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Abstract: Urban evapotranspiration (ET) is an effective way to mitigate ecological challenges resulting
from rapid urbanization. However, the characteristics of urban vegetation ET, especially how they
respond to meteorological factors and soil water, remains unclear, which is crucial for urban ET
regulation. Therefore, this study measured the actual ET rate of an urban lawn (ETlawn) using the
Bowen ratio system and an urban tree (Ttree) by a sap flow system in the hot summer of a subtropical
megacity, Shenzhen. The results showed that the daily ETlawn was more restricted by energy (Rs) and
diffusion conditions (vapor pressure deficit, VPD), while the daily Ttree was more restricted by VPD
and relative extractable water (REW) in the urban area. The daily Ttree decreased when the REW was
lower than 0.18, while the daily ETlawn started to decrease when it was lower than 0.14. When REW
was lower than 0.11, the Ttree stayed at a relatively low level. The impacts of VPD was more evident
on the diurnal Ttree than on the diurnal ETlawn. Wind speed had a scarce impact as it was relatively
low in urban areas. This study clarifies the different responses of ETlawn and Ttree to meteorological
factors and soil water based on actual ET. The results are of great significance for the knowledge of
urban forestry and urban hydrology.
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1. Introduction

It has been widely recognized that urban vegetation plays an important role in mit-
igating the urban heat island effect under the dual impact of global warming and rapid
urbanization, and this process is directly related to urban ET [1–3]. Urban ET refers to
the evaporation of water from different underlayers to the atmosphere in urban areas,
which is the link between the urban water cycle and energy cycle. It can not only cool the
surroundings by consuming a large proportion of available energy but also reduce urban
runoff by larger water holding capacity, which cannot be ignored in the construction of
sponge cities [4]. Therefore, increasing urban green space to increase ET is considered to be
the most economical and effective means to deal with problems resulting from urbanization
and climate change [5,6].

It was believed that the ET in the urban environment was much smaller than that in
the suburbs before the 1980s [7]. However, a small number of recent studies have shown
that urban ET can be very large and an important part of the urban water budget [8–11]. In
fact, vegetation coverage in many urban areas may be higher than that in adjacent suburbs.
Urban ET could be increased by the enhancement of local and microscale advection in
urban areas and irrigation [12]. With rapid global urbanization, some ecological and
environmental problems (e.g., urban heat island effect, heat wave, urban flooding, etc.)
have become increasingly prominent, most of which are closely related to ET. Therefore,
some scholars have begun to focus on the field of urban ET.
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Vegetation ET is usually decided by the available energy (e.g., solar radiation), water
vapor diffusion process (mainly decided by humidity and wind speed), available water,
and physiological state of vegetation. In urban areas, albedo determines the net radiation
received by the surface. Wang et al. found that albedo and surface temperature were the two
factors that had the greatest impact on ET in Phoenix [13]. The diffusing conditions of water
molecules is mainly affected by saturated vapor pressure deficit and wind speed [14,15].
The larger the saturated water vapor pressure deficit, the more easily the water molecules
are diffused, thus leading to greater ET rates. Wind can promote the diffusion of water
vapor, thus increasing the intensity of ET. Digiovanni et al. observed the ET at six sites in
New York City and found that they were significantly different [1]. In total, 25% of the
differences were attributed to vegetation types, and 40% of the differences were attributed
to meteorological conditions. Kim et al. used the weighing method to observe the urban
ET in Shuiying District, Busan [16]. They found that the correlation coefficient between
the ET rate and dew point temperature was 0.63, while the correlation with temperature,
pressure, sunshine duration, and net radiation was higher than 0.5.

Soil moisture is another important factor that determines the level of soil evaporation
and available water for vegetation transpiration [17]. Water storage in urban areas decreases
as soil on the urban surface is replaced by impervious water. Additionally, natural soils
in urban green spaces, such as parks, are compacted by human activities and mixed with
artificial materials as the industrial, commercial, and residential land expands [18,19]. The
pore structure of the soil is thus changed. This will impede or delay water infiltration and
interflow in urban areas [20,21]. Gregory et al. found that the infiltration of compacted
soil due to construction activities was 70–99% lower than that in low-impact development
areas [22]. In addition, the deeper layers of green space in recreational areas are usually
parts of a drainage system, which makes it difficult to store water in the soil. In this case,
the hydrological process is different from the natural situation. In addition, the water
supply capacity of soil in urban areas is reduced due to hydraulic resistance caused by
paving materials, roofs, and parking lots [23]. When soil water supply is insufficient, the
hydraulic resistance between the soil and the root system increases, which hinders the
water transfer from the soil to leaf and results in the stomata closing and transpiration rate
decreasing [24,25]. Voyde et al. found in their study at the University of Auckland that
vegetation ET is an important part of urban latent heat flux when soil water is sufficient [26].
It has also been shown that the daily ET rate of olive trees is higher under humid conditions,
such as increased precipitation or adequate irrigation [27,28]. Irrigation is an important
water source for urban vegetation, especially in arid and semiarid areas [29,30]. Due to
the presence of external water diversion and irrigation, urban ET exceeds precipitation in
many cases [31–33]. Oke found that the potential ET of urban lawns was 1.3 times that
of rural lawns as they had enough water supply from irrigation [34]. Lawn irrigation in
the semiarid south of the United States can account for up to 70% of residential water
use [35–38]. Therefore, to achieve good urban irrigation management, it is essential to have
good knowledge of urban ET and its controlling factors.

However, the potential ET of urban lawns is mainly studied instead of actual ET.
They are usually estimated with empirical crop coefficients [39], and the accuracy has not
been verified [38,40,41]. In fact, unlike crops, urban lawns are generally heterogeneous
(containing one or more types and not necessarily fully covering the ground), small in size,
and shaded by trees and buildings [42]. Therefore, crop coefficients in agriculture may not
be accurate for urban lawns. Trees in urban areas are either scattered individually or urban
forests in parks. The ET of the latter has been studied more frequently in recent times as
it is more similar to natural forests. Some researchers believe that the ET rate of urban
trees may be higher than that of natural forests [43]. They suggest that individual trees in
urban areas have more space, more soil, more solar radiation, and therefore a higher ET
rate given they have sufficient water supply [44,45].

However, due to lack of actual ET measurements, the impacts of meteorological factors
and soil water on urban ET need further research and verification. In addition, varieties
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of grasses and trees are used in urban areas due to their ecological and environmental
functions. It remains unknown whether lawns and trees respond to these factors differently
in urban areas, which is important for urban heat island mitigation and sponge city building.
Therefore, we measured the actual ET rate of an urban lawn (ETlawn) using a Bowen ratio
system and the transpiration rate of an urban tree (Ttree) by sap flow as well as synchronous
meteorological parameters and soil water contents in the hot summer of a subtropical
megacity, Shenzhen. We aimed to clarify the characteristics of urban ET from a lawn and a
tree as well as their responses to climatic factors on daily and diurnal scales. The results
will be of great significance for urban hydrology and forestry.

2. Materials and Methods
2.1. Study Site

Shenzhen is located in the southeast coast of Guangdong province, China (113◦45′44′′

E~114◦37′21′′ E, 22◦26′59′′ N~22◦51′49′′ N). It experiences a subtropical humid climate
(cwa, Koppen climate classification), with a long summer and short winter. The annual
average temperature is 23.0 ◦C. It is coldest in January (15.4 ◦C) and hottest in July (28.9 ◦C).
The annual average precipitation is 1935.8 mm, with 86% of the rainfall occurring from
April to September. The annual average sunshine duration is 1837.6 h, and the annual
solar radiation is 5225 MJ m−2. The annual average wind speed is 2.7 m s−1; it is lower in
summer and approximately 2.1–2.2 m s−1 in July and August.

The study site was the campus of Peking University Shenzhen Graduate School
(Figure 1). The study lawn was covered by Zoysia matrella (L.) Merr. Z. matrella spreads
quickly and easily forms dense lawns. At the same time, it has strong drought tolerance,
shade tolerance, and easy requirements for soil. Therefore, it is a widely used grass for
urban greening in tropical and subtropical areas [46,47]. The study tree was Ficus concinna
Miq., which is an evergreen tree that prefers a warm and rainy climate. It is widely
distributed in subtropical regions of China as well as India, Vietnam, Myanmar, Malaysia,
Philippines, and other countries. With its strong survival ability, fast growth, long life, and
easy transplanting, it is an excellent tree species for afforestation. The observation period
was from 4 April to 13 September 2018.
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2.2. Meteorological and Soil Water Content Measurements

A Bowen ratio system was installed in the center of the Z. matrella lawn to observe
meteorological parameters, including air temperature and relative humidity at the heights
of 1.5 and 2 m, solar radiation, net radiation, wind speed, wind direction, soil heat flux,
and others (Figure 1 and Table 1). Each sensor took a measurement once every 1 min. Then,
the CR1000 datalogger (Campbell, Logan, UT, USA) was used for automated recording,
and the system averaged and stored the data every 10 min.

Table 1. Information of the sensors on the Bowen ratio system.

Parameters Sensors Height (m) Accuracy

Relative humidity 225-050YA, NOVALYNX,
Grass Valley, CA, USA 2.0, 1.5 ± 3%, ± 0.6 ◦CAir temperature

Wind speed and
wind direction

200-WS-02, NOVALYNX,
Grass Valley, CA, USA 2 ± 0.2 m s−1, ± 3◦

Solar radiation PYP-PA, APOGEE, Santa
Monica, CA, USA 2 10~40 µV W−1 m−2

Net radiation 240-100, NOVALYNX, Grass
Valley, CA, USA 2 <4%

Soil heat flux HFP01, HUKSEFLUX, Center
Moriches, NY, USA −0.05, −0.02 50 µV W−1 m−2

SM300 soil moisture and temperature sensors (Delta-T Devices Ltd., Burwell, Cam-
bridge, UK) were used at six depths of 5, 10, 20, 25, 35, and 45 cm underground to monitor
soil moisture. The CR1000 datalogger was also used to collect and store data each minute
and store the average value every 10 min. The Meteorological Bureau of Shenzhen Munici-
pality provided precipitation data from the University Town Meteorology Station, which
was just 500 m away from our study site.

2.3. ETlawn and Ttree Measurement

The ETlawn was calculated by parameters based on the Bowen ratio system. The Ttree
was measured by the sap flow system. The sap flow probes (SF-L probe sensor, Ecomatik,
Munich, Bavaria, Germany) were installed northward at the height of the tree chest. The
CR1000 datalogger recorded the temperature difference between the probes every minute,
then automatically averaged and stored the data every 5 min. The data were recorded from
April to September 2018.

2.4. Data Analysis and Parameter Calculation

The ETlawn was calculated based on the Bowen ratio energy balance [50]:

ET =
Rn − G

L(1 + β)
(1)

where ET is the evapotranspiration rate (mm s−1), Rn is the net radiation (W m−2), G is the
soil heat flux (W m−2), L is the latent heat coefficient of vaporization (J kg−1), and β is the
Bowen ratio:

β =
H
LE

=
ρCpKh

∂Ta
∂z

εL/PρKw
∂e
∂z

= γ
∆Ta

∆e
=

Cp∆Ta

L∆q
(2)

where ρ is the air density (kg m−3); Cp is the specific heat of air at constant pressure
(kJ kg−1 ◦C−1); ε is the molecular weight ratio of water vapor to dry air, which is a constant
0.622; P is the pressure (kPa); γ is the hygrometer constant; ∆Ta, ∆e, and ∆q are the air
temperature difference, vapor pressure difference, and humidity difference between the
two heights the air temperature and relative humidity are recorded, respectively. They
were 2 and 1.5 m in this study.

Because β is usually close to −1 before and after sunrise and sunset, when the tem-
perature is low or when it rains, the calculated latent heat flux is always infinite and
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meaningless. According to the characteristics of ET, combined with the theoretical basis
of the Bowen ratio energy balance method, the intraday abnormal latent heat flux and
sensible heat flux were excluded and then interpolated synchronously [51].

According to Granier’s empirical formula of liquid flow density [52], the sap flow
density can be obtained:

Fd= 119 ×
(

∆Tm − ∆T
∆T

)1.231
(3)

where Fd is the instantaneous sap flow density (g m−2 s−1), ∆T is the instantaneous tem-
perature difference between the probes, and ∆Tm is the maximum temperature difference
throughout the day. To deal with the impacts of both night-time flow and drift on ∆Tm, the
local maxima of ∆Tm over a 10-day period were first calculated. Then, the new ∆Tm was
calculated by a linear regression between these local maxima and time. Following the first
linear interpolation, the data points that were below the estimated values were eliminated,
and another linear interpolation was made with the remaining data points [53,54].

The tree transpiration rate per unit canopy area (Tr, mm h−1) can be calculated by the
following formula:

Tr= 3.6 × Fd × A/Sc (4)

where A is the sapwood area (m2), which was approximately 0.048 m2 in this study. Sc is
the canopy area, which was 28.274 m2 in this study.

Relative extractable water (REW) was used to express the soil water status. It was
calculated by the volumetric soil water content (VWC) [55,56].

REW = (VWC −VWCmin)/(VWCmax −VWCmin) (5)

where VWCmax and VWCmin are the maximum and minimum measured VWC, respectively.

3. Results
3.1. Meteorological Factors and Soil Water Conditions

Based on the data from the Bowen ratio system, the daily radiation was abundant at
our study site during the study period. The daily average solar radiation was 123.25 W
m−2, and its maximum reached 227.78 W m−2 (Figure 2). There was no significant variance
in the solar radiation among the months. The air temperature was relatively high at the
study site. It was 27.59 ◦C on average throughout the study period.
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Figure 2. Daily values of (a) the air temperature (Tair) and solar radiation (Rs), (b) the precipitation
(P) and the relative humidity (RH), and (c) the vapor pressure deficit (VPD) and wind speed (WS)
during the study period.
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The total precipitation was 1418.8 mm during the study period, and the annual pre-
cipitation in 2018 at our study site was 1859.2 mm, which is close to the mean annual
value in Shenzhen (1935.8 mm, according to Meteorological Bureau of Shenzhen Municipal-
ity). Abundant precipitation caused humid air, resulting in a high daily relative humidity
(80.81% on average and a maximum of 99.50%).

Due to the high air temperature but high relative humidity, the daily VPD was 0.73 kPa
on average and was within approximately 1 kPa most of the time. It increased in May,
when the air temperature was higher and relative humidity decreased. Additionally, as the
study site was located in the center of the urban area, the wind speed was relatively low.
The daily average wind speed throughout the study period was only 0.15 m s−1.

The soil water conditions during the study period are shown in Figure 3. Soil water
contents for all soil depths increased from April to early May and then declined quickly
until early June. It fluctuated within a similar range from June to September. The larger
fluctuation of volumetric soil water contents occurred at the depth of 20 and 25 cm, coinci-
dent with rainfall events. This indicates that precipitation mainly recharged the surface soil
layer (20–25 cm beneath the surface). In urban areas, the deep soil is usually mixed with
artificial materials [18,19]. At our study site, there was a landfill layer made of construction
wastes at the depth of 20–30 cm beneath the surface. Thus, the water infiltration from the
surface to the deep soil was slowed down.
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Figure 3. Trends of volumetric soil water contents (VWC, m3 H2O m−3 soil × 100%) for all measure-
ment depths of soil precipitation throughout the study period.

The average values of VWC and REW at different depths were used for the analysis as
lawns and trees may use water at different depths. As can be seen, there was a long drying
period between 9 May and 5 June, during which there was only one rainy day (26 May,
5.6 mm). The soil continued to become dryer during this period. Therefore, we defined
this period as a water depletion period to better evaluate the response of ETlawn and Ttree
to soil water conditions.

3.2. Responses of Diurnal ETlawn and Ttree to Meteorological Factors and Soil Water

To investigate the response of diurnal ETlawn and Ttree to meteorological factors and
water, we selected three typical days with similar Rs and VPD but different REW. The
three days were 8 April (the dry day before the rainy days between 15 April and 9 May;
Rs: 205.04 W m−2, VPD: 0.86 kPa, and REW: 0.01), 13 May (the day after the rainy days
between 15 April and 9 May; Rs: 193.18 W m−2, VPD: 1.41 kPa, and REW: 0.31), and
28 May (the day after continuous soil water decrease; Rs: 206.57 W m−2, VPD: 1.12 kPa,
and REW: 0.10).
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First, the dynamics of the diurnal ETlawn was similar in pattern to the Rs in the
three days (Figure 4). The peak of ETlawn in the wet day was larger (13 May) than the
two dry days (8 April and 28 May), and the peaks of ETlawn in the two dry days started
to decrease before the peak of Rs, which might reveal the restriction of water. Diurnal
VPD had weaker impacts on ETlawn compared to Rs. In contrast, the diurnal Ttree was
affected by both Rs and VPD in the three days. After it reached its peak around the Rs
peak time, the Ttree maintained a relatively high rate until the peak of VPD (Figure 4).
Second, the daily ETlawn (Ttree) increased from 3.62 mm d−1 (0.54 mm d−1) on 8 April to
5.55 mm d−1 (3.53 mm d−1) on 13 May due to the increase in REW. Afterwards, the daily
ETlawn decreased to 4.16 mm d−1 (0.49 mm d−1) on 28 May as the soil water gradually
decreased. This revealed a strong controlling effect of soil water on the ET from the urban
lawn and tree, and the impacts of REW on the Ttree were highly significant. Ttree on the
two dry days was slower than 0.05 mm h−1 throughout the day.
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Figure 4. Diurnal courses of the evapotranspiration of urban lawn (ETlawn), transpiration of urban
tree (Ttree), solar radiation (Rs), and vapor pressure deficit (VPD) on three typical days with similar
Rs and VPD but different REW: 8 April (a,d), 13 May (b,e), and 28 May (c,f).

As the ETlawn was measured and calculated based on the Bowen ratio balance method,
it was zero in the nighttime as the radiation was around 0. However, there was obvious
nocturnal sap flow for the tree. Though we did not find other studies that could confirm
the nocturnal transpiration of F. concinna, many studies have observed this phenomenon
for other urban trees [57–59]. Nocturnal sap flow is composed of refilling and transpiration.
According to Fisher et al., it is used for refilling when nighttime VPD is low and for
transpiration when nighttime VPD is high, and there is a strong correlation between sap
flow and VPD [60]. In our study site, the nighttime VPD could be as high as 1 kPa in
nighttime in the three typical days (Figure 4). Moreover, the nocturnal sap flow was
significantly correlated to VPD (Figure 5). Therefore, we would deduce there was strong
nocturnal transpiration for our study tree, and it was mainly controlled by VPD. More
precise separation of refilling and transpiration needs further study.
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Figure 5. Nocturnal transpiration rate of the urban tree and vapor pressure deficit (VPD) in the three
typical days: (a) 8 April, (b) 13 May, and (c) 28 May. The nighttime was defined according to the solar
radiation (Rs <10 W m−2). All of the nighttime sap flow was attributed to transpiration in this study,
which may lead to some overestimation of nocturnal transpiration.

3.3. Responses of Daily ETlawn and Ttree to Meteorological Factors and Soil Water

The average daily ETlawn was 2.50 mm d−1 throughout the study period (Figure 6).
The maximum was 5.96 mm d−1 on 19 May, and the minimum was 0.18 mm d−1 on
16 April when the radiation was weak during precipitation. It was relatively higher before
June, then fluctuated within 0.33–3.96 mm d−1 between June and September.
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Figure 6. Daily evapotranspiration of the urban lawn (ETlawn) and daily transpiration of the urban
tree (Ttree) at the study site during the study period (4 April 2018 to 13 September 2018).

The average daily Ttree was 1.40 mm d−1 throughout the study period. The maximum
was 5.31 mm d−1 on 21 April, and the minimum was 0.01 mm d−1 on 16 August during a
long period of rainy days. The Ttree was also higher before June. Unlike the ETlawn, the
Ttree did not fluctuate frequently during this period. It increased from 16 April and then
stayed at a high level before 20 May. Between June and September, the daily Ttree fluctuated
within 0.01–3.52 mm d−1.

The daily ETlawn and Ttree responded differently to meteorological factors and soil
water (Table 2). During the whole study period, the daily ETlawn was significantly affected
by Rs as calculated by the Bowen ration energy balance method. It was also significantly
affected by VPD, indicating the importance of water vapor diffusion conditions. However,
wind speed had a scarce impact on the ETlawn as it was quite low in urban areas. REW
also had a scarce impact on the ETlawn. This indicates that energy and diffusion conditions
were the main restrictions to ETlawn, while soil water was sufficient for the lawn at our
study site.

During the whole study period, the daily Ttree was not significantly correlated to Rs.
However, it was significantly restricted by REW. VPD also had significant impacts on it,
but the partial correlation coefficient and significance were weaker than those of ETlawn.
Wind speed still had a scarce impact on the daily Ttree. Therefore, diffusion conditions and
soil water conditions were the main restrictions to Ttree, while energy was sufficient at our
study site.
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Table 2. Partial correlation coefficients of daily evapotranspiration of the urban lawn (ETlawn) and
daily transpiration of the urban tree (Ttree) to meteorological factors (Rs, VPD, and WS) and soil
water conditions (REW) during the whole study period (4 April 2018 to 13 September 2018) and
water depletion period (9 May 2018 to 5 June 2018).

Meteorological Factors/Water Rs VPD WS REW

ETlawn
Whole period 0.560 *** 0.505 *** 0.212 −0.010

Water depletion period 0.823 *** 0.696 *** −0.347 0.758 ***

Ttree
Whole period −0.229 0.360 ** −0.060 0.327 *

Water depletion period 0.059 0.520 ** −0.417 * 0.773 ***
* p < 0.05, ** p < 0.01, *** p < 0.001.

Partial correlation analysis was also conducted for the water depletion period. Differ-
ent from the results during the whole study period, the ETlawn was significantly correlated
with Rs, VPD, and REW during the water depletion period. This indicates that the ETlawn
was restricted by energy, water vapor diffusion conditions, and soil water contents. When
REW was higher than 0.14, the Rs and VPD were weaker, which might explain the de-
creased ETlawn. The impacts of VPD and REW on the Ttree were stronger during the water
depletion period. Wind speed had significant negative impacts on the Ttree. The prevailing
wind is north–northeast in summer in Shenzhen. In the north–northeast of the study site,
there was a large area of green space, including a golf course, while there were buildings in
the west, south, and east of the study site. Therefore, the wind carried moisture from the
north–northeast and then depressed the transpiration of the tree. The wind had weaker
impacts on the lawn, perhaps due to the fact that the lawn was much lower.

During the water depletion period, the daily REW decreased gradually and the 5.6 mm
precipitation did not recharge the soil water efficiently (Figure 7a). Meanwhile, the daily
ETlawn was stable between 9 May and 23 May and even showed a slight increase. It was
5.70 mm d−1 on 23 May, then decreased quickly. On 5 June, it was only 1.06 mm d−1.
Similarly, the Ttree was also relatively stable at the beginning of the drought period. Never-
theless, it decreased after 20 May, three days earlier than the ETlawn. It decreased quickly
from 4.84 to 0.41 mm d−1 on 26 May. After that, the Ttree stayed at a relatively low level
(0.41–0.59 mm d−1). Although the REW was lower than 0.4 from 11 May onwards, a thresh-
old value that induces stomatal closure in many trees [61], the ETlawn and Ttree in our study
site did not decline immediately. This may indicate that the grass and tree species in our
study site may get higher endurability of water pressure.
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Figure 7. Response of urban lawn evapotranspiration (ETlawn) and urban tree transpiration (Ttree) to relative extractable
water (REW). (a) Daily variation during the water depletion period (9 May 2018 to 5 June 2018). The dashed line means
REW of 0.4, a threshold value that induces stomatal closure in many trees. (b) Different stages of ET and T under different
REW; lawn_a: ETlawn when water is sufficient, lawn_b: ETlawn declined with the reduction in REW, Tree_a: Ttree when
water is sufficient, Tree_b: Ttree declined with the reduction in REW, Tree_c: stable Ttree when REW is relatively low.
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Figure 7b shows how ETlawn and Ttree decreased with the reduction in REW. As can
be seen, ETlawn decreased almost linearly with the reduction in REW when it was lower
than 0.14. When REW was higher than 0.14, the ET even decreased with increasing REW,
which can probably be explained by the lower radiation on rainy days. In contrast, Ttree
decreased almost linearly with the reduction in REW when 0.11 < REW < 0.18. When REW
was lower than 0.11, the Ttree stayed at a low level. The Ttree was almost similar when
REW was higher than 0.18, which indicates that the impacts of other factors may be weaker
when soil water is sufficient.

4. Discussion
4.1. Intensities of ETlawn and Ttree

The average daily ETlawn was 2.50 mm d−1 throughout the study period in this study.
In another study, also conducted in Shenzhen, Zhang et al. measured the ET of a Zoysia
tenuifoli green roof and a Callisia repens green roof using the three temperature model [62].
They found the average daytime ET rates of 0.31 and 0.29 mm h−1 for the two kinds
of grasses after rainfall in April to May. They were much lower than daytime ETlawn
(0.46 mm h−1) in the wet day in our study. Yu et al. also measured the daytime ET of a
Sedum Lineare green roof using the three temperature model in Shenzhen [63]. They found
the rate of 0.04–0.54 mm h−1 on sunny summer days and 0.03–0.09 mm h−1 on sunny
winter days. In Florida, which also experiences a subtropical humid climate, a Paspalum
notatum lawn consumed 834 and 822 mm of water through ET in 2011 and 2012, respectively.
It was also not affected by water, considering there was 700 mm more precipitation in 2012
than 2011 [64]. In cities with a Mediterranean climate, the ET of the lawn even reached as
high as 10 mm d−1 on sunny summer days [65,66]. This was much larger than the ETlawn
in our study. The water vapor could diffuse efficiently as it was relatively dry in summer.
Additionally, the lawns were irrigated well in these studies, avoiding water stress. In cities
at higher latitude that experience a dry temperate continental climate, the Lolium perenne
lawn and Cynodon dactylon lawn could consume 3.10 and 4.98 mm d−1 (average during
2013 to 2015) water in summer, respectively [67,68]. The daily ET rate of six different
species of Sedum in New York was 1.93 mm d−1 throughout the year [1]. Overall, the ET
of urban lawns depends on a variety of parameters, such as grass species, irrigation, and
climate, thus making it difficult to compare them with one another.

The transpiration of urban tree also depends on the climate, species, size of the tree,
etc. The average daily Ttree was 1.40 mm d−1 in this study. Pataki et al. found that
the Ficus microcarpa consumed 89.9 kg tree−1 d−1 water through transpiration [69]. This
was relatively higher among the tree species in the Los Angeles Arboretum. It was also
much higher than the Ttree in our study (equal to 39.58 kg tree−1 d−1). The radiation in
Los Angeles was abundant in summer, and irrigation supplemented the soil water well.
The dryer air and higher VPD might promote transpiration. In the city of Miyoshi, Aichi
Prefecture, which experiences a similar climate to our study site, the transpiration of Zelkova
serrata was slightly lower than the F. concinna in our study, which likely indicates the impact
of tree species and size [70].

Most of the previous studies have found that trees consume more water than shrubs
and lawns under natural conditions [71–74]. However, the Ttree was lower than the ETlawn
in our study. This is due to the fact that the ETlawn included the transpiration of the grass
and the evaporation of the canopy and soil. Evaporation could count for 28% [75], 64% [76],
and 12–27% [77] of the ETlawn in previous studies. In Huanjiang, Guangxi, which also
experiences a subtropical humid climate, the evaporation contributed 36% of the ETlawn in
the growing season [78]. As the precipitation at our study site was highly abundant, the
evaporation could also significantly contribute to the ETlawn. Meanwhile, the transpiration
of the tree was obtained by sap flow (then divided by canopy area to obtain the rate
in mm h−1 or mm d−1 to better compare with the lawn), which could not measure the
evaporation of canopy interception, thus underestimating the total ET of the tree. Therefore,
the intensity of ETlawn and Ttree is not quite comparable in our study. Additionally, the
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root systems of trees are usually deeper under natural conditions and are thus capable of
utilizing more soil water [79–81]. Due to compression, the soil volume density is large and
the structure is poor in urban areas. As a result, the usable space in soil for roots is small.
This may have a greater impact on trees [82–84] and lead to lower transpiration rates. Some
studies have found that the transpiration rate of trees was still lower than that of lawns in
urban areas, even when the canopy interception of trees was taken into account [68].

4.2. Response of ETlawn and Ttree to Meteorological Factors

VPD significantly promoted both daily ETlawn and Ttree in this study. VPD could
increase the water demand of ambient air and thus promote ET [85,86]. However, it had
greater impacts on Ttree than ETlawn on a diurnal scale. The effect of VPD and radiation on
transpiration depends on the coupling between the vegetation canopy and the surrounding
atmosphere [9]. The aerodynamic roughness of a tree canopy is usually higher, which
can effectively promote the turbulent exchange between the air on the leaf surface and
the surrounding atmosphere. Therefore, tree canopy transpiration is usually related to
atmospheric conditions, and VPD is an important controlling factor of tree canopy tran-
spiration [87,88]. However, the aerodynamic roughness of the lawn canopy is usually low,
and there is usually a moist air layer on the surface of grasses, which decouples the grass
leaf from the atmosphere to a certain extent. Therefore, net radiation is usually the main
driving force of grassland evapotranspiration, and the effect of saturated vapor pressure
difference is relatively weak [88,89].

4.3. Response of ETlawn and Ttree to Soil Water

The impacts of soil water were stronger on Ttree than ETlawn in urban areas in our
study. Some studies have found that Ficus trees have lower water use efficiency [90,91].
More importantly, urban soil usually has a large volume density and poor structure, which
greatly restricts the development of urban tree root space [82–84]. As there was a layer of
construction waste at a depth of 20–30 cm beneath the surface, the precipitation replenished
water more for surface soil layers, making it easier for grass with a shallow root system
to obtain water. Trees with limited root system space will face more frequent and severe
water pressure, resulting in decreased stomatal conductance and transpiration levels [92].
Increasing the water permeability of the surrounding underlying surface and improving
the soil looseness in the planting area of trees can significantly increase the water available
to the roots of trees [93,94].

Throughout our study period, the Ttree was 227.68 mm and consumed 6.44 m3 water
in total (the canopy area was 28.274 m2). The contemporary precipitation was 1418.8 mm,
which meant that the Ttree would consume the precipitation in the area of 1.20 m radius
around the tree without competing with other plants (

√
(6.44m3/1418.8mm)/π). During

the water depletion period, however, the transpiration (56.54 mm) would consume the pre-
cipitation in the area of 2.23 m radius around the tree without competing with other plants
(the precipitation before the water depletion period was 183.1 mm in total, and the contem-
porary Ttree was 80.43 mm; therefore, the radius was

√
(1.60m3/(183.1mm− 80.43mm))/π).

However, the DBH of the tree was only 30 cm. This indicates that the root system must
be relatively extended in order to obtain soil water, especially during the water depletion
period. However, it is usually difficult to accurately measure the root system development
of urban trees [70]. Additionally, the analysis above assumes that all the precipitation
was used for transpiration, and there was no competition surrounding the tree. In fact,
precipitation would also be consumed by evaporation through canopy interception and soil
as well as the transpiration of other surrounding vegetations. Therefore, the root system
size requirement calculated above for urban trees may still be underestimated.

5. Conclusions

Based on the Bowen ratio system and sap flow system, this study measured the actual
ET rates of an urban lawn and an urban tree as well as synchronic meteorological factors
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and soil water contents in the hot summer of a subtropical megacity, Shenzhen. The results
showed that the daily average ETlawn and Ttree were 2.50 and 1.40 mm d−1, respectively,
throughout the whole study period. Throughout the study period, the daily ETlawn was
mainly decided by Rs (r = 0.560, p < 0.001) and VPD (r = 0.505, p < 0.001), while the daily
Ttree was mainly decided by VPD (r = 0.360, p < 0.01) and REW (r = 0.327, p < 0.05). The
ETlawn was more restricted by energy, and Ttree was more restricted by soil water. The daily
ETlawn started to decrease linearly with the reduction in REW when it was lower than 0.14
during the water depletion period. The daily Ttree started to decrease linearly with the
reduction in REW when it was lower than 0.18. When REW was lower than 0.11, the Ttree
stayed at a relatively low level. Wind speed had a scarce impact as it was relatively low in
urban areas. These results are not only useful for urban irrigation management but also
important for adaptation to climate change and urbanization.
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