
selection trait in genetic breeding programs for P. radiata in New Zealand and Australia.

One of the difficulties that forest breeders must address in the implementation of effi-
cient breeding programs are genotype-by-environment interactions (G× E). The expression
of resistance may differ among genotypes across a range of environments due to G × E,
making changes in genotype ranking a primary concern for tree breeders. Consequently,
the detection of G × E is relevant for estimating the expected genetic gain in any breeding
program [24,25].

Although breeding forest tree species for resistance is a long-term solution, it is also a
long-term process. Genomic selection using molecular markers such as single nucleotide
polymorphisms (SNPs) could shorten breeding cycles [26,27] while greater command of
the Pinus defences involved in resistance to B. xylophilus may prove useful for selecting
resistant Pinus genotypes. Chemical compounds in pines constitute a major defence against
a wide range of pests and diseases. Accordingly, different authors have demonstrated the
significant role that various chemical compounds play in resistance to PWN. Phytoalexins,
for instance, appear to have nematocidal action [28] while concentrations of total phenolics
and condensed tannins seem to be related to PWN resistance [29–31]. Other studies point
to the importance of nutrients in PWD development [5,31].

The main purpose of this paper was to determine whether the P. radiata breeding popu-
lation in the Galician breeding program has enough genetic variation in PWN resistance to
reduce disease impact through selection and breeding. Specifically, we aimed to (i) estimate
genetic parameters, (ii) explore the genotype by environment interaction, and (iii) study
constitutive chemical differences between susceptible and resistant P. radiata seedlings.
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2. Materials and Methods
2.1. Plant Material and Experimental Design

Three experiments were performed to test half-sib families from the P. radiata genetic
improvement program begun in Galicia (NW Spain) in the 1990s. Seeds for the three exper-
iments were collected from a progeny trial located in A Coruña (Spain). They were grown
in nursery beds at the Lourizán Forest Research Center (Xunta de Galicia, 42◦24′35′′ N
8◦00′12′′ W, Pontevedra, Spain) in two-litre plastic pots using a mixed substrate of peat
moss and vermiculite (9:1 v/v.).

Three-year-old seedlings from 44 P. radiata open-pollinated families were evaluated;
41 in Experiment 1 of Supplementary Materials (Figure S1), 44 in Experiment 2, and 40
in Experiment 3. Each family was evaluated in at least two out of the three experiments
(Table 1).

Table 1. Main features of the P. radiata inoculation experiments.

Experiment 1 Experiment 2 Experiment 3

Age 3 3 3
Inoculation date April 2019 April 2020 July 2019

Experiment duration (days) 83 83 83
Average temperature (◦C) 25.3 22.3 23.8

Average temperature (night-day) (◦C) 22.4–28.2 19.0–26.7 19.6–28.0
Height (cm) 121.69 ± 1.1 122.05 ± 1.04 112.22 ± 1.13

Diameter (mm) 19.25 ± 0.2 19.32 ± 0.2 18.44 ± 0.23
No. branches 11.47 ± 0.29 11.47 ± 0.28 14.67 ± 0.34

Survival 0.20 ± 0.02 0.50± 0.02 0.26 ± 0.02
Wilting 6.39 ± 0.06 5.52 ± 0.07 6.07 ± 0.08

No. families tested 41 44 40
No. seedlings inoculated per family 10 BX + 3 H2O 10 BX + 3 H2O 10 BX + 3 H2O

No. blocks 10 10 10
Total No. of seedlings 533 572 520

BX: inoculated with Bursaphelenchus xylophilus; H2O: inoculated with distilled water.

All experiments followed a randomized complete block design with 40–44 families,
ten blocks, and one-tree plots. For each experiment, we inoculated ten seedlings per
family with B. xylophilus and three with distilled water as controls. The three blocks
including control seedlings were randomly selected. Seedlings in Experiments 1 and 2
were inoculated in April, while those in Experiment 3 were inoculated in July.

2.2. Pinewood Nematode Culture and Inoculation Procedure

Seedlings in the three experiments were inoculated using B. xylophilus which had been
isolated from the outbreak that occurred in As Neves (Pontevedra, NW Spain) in 2010 [14].

Nematodes were reared using a non-sporulating form of Botrytis cinerea Pers. fungus
cultured on PDA medium at 25 ◦C. The day before inoculation, nematodes were extracted
by a modified Baermann funnel technique and adjusted to 2000 nematodes per ml in
distilled water.

For seedling inoculation, a wound was made in the previous year’s growth of the
stem and a 1 cm-wide strip of gauze bandage was placed around the wound. Nematode
suspension was pipetted onto the gauze bandage and the inoculation site was sealed with
Parafilm® to avoid desiccation. Control seedlings were inoculated with 300 µL of distilled
water while inoculated seedlings were administered a 300 µL suspension of distilled water
containing 600 B. xylophilus nematodes at mixed developmental stages.

2.3. Pre-Inoculation Variables

In the three experiments, growth variables were assessed for all seedlings prior to
the inoculation date. We measured height to the previous year’s growth (HPY), growth
increment from the previous year’s growth to the inoculation date (IH), seedling height
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at the inoculation date (H), basal diameter at the inoculation date (D), and number of
principal branches (NB).

2.4. Wilting Symptom Assessment and Survival

We assessed wilting symptoms in all experiments twice a week from the onset of
external wilting symptoms until no symptom evolution was observed. Wilting symptoms
were assessed using a seven-level scale based on the percentage of discoloured needles,
ranging from 1 (no external symptoms) to 7 (all needles brown and wilted) [5].

Survival and disease evolution variables were estimated from the wilting symptom
assessments. Survival was determined as a binary variable: 1, dead seedling (wilting
symptom Level 6 or 7), and 0, alive (Levels 1–5). For disease duration variables, Level 3
was established as the start of wilting symptoms and Level 6 as the end of wilting symptoms.
Disease duration was estimated as the difference between the end and the start of wilting
symptoms. All disease evolution variables were expressed in number of days.

2.5. Nematode Quantification

In the three experiments, nematodes were extracted from the stem in two control and
eight inoculated seedlings per family in a subset of twelve randomly selected families. The
same twelve families were used for nematode quantification in all three experiments.

Nematodes were extracted using the modified Baermann funnel technique and then
quantified under a stereomicroscope (Olympus Co., Ltd., Tokyo, Japan). Stem samples
were dried at 105 ◦C for 48 h to express nematode density as the number of nematodes per
gram of dry stem weight.

2.6. Chemical Compounds Analysis

Needles were collected from all seedlings prior to B. xylophilus inoculation in each
experiment. These samples were immediately frozen at −20 ◦C until all experiments
concluded. At the end of each experiment, the 25 most and 25 least susceptible seedlings
were selected and needles from these individuals were arranged into a total of 10 samples
per experiment. Five samples per experiment and susceptibility group (resistant and
susceptible) were composed of needles from five seedlings. The samples of the resistant
individuals belonged to 30 families and the susceptible to 39. Needles from the selected
seedlings were then lyophilised before blending to make the samples.

Chemical analyses were performed on the samples to determine water content and
levels of lipid-soluble substances, total polyphenols, condensed tannins, macronutrients (N,
P, K, Ca, and Mg), and micronutrients (Fe and Mn), as described by Menéndez-Gutiérrez
et al. [5].

Soluble carbohydrates and starch concentrations were analysed as per Chow and
Landhausser [32] and DuBois et al. [33], with some adjustments. Soluble carbohydrates
were extracted with aqueous ethanol (EtOH:H2O) (80:20) (v/v) using an ultra turrax,
followed by centrifugation. A rotatory evaporator was used for ethanol removal and
soluble carbohydrates in the extract were analysed as glucose, following the Dubois
method [33]. Non-structural storage carbohydrates (starch) were hydrolysed with H2SO4
5N and analysed colorimetrically as soluble carbohydrates. The results were expressed in
mg glucose g−1 lyophilized tissue.

2.7. Statistical Analysis

Joint analyses of the three experiments were performed for all variables. Survival,
wilting symptoms, and disease duration variables (SW, DW, EW) were analysed using the
following general linear mixed model:

Xijk = µ + Ei + Fj + Bk(Ei) + Ei × Fj + εijk (1)

where Xijk is survival, wilting symptom or any of the disease duration variables of indi-
vidual seedlings, µ is the overall mean, Ei is the fixed effect of the ith experiment, Fj is the
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random effect of the jth family, Bk(Ei) is the random effect of the kth block within the ith
experiment, Ei × Fj is the random interaction between the ith experiment and the jth family,
and and εijk is the residual random error.

For survival, the analysis was also performed including diameter (the trait most
correlated to survival in the present work) as a covariate, to determine whether differences
in susceptibility were merely due to differences in diameter or if other causes were involved.

Pre-inoculation variables (HPY, IH, H, D, NB) were analysed using the model de-
scribed above but excluding the block effect.

The SAS System MIXED procedure was applied to fit the model for wilting symptoms,
disease duration and pre-inoculation variables. However, binary survival data (0/1) were
analysed using the SAS System GLIMMIX procedure of presuming a binary distribution
and a logit link function. Accordingly, the function used to estimate predicted survival
(p) was:

ηijk = ln
(

p
(1− p)

)
= µ + Ei + Fj + Bk(Ei) + Ei × Fj + εijk (2)

where ηijk is the link function g(p), µ the conditional mean, and ln [p/(1 − p)] the odds
of survival.

The significance of random factors was tested by a likelihood ratio test, which was
determined by the difference in two times the log-likelihood of the models, including and
excluding the assessed random factor. The likelihood ratio was distributed as a one-tailed
χ2 with one degree of freedom [34].

Individual (hi
2) and family (hf

2) heritabilities were estimated as follows from the
joint analyses:

h2
i =

σ2
A

σ2
f + σ2

f e + σ2
ε

(3)

h2
f =

σ2
f

σ2
f +

σ2
f e

NB + σ2
ε

NBE

(4)

where σA
2 is the additive variance, assuming true half-sib families was calculated as

σA
2 = 4σf

2; σf
2, the family variance component; σfe

2, the family variance component by
experiment interaction; σε2, the residual variance; N, the harmonic mean number of
seedlings per plot; B, the number of blocks; and E, the number of experiments. Standard
errors were calculated as in Wright [35].

For binomial variable survival, the residual variance was established as π2/3, the
variance on the underlying scale for logit link function [36].

The predicted genetic gain in percentage from the across site family selection was
estimated as the average best linear unbiased predictors (BLUPs) of the selected less
susceptible families divided by the population mean, multiplied by 100 and the individual
heritability [37].

Chemical compound analyses were carried out using the SAS MIXED procedure, in-
cluding the experiment, the susceptibility group (susceptible or non-susceptible seedlings),
and their interactive effect as fixed factors.

Likelihood-based analyses were performed to thoroughly examine genotype by en-
vironment interaction (G × E) causes for survival and wilting symptoms, according to
Yang [38] and De la Mata and Zas [39]. Initially, a full model was fitted using an unstruc-
tured family covariance structure in the SAS PROC MIXED procedure, considering the
experiment as a fixed factor and the family and block within the experiments as random
factors. Then, reduced models with specific constraints to the family covariance structures
were fitted and compared to the full model. The following sources of G × E were tested:
homogeneity of family variance across experiments, perfect family correlation between all
experiment pairs, and homogeneity of family covariance across experiment pairs. These
three hypotheses were evaluated by comparing the restricted log-likelihood ratio obtained



Forests 2021, 12, 1474 6 of 15

for the full model to the likelihood ratio of the reduced covariance model. Under the
null hypothesis (i.e., full covariance model is not different from the reduced covariance
model), the log-likelihood ratio is distributed as χ2 with degrees of freedom given by the
difference in the number of covariance parameters that defined the full model and the
reduced model [34].

Differences in nematode density in the stem at the end of the experiments were
studied using the Kruskal–Wallis non-parametric analysis of variance. These analyses were
performed separately for each experiment and then jointly. The Mann–Whitney U test was
performed to compare families when significant differences were found.

Pearson correlation coefficients between all traits were calculated for individual-
seedling values of the three experiments (phenotypic correlations) and for family breeding
values from joint analyses (genetic correlations) using the CORR procedure in SAS. Spear-
man correlations were only used when nematode densities were analysed.

SAS System Software (SAS Institute Inc., Cary, NC, USA, 2014) was used to perform
all statistical analyses.

3. Results
3.1. Pre-Inoculation Variables

All P. radiata seedling variables measured prior to B. xylophilus inoculation (H, IH, HPY,
D, NB) showed significant differences among experiments (p < 0.05), families (p < 0.0001),
and family × experiment interaction (p < 0.015) (Table 2).

Table 2. Overall means and standard error (SD); Variance components (σ2) and likelihood ratio significance test (χ2
LRT)

for random effects; F ratios and significance levels for the fixed effect, using mixed-model analysis to calculate heritability
in P. radiata families inoculated with Bursaphelenchus xylophilus. Height (H), Height to the previous year’s growth (HPY),
growth increment from the previous year’s growth to the inoculation date (IH), Diameter (D), Number of principal
branches (NB), Wilting symptoms (W), Survival rate (S), Start (SW), End (EW) and Duration (DW) of wilting symptoms of
dead seedlings.

Variables Mean ± SD
Experiment Family Experiment × Family Heritability

F2,79 * p > F σ2 χ2
LRT p > χ2 σ2 χ2

LRT p > χ2 hi
2 hf

2

H 118.93 ± 0.64 11.79 <0.0001 0.068 ± 0.020 29.1 <0.0001 0.039 ± 0.010 44.4 <0.0001 0.77 ± 0.10 0.76 ± 0.21
HPY 102.89 ± 0.65 3.25 0.044 0.033 ± 0.009 30.2 <0.0001 0.015 ± 0.005 22.4 <0.0001 0.67 ± 0.09 0.77 ± 0.20
IH 16.06 ± 0.23 26.03 <0.0001 0.031 ± 0.011 13.8 <0.0001 0.018 ± 0.009 5.9 0.015 0.29 ± 0.06 0.63 ± 0.12
D 19.03 ± 0.12 3.75 0.0278 0.016 ± 0.005 20.2 <0.0001 0.012 ± 0.004 36.4 <0.0001 0.57 ± 0.08 0.70 ± 0.18

NB 12.45 ± 0.18 19.62 <0.0001 0.058 ± 0.018 21.5 < 0.0001 0.031 ± 0.011 16.4 <0.0001 0.51 ± 0.08 0.72 ± 0.17
W 5.98 ± 0.04 10.24 0.0005 0.137 ± 0.048 15.9 < 0.0001 0.045 ± 0.035 2.2 0.138 0.29 ± 0.06 0.66 ± 0.11
S 0.33 ± 0.01 37.64 <0.0001 0.414 ± 0.163 12.3 0.0004 0.161 ± 0.124 2.4 0.119 0.43 ± 0.07 0.72 ± 0.15

SW 33.04 ± 0.28 42.72 <0.0001 2.301 ± 1.528 2.8 0.0943 3.895 ± 1.898 7 0.0082 0.18 ± 0.04 0.45 ± 0.09
EW 55.31 ± 0.45 33.37 <0.0001 8.978 ± 4.552 5.3 0.0213 6.739 ± 4.473 3.3 0.0693 0.26 ± 0.05 0.59 ± 0.16

DW a 22.35 ± 0.37 44.31 <0.0001 9.278 ± 3.187 14.7 0.0001 - - - 0.38 ± 0.07 0.76 ± 0.14

* F2,27 for SW, EW and DW, F2,79 for the rest variables. a Experiment × Family was excluded from the analysis for this variable.

Seedlings from the experiments inoculated in April (Experiments 1 and 2) presented
significantly greater height, growth increment from the previous year’s growth to the
inoculation date, height to the previous year’s growth, and basal diameter compared to
seedlings inoculated in July (Experiment 3). Conversely, the number of principal branches
was greater in Experiment 3 (data not shown).

Individual narrow-sense heritability for these traits was high in all cases (hi
2 > 0.50),

except for IH (hi
2 = 0.29). Family heritability estimates were also high, with heritability

ranging from 0.63 (IH) to 0.77 (HPY) (Table 2).

3.2. Disease-Related Variables

Wilting symptoms and survival differed significantly among P. radiata families, but also
between experiments and among blocks. In contrast, this analysis detected no differences
in the G × E interaction for both traits (Table 2). Differences among P. radiata families for
both variables remained highly significant when diameter was included as covariate in the



Forests 2021, 12, 1474 7 of 15

previous analyses (p < 0.01, data not shown), indicating that other genetically controlled
factors might be involved in genetic susceptibility to PWN.

In Experiment 2, 50% of the seedlings survived B. xylophilus, compared to 20% in
Experiment 1 and 26% in Experiment 3. In those two experiments, the mean diurnal
and nocturnal temperatures were higher than in Experiment 2 (Table 1). Despite the low
P. radiata survival rates, great variation in survival rates was observed among families. The
observed family survival rates ranged from 0% to 90 % in Experiment 2 and from 0% and
70% in the other two experiments. One group of families stood out as having reasonably
high predicted survival rate (over 65%, a range oscillating from 24% to 75%) and fewer
wilting symptoms in all the experiments (Figure 1).
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Significant differences among families were also observed for the end and duration of
wilting symptoms, though not for the start of symptoms. The G × E interaction was only
significant for the disease duration variable SW (Table 2).

On average, wilting symptoms started 33 days after inoculation (DAI) and ended
55 DAI, so the average duration of the disease was 22 days. However, all these variables
differed significantly among experiments (Table 2).

Both individual and family heritability estimates were especially high for survival
and all pre-inoculation variables (H, HPY, D, NB) except height increment, which showed
lower values (Table 2). Wilting symptoms and disease duration variable (SW, EW, DW)
values were moderately high for both individual and family heritabilities (Table 2).

The value for predicted genetic gain for survival was high. By selecting the 50% of
the families with the highest survival, we obtained a genetic gain of up to 26.4%. As
the number of families selected decreased, this value grew to almost 52.7% for the seven
families that were finally selected (Figure 2).
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Figure 2. Predicted genetic gain in survival of Bursaphelenchus xylophilus in relation to the number of
Pinus radiata families selected.

3.3. Genotype by Environment Interaction

The G × E interaction was not significant for wilting symptoms or survival in the
conventional mixed model analyses (Table 2). However, more specific G × E analyses
involving various sources of interaction showed a significant G× E effect (Table 3) that was
not explained by any of the sources studied. In fact, one of the key implications of G × E
in a breeding program, the family ranking changes, was not significant (Table 3). This
interaction did not seem relevant in the end, since the ratio family variance component to
G × E variance for these traits did not exceed the interaction relevance threshold proposed
by Shelbourne [40] (σf

2/σfe
2 < 2). The values for survival and wilting symptoms were 0.39

and 0.29, respectively (data not shown).

Table 3. Likelihood ratio tests from analyses of different sources of genotype by environment
interaction (G × E) across the three experiments. Chi-squared values (χ2) and significance of the
sources of G × E are estimated by comparing the likelihood ratio of the full and reduced models.
Degrees of freedom (df) are the difference between the number of (co)variance parameters estimated
in the full and reduced models.

Null Hypotheses df
Wilting Mortality

χ2 p > χ2 χ2 p > χ2

No family by environment interaction 5 20.3 0.001 16 0.007
Homogeneity of family variance across experiments 4 2.3 0.681 4.2 0.241

Perfect family correlation between all experiment pairs 3 5.3 0.151 3.8 0.283
Homogeneity of family covariance across experiment pairs 2 5.2 0.074 4.4 0.111

3.4. Nematodes

The number of nematodes sampled from inoculated stems differed significantly among
the three experiments (Kruskal–Wallis χ2 > 10.12, p < 0.0064; data not shown). The median
number of nematodes was higher in Experiment 1 than in the other experiments, but we only
found significant differences among families in Experiment 3 (Kruskal–Wallis χ2 > 23.87,
p < 0.0324; data not shown) when data were analysed separately for each experiment.

In the joint analyses, the number of nematodes differed significantly among families
(Kruskal–Wallis χ2 > 34.01, p < 0.0021; Figure 3, data not shown).
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(min-max span of values), Circles (outliers).

At the end of the assays, the number of nematodes recovered from the stems of
seedlings at wilting levels 1–4 ranged from 0 to 69.50 B. xylophilus per dry gram of wood.
In seedlings at wilting levels 6 and 7, the number ranged from 40.73 to 8059.16 B. xylophilus
per dry gram of wood.

We did not recover any nematodes from the control seedlings.

3.5. Correlations

Survival and wilting symptoms presented a markedly strong negative correlation
at phenotypic and genetic levels. Hence, they had relationships with the same traits but
opposite signs (Table 4). At the phenotypic level, all pre-inoculation traits except IH were
correlated positively with wilting symptoms and negatively with survival, especially NB
and D. Similarly, nematode density was also strongly correlated with both traits. Disease
duration variables (SW, EW, DW) had a negative relationship with wilting (Table 4).

The same relationships were observed at the genetic level, except for all height traits,
which were not significantly correlated with survival or wilting symptoms (Table 4).

Table 4. Pearson correlation matrix of phenotypic values of the three experiments (below the diagonal) and genotypic
values from joint analyses of the three experiments (above the diagonal) coefficients between pairs of variables. Height (H),
Height to the previous year’s growth (HPY), Growth increment from the previous year’s growth to the inoculation date
(IH), Diameter (D), Number of principal branches (NB), Wilting symptoms (W), Survival rate (S), Start (SW), End (EW) and
Duration (DW) of wilting symptoms in dead seedlings, Number of B. xylophilus in the stem per gram of dry weight (ND).

H HPY IH D NB W S SW EW DW

H 0.97 *** 0.62 *** 0.37 *
HPY 0.94 *** 0.55 *** 0.30 * 0.37 *
IH 0.12 *** −0.23 *** −0.30 * −0.35 *
D 0.58 *** 0.59 *** 0.75 *** 0.45 ** −0.38 * −0.29 *

NB 0.32 *** 0.33 *** 0.48 *** 0.44 ** −0.39 ** −0.32 *
W 0.16 *** 0.17 *** 0.21 *** 0.19 *** −0.94 *** −0.40 ** −0.54 *** −0.36 *
S −0.097 *** −0.112 *** −0.14 *** −0.15 *** −0.89 *** 0.39 ** 0.58 *** 0.41 **

SW 0.11 ** −0.19 *** −0.25 *** - 0.48 ***
EW 0.11 ** 0.12 *** 0.07 * −0.57 *** - 0.56 *** 0.82 ***
DW 0.15 *** 0.18 *** −0.11 ** 0.13 *** 0.18 *** −0.50 *** - −0.08 * 0.79 ***
ND 0.12 * 0.67 *** −0.70 *** −0.15 * −0.26 ***

Significance levels: *** = p < 0.001; ** = p < 0.01; * = p < 0.05. Blank spaces indicate non-significant correlations and (-) correlations that
cannot be performed.
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3.6. Chemical Compounds

The constitutive macronutrients N, P, and K and the micronutrient Mn, along with
condensed tannins and soluble carbohydrates, showed significant differences among
susceptibility groups. In addition, we observed a significant interaction effect between
susceptibility group and experiment for Mn and lipid-soluble substances (Table 5). The
group comprised of resistant individuals had the highest concentration of condensed
tannins and soluble carbohydrates but was lower in N, P, and K contents (Figure 4). We
only found significant differences for lipid-soluble substances between the resistant and
susceptible groups in Experiment 3, where concentrations of this chemical were much
greater in the resistant group. Mn concentrations were also significantly higher for the
resistant individuals in Experiment 2 (data not shown).

Table 5. Results of mixed-model analysis of the constitutive chemical compounds in needles. F ratios
(degrees of freedom are shown as a subscript, F factor, error) and associated p values are shown. WC:
Water content, N: Nitrogen, P: Phosphorus, K: Potassium, Ca: Calcium, Mg: Magnesium, Fe: Iron,
Mn: Manganese, LS: Lipid-soluble substances, POL: Total polyphenols, TAN: Condensed tannins,
CAR: Soluble carbohydrates STA: Starch. Significant p-values (p ≤ 0.05) are shown in bold.

Variables
Susceptibility Group Experiment Susceptibility Group ×

Experiment

F1, 25 p > F F2, 25 p > F F2, 25 p > F

WC (%) 2.03 0.1662 4.13 0.0282 0.2 0.8175
N (%) 13.95 0.001 22.21 <0.0001 0.43 0.6577
P (%) 16.84 0.0004 2.87 0.0753 0.06 0.9447
K (%) 6.43 0.0178 6.58 0.005 0.36 0.6995
Ca (%) 3.38 0.0781 2.21 0.1302 0.94 0.4039
Mg (%) 0.04 0.8344 1.5 0.2421 0.49 0.6197

Fe (ppm) 0.13 0.7173 6.53 0.0052 1.24 0.3064
Mn (ppm) 7.27 0.0124 0.25 0.7795 4.47 0.0219

LS (mg·g−1) 0.21 0.6476 22.81 <0.0001 5.93 0.0078
POL (mg·g−1) 1.07 0.3115 1.3 0.2902 1.13 0.3383
TAN (mg·g−1) 5.14 0.0323 1.44 0.2548 0.01 0.9883
CAR (mg·g−1) 5.08 0.0333 7 0.0038 1.91 0.1686
STA (mg·g−1) 1.13 0.2971 2.46 0.1058 1.15 0.3334Forests 2021, 12, x FOR PEER REVIEW 11 of 16 
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4. Discussion

Our results revealed significant genetic variation with a broad range of susceptibility
to pinewood nematode among P. radiata half-sib families from the Galician breeding
program. The moderately high heritability estimates and genetic gain obtained from
these experiments confirm the potential of this species for breeding PWD-resistant trees to
mitigate future damage to P. radiata plantations.

Resistance breeding has proven successful in controlling diverse pests and pathogens
that affect forest tree species [41–43]. In PWD resistance breeding, numerous resistant
P. densiflora and P. thunbergii clones have been identified in Japan since 1972, with respec-
tive survival rates that are 40% and 16% higher than the non-selected population [44].
These data justify the need to continue advancing this research line as part of the strategy to
control the disease. Resistance breeding programs are also underway for other susceptible
species, though they are in earlier stages than the Japanese program. A PWD resistance
breeding program for P. massoniana was initiated in China in 2001 with the selection of 1201
resistant P. massoniana individuals [45]. On the Iberian Peninsula, significant genetic varia-
tion in susceptibility to PWD was found among half-sib families of P. pinaster, prompting
both Portugal and Spain (Galicia in particular) to start improvement programs [19,20]. Six
families from the Galician P. pinaster breeding program (NW Spain) have been registered
as parents of families resistant to PWD in the National Catalogue of Base Materials [46]
and are currently ready to be commercialized.

Australia and New Zealand, where P. radiata has a great economic importance, have
prioritized breeding for resistance to diverse foliar diseases, especially Dothisthoma needle
blight and Cyclaneusma needle cast, which have been studied and included as selection
criteria for several decades [47]. The variation in resistance to these diseases has a strong
additive genetic basis [22,23].

The results of this study also justify starting a PWD resistance breeding line for
P. radiata as part of the Galician breeding program for this species. As in the previous
examples, significant genetic variation in susceptibility to PWD was observed, along with
reasonably high heritability estimates, indicating that resistance is inherited and mainly due
to additive genetic effects. The individual narrow-sense heritability estimate for survival
was similar to the maximum heritability estimates reported for open-pollinated P. thunbergii
families [18] and P. pinaster families, which were selected from Portuguese areas severely
affected by PWD and studied under controlled conditions [19]. However, the heritability
values obtained for P. pinaster families from the Galician breeding population (NW Spain)
for mortality were considerably lower [20].

In this study, the isolate used for screening was obtained from a dead Maritime pine
from the outbreak that occurred in As Neves (Galicia, NW Spain). Many authors have
emphasized the importance of using the most virulent isolate for selecting the most resistant
genotypes in breeding programs [48]. Accordingly, we chose the isolate for this assay based
on a previous study of isolates of diverse origins to determine the most virulent isolate for
P. radiata [49].

Many factors seem to affect variation in PWN susceptibility, including the physico-
chemical characteristics of the host and environmental factors, such as temperature and
drought. In this study, we observed a significant genetic and phenotypic relationship be-
tween growth traits and diseased-related variables, in which vigorously growing families
tended to have higher mortality and develop more wilting symptoms. This relationship
was also reported for P. pinaster families from the Galician breeding population: trees from
the most susceptible families also had greater height growth [20]. The same has been
reported for other pests [50,51] and points to a growth–defence trade-off, though other
studies found no relation or a negative correlation between growth and mortality [52,53].

Temperature is also known to be widely associated to PWD development, as illustrated
by the differential survival rate obtained across experiments. We observed that the highest
survival rate occurred in the experiment subjected to the lowest day and night temperatures.
Differences in temperature were even greater when we only considered temperature during
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the three first weeks after inoculation. This finding is in accordance with a previous study
that described the great relevance of early cumulative temperatures in PWD development,
especially in resistant P. thunbergii families [54]. Another work demonstrated the heavy
influence of high nocturnal temperature on tree mortality after PWN inoculation and the
likely contribution of other factors to PWD development [53].

While our results suggested a low level of G × E, we have to take into consideration
that we studied G × E under greenhouse conditions where the sources of variation are
less pronounced. In a study by Matsunaga et al. [55] of six P. thunbergii families at three
sites with dissimilar climates, only a low proportion of the total variance was explained by
site x family interaction and no changes were observed in the resistance family ranking.
Similarly, Suontama [23] did not find a significant G × E interaction that affected P. radiata
resistance to Cyclaneusma needle cast.

Genetic variation in secondary metabolites has been reported for conifers [56]. For this
reason, we focused on certain constitutive chemicals in P. radiata that may also influence
disease development in resistant families. Given the rapid multiplication and spread
of the nematode throughout the tree, we hypothesized that the defence system could
not inhibit PNW infection unless defence metabolites such as terpenoids or tannin-like
substances were already present in the tree or produced in the early stage of the disease [57].
Condensed tannins are phenolic compounds with great defensive capacity. Indeed, these
rather potent antibiotics act to protect against insect herbivores [58,59]. In the present work,
we observed higher levels of constitutive condensed tannins in resistant individuals. Our
findings concur with those of Ohyama et al. [60], who reported a higher proanthocyanidin
(condensed tannin) content in pine-wilt resistant P. thunbergii and P. densiflora clones than in
susceptible pines. Resistant individuals also had larger amounts of soluble carbohydrates.
These substances are involved in various stress responses and are related to important
changes in the balance of reactive oxygen species (ROS) [61], which are known to be
released in response to PWN infection [62]. However, this relationship requires more
thorough study since soluble sugar can also contribute to ROS scavenging [61].

Plant nutrients can also play an important role in disease resistance by enhancing
disease resistant mechanisms. We found higher constitutive levels of Mn in resistant
individuals in two of the experiments. This compound plays an important role in the
biosynthesis of some defensive substances, such as lignin and phenol. It is also involved
in photosynthesis and many other tree functions [63]. By the same principles, the highly
PWN-susceptible species P. sylvestris was found to have about ten times less Mn than other,
less susceptible pine species [5]. Conversely, we observed higher levels of N, P, and K in
the susceptible group than in the resistant one. The effect of N and P on disease resistance
seems inconsistent and sometimes depends on the plant pathogen [63]. For instance, one
study indicated higher levels of constitutive N in the phloem of P. sylvestris, which is
highly susceptible to PWN, than in other less susceptible species [31], while another study
reported much lower amounts of N in the xylem of P. sylvestris than in other species [5].
Though we found lower levels of K in the resistant individuals, fertilization with K seems to
reduce disease incidence in some crops by promoting the synthesis of various compounds
involved in disease resistance [63].

Neither field-based assessments nor field selection of PWN-resistant candidate trees
in affected areas were possible in Spain due to EU quarantine organism restrictions, since
the disease is currently found in isolated foci and has not spread over the entire territory.
Given the impossibility of validating our findings in adult trees in the field, the results
must be considered cautiously. However, the use of two- or three-year-old seedlings for
testing resistance against pinewood nematode is broadly accepted. In Japan, the evaluation
in seedlings has been carried out for many years, obtaining resistant candidates which are
being planted. Additionally, Maehara et al. [64] used P. thunbergii adult trees, obtaining
similar results to those of Kanzaki et al. [65] who used three-year-old seedlings.

Experiences with managing pine wilt disease in affected countries have shown that
conventional disease control measures are insufficient and must be complemented with
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strategies such as breeding. This work confirms that breeding PWN-resistant trees through
selection is possible for P. radiata. Our results confirm the existence of genetic variation
among P. radiata families, with high heritability estimates and a moderately high genetic
gain for survival. These findings imply that resistance to PWD can be included as a new
selection factor in the P. radiata breeding program and survival seems to be the best trait to
assess in operational breeding. Furthermore, this work provides evidence indicating the
importance of the constitutive chemistry of P. radiata seedlings in host resistance to PWN.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f12111474/s1, Figure S1: Pinus radiata experiment one month after inoculation with Bursaphe-
lenchus xylophilus.
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