
Article

Variation in Platycladus orientalis (Cupressaceae) Reproductive
Output and Its Effect on Seed Orchard Crops’ Genetic Diversity

Si-Qian Jiao 1, Meiyu Li 1, Yuan-Jiao Zhu 2, Shan-Shan Zhou 1, Shi-Wei Zhao 1, Zhi-Chao Li 1, Yu-Tao Bao 1,
Tian-Le Shi 1, Hui-Jin Zhang 3, Xiao-Lei Yang 3, Ji-Jun Zhu 3, Ilga Porth 4, Yousry A. El-Kassaby 5 ,
Shi-Ping Cheng 6 , Yue Li 1 and Jian-Feng Mao 1,*

����������
�������

Citation: Jiao, S.-Q.; Li, M.; Zhu, Y.-J.;

Zhou, S.-S.; Zhao, S.-W.; Li, Z.-C.; Bao,

Y.-T.; Shi, T.-L.; Zhang, H.-J.; Yang,

X.-L.; et al. Variation in

Platycladus orientalis (Cupressaceae)

Reproductive Output and Its Effect

on Seed Orchard Crops’ Genetic

Diversity. Forests 2021, 12, 1429.

https://doi.org/10.3390/f12111429

Academic Editors: Álvaro Soto and

Pablo G. Goicoechea

Received: 4 September 2021

Accepted: 15 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering
Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University,
Beijing 100083, China; siqianjiao@bjfu.edu.cn (S.-Q.J.); meiyulily@163.com (M.L.);
shanshan9@bjfu.edu.cn (S.-S.Z.); shwzhao997@bjfu.edu.cn (S.-W.Z.); zhichaoli@bjfu.edu.cn (Z.-C.L.);
yutaobao@bjfu.edu.cn (Y.-T.B.); tianleshi@bjfu.edu.cn (T.-L.S.); liyue@bjfu.edu.cn (Y.L.)

2 School of Economics, Yunnan University, Kunming 650091, China; zyj15838023462@163.com
3 National Tree Breeding Station for Platycladus orientalis in Jiaxian, Forest Farm of Jiaxian County,

Jiaxian 467100, China; zhang15837506876@163.com (H.-J.Z.); yangxiaolei137137@163.com (X.-L.Y.);
jxlchyx@163.com (J.-J.Z.)

4 Département Des Sciences Du Bois Et De La Forêt, Pavillon Charles-Eugène-Marchand, 1030, Avenue De La
Médecine, Université Laval, Québec, QC G1V 0A6, Canada; ilga.porth@sbf.ulaval.ca

5 Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia,
Vancouver, BC V6T 1Z4, Canada; y.el-kassaby@ubc.ca

6 Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant,
Pingdingshan University, Pingdingshan 467000, China; shipingcheng@163.com

* Correspondence: jianfeng.mao@bjfu.edu.cn; Tel.: +86-13366181735

Abstract: The genetic efficiency of seed orchards is crucial for determining seed crops’ genetic gain
and diversity. Platycladus orientalis is a conifer tree of important ecological value in China. Here, we
assessed the reproductive output (fertility) variation for 166 clones in a first-generation P. orientalis
seed orchard over five years and across three years for each gender (female: 2017, 2018, and 2020 and
male: 2017, 2019, and 2021). Fertility variation and genetic diversity parameters were estimated for
each gender-year combination. The reproductive output (fertility) variation differed among years,
provinces, clones nested within provinces, and ramets within clones. We observed asymmetry in the
gender reproductive output and parental imbalance and determined their profound effects on the
genetic diversity of these seed crops. The maleness index revealed the existence of female-biased
or male-biased clones. When seeds from multiple individuals and years were blended, we found
an increase in the effective number of parents (Np) and in genetic diversity (GD), and a reduced
fertility variation (Ψ) in the seed orchard. When we set the effective number of parents (Np) to 30, the
GD of the seed orchard could be maintained at more than 95%. Thus, achieving genetic diversity
balance in seed production can be accomplished through monitoring the fertility variation of orchards
and through the utilization of the thereby generated information for the advanced generation of
seed orchards.

Keywords: Platycladus orientalis; reproductive strobili production; fertility variation; effective parent
number; parental balance

1. Introduction

The genetic efficiency of seed orchards (the degree to which seed crops reflect their
parental population genetic superiority) is crucial, as it determines the degree of genetic
gain and diversity for future forest tree plantations [1]. Parental gametic contribution is an
important factor affecting the extent of the captured genetic gain in the seed orchard [2],
while the effective population size of seed crops is an important indicator of their genetic
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diversity [3]. Platycladus orientalis (Linn.) Franco is an endemic evergreen, monoecious
tree of the Cupressaceae distributed in Northern and Northwestern China, South Korea,
and Russia. P. orientalis (common name: Oriental thuja) is known for its wide adaptability,
and drought and cold tolerance, and has become an important ecological afforestation and
restoration tree species in Northern China [4]. The wood of this species is characterized
by its high density and decay-resistance, making it suitable for construction and furniture
manufacturing. Additionally, the leaves, branches, and seeds of this species have great
medicinal values [5], and P. orientalis is also common in landscaping. Due to these signifi-
cant attributes, the planting volume of this species is ever increasing, and its position in
forestry production is becoming more prominent [6].

In China, tree improvement and selective breeding activities of P. orientalis focusing
on the phenotypic selection of growth attributes started in the 1980s, resulting in the
establishment of provenance testing and seed orchards. The largest P. orientalis seed
orchard was established in 1989 in Jiaxian County, Henan Province [7]. Currently, the
reproductive output of this seed orchard has not been fully assessed, as seed production is
unstable and the annual production is substantially varied [8].

A quantitative evaluation of the reproductive output in coniferous seed orchards and
an estimation of fertility variation among individuals provide useful information for the
management and effective utilization of their seed crops [9]. Fertility variation is defined
as the difference in the ability of individuals to produce viable progeny (i.e., reproductive
output) [10,11]. The most commonly used method for predicting or estimating parental
reproductive output in forest tree seed orchards is counting the reproductive buds [12–14] or
male and female strobili [13,15]. Quantifying fertility variation in seed orchard populations
can help manage the genetic diversity and reduce the impact of fertility differences [16].

The genetic quality of clonal seed orchard crops has been a key step in conifer improve-
ment programs, including P. orientalis. However, the genetic quality of the P. orientalis seed
orchard has not been evaluated, but is assumed to be dependent on many factors, including
reproductive output variation, reproductive phenology, mating system dynamics, and
gene flow [17–19]. In a seed orchard, it is commonly observed that the reproductive output
(male and female strobili production) of parents substantially varies, resulting in a small
portion of the seed parents contributing a disproportionately large number of gametes to
the progeny [20–22]. For example, the “20:80 rule” claims that 20% of the parents in an
orchard will produce as much as 80% of the entire seed crop [23]. This unequal/distorted
reproductive output contribution leads to a relatedness buildup and potential reduction of
genetic diversity in orchard seed crops.

Effective population size (Ne) is one of the key genetic indicators in plant breeding,
conservation, and population genetics [24,25]) as it quantifies the magnitude of genetic
drift and inbreeding in a real population [9,16]. However, as Ne is notoriously difficult to
assess in practice and in the context of forestry, Kang [13] introduced a simplified method
for assessing Ne using the sibling coefficient (Ψ), which is the probability that two alleles
randomly selected from the gamete gene pool originated from the same parent. In contrast,
the effective number of parents in the P. orientalis first generation clonal seed orchard
has not been reported, which would provide a useful tool for assessing the Ne for this
seed orchard.

Here, we assessed the reproductive output of this P. orientalis first generation clonal
seed orchard with the following objectives: (1) surveying female and male strobili pro-
duction over multiple years, (2) estimating female and male fertility variation among
individuals, (3) estimating the effective number of parents so as to monitor the genetic
diversity of orchard seed crops over the study years, and (4) discussing effective seed crop
management practices so the genetic diversity of seed crops are maximized.
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2. Material and Methods
2.1. Platycladus orientalis Clonal Seed Orchard

We studied a first-generation P. orientalis clonal seed orchard that was established in
the 1980s (Jiaxian County, Henan Province, China (33◦48′00′′–34◦11′50′′ N, 113◦01′45′′–
113◦24′50′′ E)). The orchard population consisted of 268 phenotypically selected parents
(clones) selected from 24 provenances within the Henan Province representing the species
central range [26]. The seed orchard covered 35 hectares (ha), and clones were randomly
arranged in 13 plots over two blocks, with 2 m spacing between trees within rows and 6m
between rows [7]. The present study focused on one of the two blocks for its high survival,
which contained 166 clones (N = 5763 ramets) growing in three plots. We monitored the
orchard’s reproductive output over five years (2017–2021) with three years for parental
female (2017, 2018, and 2020) and male (2017, 2019, and 2021) output.

We estimated the reproductive output of female parents by counting the abundance
of seed cones in all ramets within the studied block. Depending on the abundance of cones,
the fertility of female clones was divided into 11 different grades (from 0: no cone, to 10:
abundant cones), following Woods (2005) [27] (female gametic contribution, Method F1:
visual assessment of seed cone yield of each ramet for all 166 clones during 2017, 2018, and
2020). The specific method was done by first visually observing the fertility level of the
plant with the highest number of male flowers in the seed orchard as the tenth class, on the
basis of which the fertility of the other plants was assigned to classes 0−10.

We estimated the reproductive output of male parents by counting the abundance
of male strobili for all ramets across the studied block, following Woods (2005) [27] (male
fertility, method M3: visual assessment of the male strobili production of each ramet of all
clones). In this method, the abundance of male strobili was again classified into 11 different
grades (0: no strobilus, 10: abundant strobili). Counting of the male strobili was conducted
for all 166 clones during the 2017, 2019, and 2021 pollen shedding periods. The grading
score was in proportion to the quantities of both male and female strobili production,
allowing for a direct comparison of male and female reproductive grading scores.

2.2. Genetic Variation and Parental Balance

Statistical summaries of the scores of individual male and female reproductive outputs
across the studied years were calculated using the psych package in R (R version 4.0.3; R
Foundation for Statistical Computing, Vienna, Austria) [28]. Analysis of variance (ANOVA)
of reproductive outputs between genders, and the nested-ANOVA of male and female
strobili production across years, provenances, and clones nested within provenances were
conducted using SPSS Version 24.0 (SPSS 24.0; SPSS Inc., Chicago, IL, USA) [29]. Pearson’s
product moment and Spearman rank-order were used to analyze the correlation between
female and male strobili production in the studied years.

Parental balance curves were used to characterize high- and low-yield male strobili and
seed cone individuals, following Chaisurisri and El-Kassaby [30]. The genetic contributions
of females and males can be explained by the parental balance curves, while cumulative
percentage curves are often used to quantify fertility variation [11,31].

The maleness index (Mi), defined as the proportion of a clone’s reproductive out-
put transmitted through its male strobili production [13], was estimated following [32],
as follows:

Mi = mi/(mi + fi) (1)

where mi and fi are the genetic contributions (or reproductive output) of male and female
in the i-th clones, respectively.

2.3. Estimation of Fertility Variation

Parental fertility is defined as the proportion of gametic contribution from female and
male parents to their progeny [31,33]. Fertility variation is described by the sibling coeffi-
cient (Ψ), which is the probability that two alleles randomly selected from the gamete gene
pool originated from the same parent [13]. Additionally, the sibling coefficient is related
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to the coefficient of variation (CV) of the female and male reproductive outputs [13,34].
Thus, the parental fertility sibling-coefficient (Ψ) can be further described separately as the
female sibling coefficient (Ψf) and male sibling coefficient (Ψm). The coefficient of variation
(CV) of the female and male reproductive outputs was used to estimate the female and
male fertility (Ψf and Ψm) among individuals [9], as follows:

Ψ f = NΣN
i =1 f 2

i = CV2
f + 1 (2)

Ψm = NΣN
i =1 m2

i = CV2
m + 1 (3)

where N is the census number; fi and mi are the proportional contributions of female and
male in the i-th individual, respectively; and CVf and CVm are the coefficients of variation
of reproductive outputs of female and male parents among individuals in the studied
population, respectively.

P. orientalis, as a monoecious species, may show a positive or negative correlation
between male and female fertility. Under the covariation between female and male fertility,
the variation of parental fertility (Ψ) can be obtained by using the Person’s correlation
coefficient (r) as follows:

Ψ = 0.25
(

Ψ f + Ψm

)
+ 0.5r

√
(Ψ f − 1)(Ψm − 1) (4)

where Ψf and Ψm are the sibling coefficients of female and male parents, respectively,
and r is the Person’s product−moment correlation coefficient between female and male
reproductive outputs in the population [9].

2.4. Estimation of Effective Number of Parents

The effective number of female (Np
(f)) and male (Np

(m)) parents can be calculated
from the female (Ψf) and male (Ψm) sibling coefficients, respectively. They are correlated
with their respective coefficients of variation (female CVf and male CVm) [13,34] as follows:

NP
( f ) = N/Ψ f = N/

(
CV2

f + 1
)

(5)

NP
(m) = N/Ψm = N/

(
CV2

m + 1
)

(6)

where N is the census number; Ψf and Ψm are the sibling coefficients of female and male,
respectively; of the i-th individual, and CVf and CVm are the coefficients of variation of
female and male reproductive outputs, respectively, in the studied population.

With the Person’s correlation coefficient (r) between female and male reproductive
outputs, Formula (4) for the parental effective number of parents (NP) can further be
developed with the correlation coefficient (r) as follows:

NP = N/Ψ = 4N/
[(

Ψ f − 1
)

+ (Ψm − 1) + 2r
√
(Ψ f − 1)(Ψm − 1) + 4

]
(7)

where N is the census number; Ψ is the sibling coefficient of parental; Ψf and Ψm are
the sibling coefficients of female and male parents, respectively; CVf and CVm are the
coefficients of variation of female and male reproductive outputs, respectively; and r is the
Pearson’s correlation coefficient between female and male reproductive outputs.

2.5. Assessment of Relative Effective Parent Size and Genetic Diversity

The relative significant number (Nr) of parents was calculated by dividing the relative
proportion of the effective number of parents (NP) by the census number (N), which
describes the percentage of the real population as the ideal population [9]. It was estimated
by the combination of female and male parents, as follows:
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Nr (%) = NP/N × 100,
Nr

(f) (%) = (NP
(f))/N × 100,

Nr
(m) (%) = (NP

(m))/N × 100
(8)

The loss of genetic diversity (GD) between generations (from parents to offspring)
was estimated following Nei [35], Lacy [36], and Lindgren and Mullin [37], as follows:

GD loss (%) = 0.5/Np × 100 (9)

GD (%) = 1 − GD loss (%) (10)

3. Results
3.1. Female and Male Reproductive Output

Female and male strobili abundance varied substantially and significantly (p < 0.001)
among years, provenances, and clones nested within provinces (Tables 1 and 2, and Supple-
mentary Table S1). Across the three studied years, the clonal seed- and pollen-cone mean
output was 2.775 and 4.208, respectively (Table 2). Additionally, substantial variation was
observed among the seed-cone (mean: 2.767; range: 1.667–4.778) and pollen-cone (mean:
4.177; range: 2.000–5.000) (Supplementary Table S1). It should be highlighted that in addi-
tion to the reproductive output variation observed among years, clones, and provenances,
within the clone, the reproductive output also varied and this variation was substantiated
by the observed high gender and year CV (>30%) values (Supplementary Figures S1–S3,
Supplementary Tables S2 and S3).

Table 1. ANOVA of P. orientalis female and male strobili production across years, provenance, and clones.

Character SOV Df Sum Sq Mean Sq F Value Pr(>F)

Female

Year 2 3567 1783.6 806.368 <2 × 10−16 ***
Provenance 11 165 15 6.77 1.83 × 10−11 ***

Year * Provenance 22 107 4.9 2.204 0.000948 ***
Year * Provenance (Clone) 308 835 2.7 1.226 0.004511 **

Provenance (Clone) 154 707 4.588 1.875 1.83 × 10−10 ***
Residuals 15,696 34,718 2.2

Male

Year 2 1670 835 259.166 <2 × 10−16 ***
Provenance 11 83 7.6 2.346 0.00697 **

Year *Provenance 22 251 11.4 3.543 3.70× 10−8 ***
Year * Provenance (Clone) 308 783 2.5 0.789 0.99726

Provenance (Clone) 154 875 5.682 1.709 3.70 × 10−7 ***
Residuals 15,696 50,573 3.2

* represents the interaction between two sources of variation. ** p < 0.01; *** p < 0.001.

Table 2. Summary statistics (mean (M), standard deviation (SD), median, range, and standard error
(SE)) of P. orientalis male and female strobili production across years (N = 5763 individuals).

Characters Years Mean SD Median Range SE

Male

2017 3.858 1.831 4 0–10 0.024
2019 4.159 1.451 4 0–8 0.019
2021 4.626 2.081 5 0–10 0.027
Total 4.208 1.830 4 0–10 0.014

Female

2017 2.474 1.454 2 0–8 0.019
2018 3.437 1.601 3 0–10 0.021
2020 2.383 1.441 2 0–10 0.019
Total 2.775 1.574 3 0–10 0.0124
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3.2. Reproductive Output Parental Balance

The nested-ANOVA revealed significant differences (p < 0.001) among years, prove-
nances, and clones nested within provenances, (Table 1), and the scores of the male repro-
ductive output were always higher than those for the female reproductive output (Table 2,
Supplementary Table S1, and Supplementary Figure S1). The gender analyses revealed the
presence of highly significant (p < 0.001) differences between the scores of male and female
reproductive outputs (Table 3).

Table 3. ANOVA of P. orientalis strobili (seed cones and pollen cones) production.

SOV Df Sum Sq Mean Sq F Value Pr(>F)

Gender 1 5540 5540 3937 <2 × 10−16 ***
Residuals 10,794 15,189 1

*** p < 0.001.

The Spearman’s rank correlation coefficients between years of female and male repro-
duction outputs were positive and significant (Tables 4 and 5). Simultaneously, for 2017,
the year with male and female reproduction output data, the correlations were positive and
significant (Table 6). Furthermore, the maleness index results showed female-biased (high
female gamete production but low male gamete production) or male-biased (high male
gamete production but low female gamete production) in a few clones (Figure 1). Seven
clones indicated that the paternal contribution was greater than the maternal one. The
genetic and reproductive maleness index of these seven clones were ≥0.60 (clones # 238, 51,
87, 111, 248, 242, and 99 (Figure 1 and Supplementary Table S4)). In contrast, eight clones
showed a greater maternal than paternal contribution in 2017, with a maleness index≤ 0.48
(clones # 71, 178, 147, 163, 179, 241, 188, and 78 (Figure 1 and Supplementary Table S4)).

Table 4. The Spearman’s rank correlation coefficient of female strobilus productions between years
based on pooling of families.

Female 2017 2018 2020

2017 0.264 ** 0.259 **
2018 0.177 **
2020

** At the p value < 0.01, indicates significant correlation.

Table 5. The Spearman’s rank correlation coefficient of male strobilus productions between years
based on pooling of families.

Male 2017 2019 2021

2017 0.325 ** 0.328 **
2019 0.222 **
2021

** At the p value < 0.01, indicates significant correlation.

Table 6. The Spearman’s rank correlation coefficient of female and male strobilus productions 2017.

2017 Male 2017 Female

2017 Male 0.098 **
2017 Female

** At the p value < 0.01, indicates significant correlation.
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Figure 1. The 2017 clone maleness index.

The parental balance curves showed a slight fluctuation in the production of male
strobili and female-cone among the years, and the clonal cumulative gamete contribution
deviated from an equal contribution (Figure 2). These results indicated that male and
female parents contributed unequally to the gamete gene pool. Thus, specific individuals
may consistently produce high or low numbers of seed- or pollen-cones (Tables 4 and 5).
The cumulative curves of female cone production were significantly more distorted than
that of the male strobili production (Figure 2). The top 20% of clones contributed 41% of
the female strobili production (2020) and 33% of the male production (2017). Similar trends
were observed across the study years for male and female strobili production (Figure 2).
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3.3. Fertility Variation, Effective Population Size, and Genetic Diversity

Fertility variation of male and female parents varied slightly among years (Table 1).
Fertility variation (Ψ) ranged from 1.112 (2019) to 1.223 (2017) for males (Ψm) with little
interannual variation, and with a similar trend observed for females (Ψf) ranging from
1.215 (2017) to 1.367 (2020) (Table 7). When pooled across all clones and years, the fertility
variation (Ψ) ranged from 1.100 to 1.654, suggesting that fertility variation increased
compared with that of the single year (Supplementary Tables S2 and S3).
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Table 7. Coefficient of variation (CV), sibling coefficient (ψ), effective number of parents (Np), relative
effective number of parents (Nr), and genetic diversity (GD) for P. orientalis female and male strobili
production (N = 166 clones).

Statistic
2017 2018 2019 2020 2021 Pooled

Female Male Female Male Female Male Female Male

CV 0.584 0.472 0.464 0.349 0.606 0.451 0.567 0.435
ψ 1.341 1.223 1.215 1.122 1.367 1.203 1.321 1.189
N 166.0 166.0 166.0 166.0 166.0 166.0 166.0 166.0
Np 123.8 135.8 136.6 148.0 121.4 137.9 125.6 139.6
Nr 0.746 0.818 0.823 0.891 0.731 0.831 0.757 0.841
GD

loss% 0.012 0.011 0.011 0.010 0.013 0.011 0.012 0.011

GD 0.988 0.989 0.989 0.990 0.987 0.989 0.988 0.989

The effective number of parents (Np) ranged from 121.4 (Np
f: 2020) to 148.0 (Np

m:
2019) across the studied years (Table 7). The relative effective number of female parents
(Nr) varied between 0.731 (2020) and 0.823 (2018), and that of male parents ranged between
0.818 (2017) and 0.891 (2019) (Table 7), where Nr was calculated using the Np and N of the
female and male strobili production. The loss of genetic diversity (GD loss%) in seed crops
varied between 0.010 (2019) and 0.011 (2017 and 2021) for males and between 0.011 (2018)
and 0.013 (2020) for females (Table 7).

The genetic diversity (GD) extended from parents to offspring is closely related to the
effective number of parents in the orchard (Figure 2). The genetic diversity (GD) estimates
for new seed orchards’ establishment were calculated using Equation (10). The genetic
diversity (GD) will be higher as we selected for a higher effective number of parents, but
the larger the Np, the slower the growth of GD (Figure 3). When we set the effective
number of parents (Np) to 30, the GD of the seed orchard could be maintained at more
than 95% (Figure 3). If we tolerate a 10% loss of genetic diversity, we only need to retain
an effective parentage of 5 to maximize genetic gain, while maintaining a certain level
of genetic diversity for new seed orchards (Figure 3). A higher fertility variation led to a
lower effective number of parents (Np), which in turn led to a less relative effective number
of parents and resulted in an increase of genetic diversity loss (Table 7).
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4. Discussion
4.1. Female and Male Strobili Production Variation

The variation of gender and reproductive outputs in the parental populations of
the seed orchards is expected to influence the genetic composition of the (resultant) seed
crops. Generally, and notwithstanding the observed significant difference between genders,
reproductive strobili production and their coefficient of variations (CV) showed a tight
association between female and male fertility (Table 1, Table 2, and Table 4), suggesting
a gender reproductive output symmetry. This general pattern is different from previous
studies which demonstrated gender asymmetry in the reproductive success of males and
females in conifer seed orchards [20,38–40]. Reproductive output symmetry is influenced
directly or indirectly by reproductive climatology [41], reproductive synchrony [2], and
climatic factors during the formation of the reproductive primordia, such as precipitation
and temperature [41].

Sexual asymmetry is common among monoecious plants [42]. However, the presence
of hermaphroditic asymmetry may be beneficial for reducing the probability of selfing [43].
The maleness index provides a quantitative measure of gender. Clones with a high maleness
index will have a relatively higher paternal than maternal contribution. So, we still found
a limited number of clones displayed a distinct female (eight clones) or male (seven
clones) tendency reflected in their genetic and reproductive maleness in 2017 (Figure 1 and
Supplementary Table S4).

Significant positive and/or negative correlations between individual tree male and
female strobili production are commonly observed. For example, positive correlations have
been reported for Pinus taeda [44], Pinus nigra [45], and Picea abies [46], and negative corre-
lations for Pinus nigra [38], Pinus elliottii [47], Pinus sylvestris [48], and Pinus contorta [49], as
in the present study.

The positive correlation between the scores of male and female reproductive outputs
increase fertility variation (Ψ) and decrease the number of effective parents (Np) (Table 3).
However, the negative correlation between the male and female reproductive output
could mitigate the asymmetrical variation between Ψf and Ψm and reduce total fertility
variation [50].

The reproductive output and coefficient of variation (CV) differed among years, clones
nested within provinces, and individuals within clones (Tables 1 and 2). Similar parental
reproductive output variations have been widely found among individuals and years
within several seed orchards [10,16,51–53] and natural populations [54]. Our results show
that the variation of male and female reproductive output between individuals and among
years could be reduced when the total strobili production is completely pooled. Thus,
mixing seed crops from several years could be beneficial to reduce the reproductive output
difference and fertility variation if the demand on the seed is not high [16].

4.2. Fertility Variation and Effective Number of Parents

The genetic worth of orchards’ seed crops is a function of parental gametic contribution
and their respective breeding value; thus, fertility variation is an important criterion for
assessing their genetic composition [13]. A large variation among the parental gametic
contribution of seed orchards is common and widely reported [18]. The production of
seed cones, pollen strobili, and seeds has been used to estimate fertility variation among
individuals in many plant species [48,55]. The variations in female and male fertility were
similar to the differences in the reproductive yield and CV (Tables 1 and 2), and mixed seeds
resulted in a decrease of female (Ψf) and male (Ψm) gametic fertility variations (Table 3),
and in an increase of the effective number of parents (Np) and genetic diversity (GD)
(Table 7), indicating that mixing seeds from both several clones and years could increase
the genetic diversity of the seed lots.

The sibling coefficient (Ψ) demonstrated that female fertility was relatively higher than
the male counterpart (Table 2). It has previously been reported that a greater proportion
of seed cones either abort or fail to produce viable seeds. This could be due to lack of
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fertilization [3], as was observed in a natural stand of teak and Acacia leucophloea [3,56].
Additionally, excessive reproduction from a reduced set of parents can lead to increased
offspring relatedness, leading to greater erosion of genetic diversity [57]. Thus, greater care
needs to be dedicated to monitoring parental fertility differences.

The genetic gain and genetic diversity of future forest tree populations are important
indicators of the genetic worth of seed orchards. The obsessive pursuit of the highest genetic
gain would lead to the genetic base of seed crops becoming too limited and the resulting
forest stands would lack resilience to unpredictable environmental changes [1]. In seed
orchards, the number of parents is an urgent issue to be addressed. The effective number of
parents (Np) is used to estimate the genetic diversity in real populations [9]. As the number
of effective parents increases, it may lead to an increase in breeding variation and genetic
diversity, but also to a decrease in genetic gain (Figure 3 and Table 7). Genetic drift (pollen
contamination) increases Np and GD, but at the same time leads to a reduced genetic worth
of seed orchard crops [37]. However, it is the optimal choice to balance genetic diversity
and genetic gain through the option of mixing/bulking multiple seed crops, supporting
the same conclusions as for seed orchards of other species [9,16,52]. The obtained results
from our study showed that genetic diversity of the parental population could be covered
and saturated by collecting seeds from at least 30 mother trees, consistently with results
reported for other species [58–60].

4.3. Implications for Seed Orchard Management

The success of an orchard seed production program is measured by the frequent
and abundant delivery of viable seeds. Along with environmental conditions, the final
seed yields of orchards are affected by several biological factors including pollination;
fertilization; and embryo, seed, and cone development, and also by the genetic variation of
clones. Evaluating the outcome of seed orchards requires assessing and predicting fertility
variation; however, the present study is the first that addressed the observed fertility
variation and generated information in P. orientalis seed orchard, as previous studies did
not use this information to improve the seed crop quality of an orchard, resulting in missed
opportunities. The seed crops of orchards must reflect the parental population genetic
diversity and the allelic frequencies of target traits to maintain sufficient genetic diversity in
the regenerated future forests and the successful capture of genetic gain. Fertility variation
studies of orchards paved the way for the introduction of effective seed crop management to
effectively reduce potential genetic diversity losses. These include individual parent/clone
seed-cone harvest and seed extraction, so that the parental contribution of orchards can be
effectively managed through the creation of “designer” seed crops composed of desired
parental seed proportions [10,61]. Controlling the number of effective parents can also
be used in seed orchard management to maintain a certain level of genetic diversity and
improve the genetic gain as much as possible. Additionally, where possible, mixing seeds
for several years may help enhance crops genetic diversity [22,40,62,63].

5. Conclusions

Here, we used reproductive strobili production variation (CV), fertility variation (Ψ),
and effective number of parents (Np) as tools to determine the genetic diversity and quality
of P. orientalis seed orchard crops. The results highlight the existence of fertility differences
between years, clones nested within provinces, gender, and unbalanced parental output,
leading to a potential loss of genetic diversity, and offer opportunities for upgrading their
genetic quality through proactive seed crop management activities. When the effective
number of parents (Np) was increased, the genetic diversity (GD) increased, while the
fertility variation (Ψ) and genetic gain decreased in the seed orchard. The creation of
“designer” crops by mixing seeds from individual parents or, where possible, combining
seed crops from different years and clones, was found to be the optimal choice to balance the
genetic diversity and genetic gain. Indeed, when we set the effective number of parents (Np)
to 30, the GD of the seed orchard could be maintained at more than 95%. Finally, achieving
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genetic diversity balance in seed production can be accomplished through monitoring
fertility variation in orchards and through the utilization of the generated information for
upgrading seed crops.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12111429/s1, Table S1. Statistics of male and female reproductive output in different clones.
Table S2. Coefficient of variation (CVf) and sibling coefficient (Ψf) for female cones production
in the P. orientalis clonal seed orchard (N = 5398). Table S3. Coefficient of variation (CVm) and
sibling coefficient (Ψm) for male strobili production in the P. orientalis clonal seed orchard (N = 5398).
Table S4. Maleness index of 166 clones in 2017. Figure S1. Coefficient of variation (CV) of female and
male strobili productions for different years in the P. orientalis clonal seed orchard. Different colors of
labels correspond to different provenances. Figure S2. The mean value of female and male strobili
productions for different years in the P. orientalis clonal seed orchard. Figure S3. The median value of
female and male strobili productions for different years in the P. orientalis clonal seed orchard.
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