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Abstract: Suitable soil structure and nutrient security are important for plant growth and develop-
ment. The fractal dimension of soil, along with the distribution of physical and chemical properties
and their interactions, plays an important role in studying the stability of soil structures and water
and fertilizer cycles. As a sustainable management model, intercropping has positive benefits for
erosion control, the spatial optimization of resources, and improving system productivity. The effects
of four intercropping methods on the fractal dimension and physicochemical properties of soil were
investigated by intercropping Salvia miltiorrhiza with forage and S. miltiorrhiza with forest under
typical karst rock desertification habitats in Guizhou. The results showed that the soil nutrient content
when intercropping was significantly higher than that of monoculture. The organic carbon content of
soil grown under forest is higher than other treatments, and there was a non-significant change in soil
water content when intercropping compared with monoculture. The soil fine-grained matter when
intercropping was significantly higher than that of monoculture, while the soil fractal dimension
showed a tendency to become larger with an increase in fine-grained matter. Intercropping planting,
due to its component types and spatial and temporal configurations, leads to differences in soil water
and fertilizer interactions, which can be combined with other ecological restoration measures to
optimize the composite model and jointly promote the restoration and development of ecologically
fragile areas.

Keywords: intercropping; carbon storage; soil fractal dimension; desertification; Salvia miltiorrhiza;
soil nutrients

1. Introduction

Karst rock desertification is a land degradation process that occurs in subtropical
humid and semi-humid areas, belonging to a special type of desertification [1,2]. The karst
area of southern China, centered on the Guizhou plateau, is the largest and most concen-
trated contiguous ecologically fragile karst area in the world, with an area of more than
55 × 104 km2, and it is also one of the most typical and complex karst developments with
the most abundant landscape types [3,4]. Driven by both natural factors and human activi-
ties, soil erosion, underground leakage, and the proliferation of rocky desertification areas
are frequent, resulting in problems such as poor ecosystem stability and weak resistance
to disturbance [5]. On the basis of modern technological innovation and the new concept
of green development, agricultural management systems such as intercropping, crop set,
crop rotation, forest–grain combination, forest–agriculture combination, and grain–grass
combination have been developed one after the other [6,7]. Intercropping and compound
agroforestry management is advocated by the majority of scholars, which realizes the
diversification of cropping systems and achieves a high efficiency of resource utilization,
which has various effects on preventing soil erosion, protecting biodiversity, improving soil
fertility, and protecting the ecological environment [8]. It is one of the important measures
for solving the problems of food, environmental, and economic development in countries
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or regions with relatively scarce resources [9]. The uneven distribution of agricultural
resources and environmental problems in the stone desertification areas of southwest China
are not conducive to the development of large-scale mechanical agricultural production
and operational methods, and the diverse and small habitats dominated by complex terrain
make it easier to develop intensive green agriculture [10]. Although scientific measures to
prevent and control stone desertification have been effective for a long time, the way in
which to effectively build the integrity of community structures, enhance the stability and
service function of ecosystems, balance the relationship between the ecological environ-
ment and economic development, and control stone desertification are still key to future
work [11].

The fractal dimension not only characterizes the influence of soil particle distribution
on soil structure and indicates soil quality and ecological environment [12,13], but is also
an important indicator to characterize the soil evolution process, which can be used to
evaluate and monitor the effect of ecological restoration and vegetation recovery on soil
quality and the effectiveness of stone desertification management [14]. Soil particles, as the
basic structural unit of soil, are closely related to the changes in soil structure and play an
important role in the improvement of soil aeration, permeability, adhesion, and expansion
and contraction [15]. In general, the higher the content of fine-grained material in the soil,
the more uniform the soil structure and the higher the fractal dimension [16]. There is a
significant positive correlation between the fractal dimension and soil nutrients. It is thus
an important indicator for the prevention and management of stone desertification [17]. In
this paper, the heterogeneity of soil fractal characteristics and physicochemical property dis-
tribution was used to study the influence of intercropping on soil erosion and degradation
to analyze the conservation function of intercropping in stone desertification ecosystems.
This is important for guiding the protection and restoration of stone desertification ecosys-
tems and efficient crop production in order to promote the application of agroforestry
technology and water and soil conservation in ecologically fragile areas, as well as to
provide a theoretical basis for the promotion of agroforestry compound technology and
ecological environment construction in ecologically fragile areas.

2. Materials and Methods
2.1. Overview of the Location of the Study Area

The test site is located in Shibing County, Qiandongnan Miao and Dong Autonomous
Prefecture, Guizhou Province, China (Figure 1), in the middle section of the Maoyang River
of the Yuanjiang River system in the Yangtze River basin, which is a typical dolomite karst
mountain canyon landform [18]. The geomorphic evolution in the region is a rare structural
system and evolutionary sequence of tropical and subtropical karst ascending development
in the world. It is located in the mountainous region of Qianzhong, with a large topographic
relief and an elevation in the range of 486–1869 m, and belongs to the central subtropical
monsoonal humid climate zone with warm winters and cool summers, an average annual
temperature of 16.5 ◦C, annual temperature difference of 20.2 ◦C, and annual precipitation
concentrated in the distribution of April–October. The total annual solar radiation is
9.26 × 106 Kw m−2; the lithology is thin fine-grained dolomite of the Cambrian Gaotai
Formation; and the soils are mainly black lime soils, some of which have rich gravel
content [4,5]. The climate is mild and humid, the topography is complex, and the region
is rich in rare species represented by Taxus wallichiana, Amentotaxus argotaenia, Keteleeria
pubescens, and Pseudotsuga sinensis. Agricultural production is based on Oryza sativa, Zea
mays, Nicotiana tabacum, Brassica napus, Capsicum annuum, Pseudostellaria heterophylla, and
S. miltiorrhiza.
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Figure 1. Study area and sample location information.

2.2. Experimental Design

The experiment was carried out in five planting patterns at the same latitude, longi-
tude, altitude, and slope direction (Table 1), namely (Figure 2), S. miltiorrhiza monocrop,
S. miltiorrhiza–Lolium perenne intercrop, S. miltiorrhiza–Medicago sativa intercrop, S. milti-
orrhiza–Sophora japonica intercrop, and S. miltiorrhiza–Lagerstroemia indica intercrop. Each
planting plot was 4 × 12 m, and each pattern was replicated three times. S. miltiorrhiza
was planted on 23 March 2020 using the ridge tillage method to divide the field into ridges
and furrows. Salvia was planted on the ridges, planting two rows per ridge, with a ridge
width of 70 cm, row spacing of 20 cm, and plant spacing of 30 cm. L. perenne and M. sativa
were planted on 23 March 2020, using the strip sowing method. They were planted in the
ridge furrow with four rows of forage grass planted in every other ridge of S. miltiorrhiza,
with a row spacing of 30 cm, and the seeding quantity of L. perenne and M. sativa were
15 kg/hm2. The planting time for landscape trees was advanced one year to 23 March 2019,
the planting spacing was 1.5 × 1.5 m, and the spacing between S. miltiorrhiza and landscape
trees was 30 cm. The species of S. miltiorrhiza used was from Bozhou Wanfeng Chinese
Medicine Technology Co. (Zhangdian Township, Qiaocheng District, Bozhou City, Anhui
Province, China), the L. perenne was Neptune perennial L. perenne, and the M. sativa species
was Suntory. Organic fertilizer was uniformly applied before planting, with a content of
134 kg/hm2. It is helpful to promote the formation of soil aggregate structure; coordinate
the ratio of air and water in the soil; make the soil loose; and increase the ability of water
retention, heat preservation, ventilation, and fertilizer retention. The basic physical and
chemical properties of the test site prior to the test are shown in Table 2.

Table 1. Sampling point location and information.

Treatment Longitude Latitude Altitude/m Exposition Slope Position Slope Inclination/◦

Salvia miltiorrhiza (CK) 108.0812◦ 27.0543◦ 717.08 m Sunny slope Upslope 11
Salvia miltiorrhiza—Lolium

perenne (DM) 108.0811◦ 27.0540◦ 716.88 m Sunny slope Upslope 9

Salvia miltiorrhiza—Medicago
sativa (DJ) 108.0822◦ 27.0532◦ 718.85 m Sunny slope Middle slope 7

Salvia miltiorrhiza—Sophora
japonica (DB) 108.0823◦ 27.0535◦ 719.89 m Sunny slope Upslope 7

Salvia miltiorrhiza—Lagerstroemia
indica (DH) 108.0824◦ 27.0537◦ 721.25 m Sunny slope Middle slope 5
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Table 2. The physical and chemical properties of the soil.

Treatment pH Organic Matter
Content (g/kg)

Available Nitrogen
Content (mg/kg)

Available Phosphorus
Content (mg/kg)

Salvia miltiorrhiza (CK) 6.82 23.61 164.23 40.36
Salvia miltiorrhiza—Lolium perenne (DM) 6.88 26.24 182.37 39.64
Salvia miltiorrhiza—Medicago sativa (DJ) 7.11 24.49 161.13 41.83

Salvia miltiorrhiza—Sophora japonica (DB) 7.07 23.81 172.20 43.80
Salvia miltiorrhiza—Lagerstroemia indica (DH) 6.91 23.15 190.40 46.42

nD represents the number of rows of S. miltiorrhiza single crop, 2D/4M represent two
rows of S. miltiorrhiza intercropped with four rows of forage, 2D/1T represent two rows of
S. miltiorrhiza intercropped with four rows of landscape tree.

2.3. Sample Analysis and Determination Method
2.3.1. Analysis of Soil Physical and Chemical Properties

On 24 October 2020, the S-shaped random sampling method was adopted in four
layers with sampling depths of 0–20 cm. Sampling was repeated three times; mixed;
brought back to the laboratory for natural air-drying and removal of visible plant roots and
gravels, passing through 0.15 mm and 2 mm soil sieves; and stored at room temperature.
Soil capillary water holding capacity, soil saturated water content, capillary porosity, and
relative water content were determined by ring knife method. Soil organic carbon was
determined by the potassium dichromate oxidation–external heating method, the change
in the amount of dichromate ions before and after the organic carbon was oxidized, and
the content of organic carbon (SOC) in the soil was calculated. Soil nitrate nitrogen and
ammonium nitrogen were extracted by ISO standard method with potassium chloride
solution, and the samples were measured on a continuous flow analyzer (SYSTEA, Italy)
using 550 nm and 660 nm filters on the upper machine, respectively.

2.3.2. Analysis of Soil Particles and Fractal Dimension

The structure of the soil particles was determined by the hydrometer method [19]
according to the international sand matter particle size classification standards, i.e., coarse
sand (0.2–2 mm), fine sand (0.02–0.2 mm), powder (0.002–0.02 mm), and clay (<0.002 mm),
and the volume percentage content of soil particles in each particle size range was calcu-
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lated. Soil particle fractal dimension was calculated according to the soil fractal model
characterized by the volume distribution of particle size proposed by Tyler [20].(

Ri
Rmax

)3−D
=

V(r < Ri)

VT
(1)

lg

[(
Ri

Rmax

)3−D
]
= lg

[
V(r < Ri)

VT

]
(2)

In Equation (1), r denotes the particle radius, Ri denotes the i-th particle size in the
particle size classification, V(r < Ri) denotes the percentage volume of particles smaller
than a certain particle size (Ri), VT denotes the sum of the total soil particle volume, Rmax
denotes the maximum particle size in soil particles, and D is the fractal dimension of soil
particle distribution. Both sides of the equation are taken logarithmically at the same time,
and the scatter plot is made with the left side of Equation (2) as the horizontal coordinate
and the right side of Equation (2) as the vertical coordinate. The linear regression fitting
equation and fitting coefficients are obtained according to the least squares method, and
the slope of the fitted linear regression equation is equal to (3-D) in Equation (2) so as to
obtain the soil fractal dimension (D) of each sample.

2.4. Statistics and Analysis

One-way ANOVA, LSD multiple comparisons, and principal components analysis
(PCA) were conducted using SPSS 22.0 software to analyze the significance of differences
between different intercropping patterns and soil layers in terms of soil fractal dimension,
soil particle distribution, and soil carbon and nitrogen content.

3. Results
3.1. The Change of Physical Properties of Soil by Intercropping

As shown in Figure 3, the average contents of the capillary water holding capacity,
saturated water content, capillary porosity, and relative water content of 0–20 cm soil
depth were 20.89%, 24.29%, 34.28%, and 69.39%, respectively. The saturated water content,
capillary water holding capacity, and capillary porosity content showed a decreasing trend
with increasing soil depth, but the relative water content showed an increasing trend with
increasing soil depth. Soil saturated water content was significantly different (p < 0.05)
between the intercropping treatments and CK within 0–5 cm and 10–15 cm soil layers. The
difference between DM treatment and CK treatment was not significant in the 5–10 cm
soil layer. The highest content was in the DJ treatment. In the 15–20 cm soil layer, DB
and DH treatments were not significantly different from CK. Soil relative water content
differed in different soil depth ranges. The relative soil water content of intercropping
was generally greater than that of monoculture. In the 0–5 cm soil layer, there was no
significant difference in CK between DM and DJ treatments. There was no significant
difference between DJ treatment and CK in the 5–10 cm or 10–15 cm soil layer, while in
the 15–20 cm soil layer, there was no significant difference between DB treatment and CK.
Soil capillary porosity did not vary significantly between treatments and was highest in
the DB treatment in the 0–15 cm soil depth range and in the DH treatment in the 15–20 cm
soil depth range. Non-significant differences existed between the intercropping treatments
and CK in the 0–20 cm soil depth range. Soil capillary water holding capacity was highest
in the CK treatment and lowest in the DJ treatment, and significant differences existed
between the DJ treatment and CK within the 0–5 cm soil depth (p < 0.05). There was no
significant difference between DM treatment and CK within the 5–10 cm soil layer. Within
the 10–15 cm soil layer, there were significant differences between both intercropping
treatments and CK, while there were non-significant differences between all intercropping
treatments. Within the 15–20 cm soil layer, a significant difference existed between DM
treatment and CK, with the lowest content in DM treatment.
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Figure 3. Comparison of soil physical properties with different treatments. CK: Salvia miltiorrhiza monoculture, DM: Salvia
miltiorrhiza–Lolium perenne intercropping, DJ: Salvia miltiorrhiza–Cichorium intybus intercropping, DB: Salvia miltiorrhiza–
Trifolium repens intercropping, DH: Salvia miltiorrhiza–Lolium perenne intercropping mode. Different lowercase letters
indicate significant differences (p < 0.05). Same below.

3.2. Study on the Change of Soil Carbon and Nitrogen by Intercropping

The planting pattern had a significant effect on soil organic carbon distribution
(p < 0.05). The soil organic carbon content of several cropping patterns decreased with
increasing soil depth. Intercropping treatment showed significantly higher soil organic
carbon content than monoculture treatment at all soil depths (Figure 4). In the 0–5 cm,
10–15 cm, and 15–20 cm soil layers, the DH treatment was significantly higher than the
other treatments. Each of the five cropping patterns had a significant effect on soil organic
carbon distribution (p < 0.05). Within the 5–10 cm soil layer, there was a significant effect
(p < 0.05) between the four intercropping plantings and the CK treatment, while there was
a non-significant effect (p > 0.05) on soil organic carbon distribution in the DB and DH
treatments. Soil ammonium N content showed a decreasing trend with increasing soil
depth (Figure 5), with the highest content in the DJ treatment and the lowest in the CK
treatment. In the 0–5 cm soil layer, all four intercropping treatments were significantly
higher than monoculture, among which there was a non-significant difference between
DH treatment and DB treatment (p > 0.05). In the 5–10 cm soil layer, there was a non-
significant difference between DM treatment and DB treatment (p > 0.05), while in the
10–15 cm soil layer, there was a significant effect between intercropping treatment and
monoculture treatment (p < 0.05). In the 10–15 cm soil layer, the DM and DH treatment had
non-significant effects, while each intercropping treatment had significant effects with CK
treatment (p < 0.05). Within the 15–20 cm soil layer, the soil ammonium nitrogen content
of the five cropping patterns did not vary significantly, and DB, DH, and CK treatment
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had no significant difference, but there was a significant difference with each intercropping
treatment. Soil nitrate N content was generally highest in the DJ treatment and lowest in
the CK treatment at different soil depths (Figure 5). In the 0–5 cm soil layer, five cropping
patterns were significantly different (p < 0.05). Within the 5–10 cm and 10–15 cm soil layers,
the DM treatment was not significantly different from the CK treatment (p > 0.05). In
the 15–20 cm soil layer, there was a significant difference between DJ treatment and CK
treatment, while there was a non-significant difference between DM treatment and DB
treatment (p > 0.05).
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Figure 4. Distribution changes of soil organic carbon content in different treatments.

Forests 2021, 12, x FOR PEER REVIEW 7 of 16 
 

 

DB treatment (p > 0.05), while in the 10–15 cm soil layer, there was a significant effect be-

tween intercropping treatment and monoculture treatment (p < 0.05). In the 10–15 cm soil 

layer, the DM and DH treatment had non-significant effects, while each intercropping treat-

ment had significant effects with CK treatment (p < 0.05). Within the 15–20 cm soil layer, the 

soil ammonium nitrogen content of the five cropping patterns did not vary significantly, 

and DB, DH, and CK treatment had no significant difference, but there was a significant 

difference with each intercropping treatment. Soil nitrate N content was generally highest 

in the DJ treatment and lowest in the CK treatment at different soil depths (Figure 5). In the 

0–5 cm soil layer, five cropping patterns were significantly different (p < 0.05). Within the 5–

10 cm and 10–15 cm soil layers, the DM treatment was not significantly different from the 

CK treatment (p > 0.05). In the 15–20 cm soil layer, there was a significant difference between 

DJ treatment and CK treatment, while there was a non-significant difference between DM 

treatment and DB treatment (p > 0.05). 

 

Figure 4. Distribution changes of soil organic carbon content in different treatments. 

 

Figure 5. Distribution changes of soil nitrogen in different treatments. XTD: soil nitrate nitrogen, 

ATD: soil ammonium nitrogen.  

0

4

8

12

16

20

24

S
O

C
(g

/k
g
)

Soil depth(cm)

ab

c
d

e

a
a

b c

d

a

b
c

d

e

ab

c
d

e

 CK

 DM

 DJ

 DB

 DH

0-5 5-10 10-15 15-20

0

2

4

6

8

10

A
T

D
(m

g
/k

g
)

a

b
cd cd

a

b
b

c
d

a
bc cd a ab bb

 CK
 DM
 DJ
 DB
 DH

0

2

4

6

8

10

12

14

X
T

D
(m

g
/k

g
)

Soil depth(cm)

a

b cd e

a

b c
dd

a
bbcc

a
bbc bcb

0-5 5-10 10-15 15-20

Figure 5. Distribution changes of soil nitrogen in different treatments. XTD: soil nitrate nitrogen,
ATD: soil ammonium nitrogen.

3.3. Changes in Soil Particle Composition by Intercropping

It can be seen that the soil particle composition in this study area was mainly composed
of sand grains (Figure 6), followed by powder grains, with a small proportion of clay
grains. Soil coarse sand (0.2–2 mm) and fine sand (0.02–0.2 mm) had higher contents,
55.28%–68.78% and 13.56%–18.68%, with mean contents of 61.99% and 16.28%, respectively.
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The mean percentage of soil powder grains (0.002–0.02 mm) was 13.22%. Soil clay particles
(<0.002 mm) had the lowest content with a mean value of 7.62%.
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Figure 6. Changes in the distribution of soil particles in different treatments.

The results showed that intercropping patterns had different significant effects on the
distribution of soil particle content at different depths (Figure 6). The distribution of soil
particle content in each treatment mainly showed a pattern of coarse sand > fine sand >
powder > clay particles. Soil clay content was the highest in DB treatment and the lowest
in CK treatment in different soil depth ranges, and the difference was significant (p < 0.05)
between the treatments in the 5–10 cm soil layer. In the 10–15 cm soil layer, the difference
between CK treatment and other treatments was not significant. Within the 15–20 cm soil
layer, the DM treatment was not significantly different from the other treatments. In the
distribution of soil fine sand content, DB treatment was the highest and DH treatment was
the lowest. There was no significant effect between DB treatment and other treatments
within the 0–5 cm soil layer. A significant effect (p < 0.05) existed between treatments at
5–10 cm, 10–15 cm, and 15–20 cm. The clay grain content was highest in CK treatment
and lowest in DB treatment in different soil depth ranges. In the distribution of coarse
sand soil content, each treatment had a significant effect (p < 0.05) at 5–10 cm, 10–15 cm,
and 15–20 cm, while DH treatment was not significantly different from other treatments at
0–5 cm.

3.4. The Change of Soil Fractal Dimension by Intercropping

In this study, soil fractal dimension values ranged from 2.60 to 2.77 (Figure 7). There
was a significant effect (p < 0.05) on soil fractal dimension between treatments in the 0–5 cm,
5–10 cm, and 10–15 cm soil layers. The pattern was DB > DM > DH > CK > DJ in the range
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of 0–15 cm. In the 15–20 cm soil layer, the soil fractal dimension exhibited a pattern of DB >
DM > DH > DJ > CK.
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Figure 7. Changes in soil fractal dimension in different treatments.

3.5. Changes in Soil Properties by Intercropping
3.5.1. Correlation Variation of Particle Size and Fractal Dimension

From Figure 8, it can be seen that soil clay content showed a linear positive correlation
with fractal dimension (R2 = 0.9678, r = 0.9660). The soil fractal dimension was linearly
correlated with the soil powder content (R2 = 0.9119, r = 0.9549). Soil fine sand content
showed a linear negative correlation with soil fractal dimension (R2 = 0.0304, r = −0.1744).
Soil coarse sand content showed a linear negative correlation with soil fractal dimension
(R2 = 0.8656, r = −0.9303). The best correlation was found with <0.002 mm soil particle
content. The higher the content of fine soil particles, the higher the fractal dimension and
vice versa. From Figure 8, it is apparent that <0.02 mm particle size was the critical particle
size that determined the fractal dimension of the soil in the planting pattern. The higher
the volume content of particles with a particle size of <0.02 mm, the greater the value
of the fractal dimension, and the higher the volume content of particles with a particle
size of >0.02 mm, the smaller the fractal dimension. In summary, soil volume fractal
dimension showed a significant positive correlation with the volume content of fine soil
particles (>0.02 mm) and a negative correlation with the volume content of coarse particles
(<0.02 mm). This is because the smaller the soil particles and the finer the texture, the
more difficult the formation of soil structure becomes. In addition, the finer the soil texture
becomes, the more microscopic pores increase, and the more complex the internal structure
becomes, the higher the fractal dimension [20,21].

3.5.2. Correlation Changes between Soil Physical and Chemical Properties and
Fractal Dimension

From Figure 9, it can be seen that soil fractal dimension had a significant positive
correlation with soil fine particle volume content, a significant negative correlation with
soil coarse particle content, and no correlation with soil physicochemical properties. Soil
coarse particle volume content showed a significant negative correlation with fine particle
volume content without significant correlation with soil physicochemical properties. There
was a significant correlation between soil capillary porosity and soil water content and
chemical properties, with a significant correlation between soil water content. Previous
studies have shown that soil pore structure is complex and pore space is highly variable,
whereas irregular pore morphology can enhance the soil saturated water content, increase
the total soil porosity, and improve the soil water content.



Forests 2021, 12, 1422 10 of 15Forests 2021, 12, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 8. Correlation changes between soil particle size and fractal dimension. 

3.5.2. Correlation Changes between Soil Physical and Chemical Properties and Fractal 

Dimension 

From Figure 9, it can be seen that soil fractal dimension had a significant positive 

correlation with soil fine particle volume content, a significant negative correlation with 

soil coarse particle content, and no correlation with soil physicochemical properties. Soil 

coarse particle volume content showed a significant negative correlation with fine particle 

volume content without significant correlation with soil physicochemical properties. 

There was a significant correlation between soil capillary porosity and soil water content 

and chemical properties, with a significant correlation between soil water content. Previ-

ous studies have shown that soil pore structure is complex and pore space is highly vari-

able, whereas irregular pore morphology can enhance the soil saturated water content, 

increase the total soil porosity, and improve the soil water content. 

4 5 6 7 8 9 10 11 12 13

2.60

2.62

2.64

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

10 11 12 13 14 15 16 17

2.60

2.62

2.64

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

14 15 16 17 18 19

2.60

2.62

2.64

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

54 56 58 60 62 64 66 68 70

2.60

2.62

2.64

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

S
o
il

 f
ra

ct
al

 d
im

en
si

o
n

Volume percentage of <0.002mm/%

y= 0.0258x + 2.4878

R2= 0.9678, r= 0.9660

S
o
il

 f
ra

ct
al

 d
im

en
si

o
n

Volume percentage of 0.002~0.02mm/%

y= 0.0226x + 2.386

R2= 0.9119, r= 0.9549

S
o
il

 f
ra

ct
al

 d
im

en
si

o
n

Volume percentage of 0.02~0.2mm/%

y= -0.0067x + 2.7951

R2= 0.0304, r= -0.1744

S
o
il

 f
ra

ct
al

 d
im

en
si

o
n

Volume percentage of 0.2~2mm/%

y= -0.0118x + 3.4270

R2= 0.8656, r= -0.93039

Figure 8. Correlation changes between soil particle size and fractal dimension.
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Figure 9. Correlation changes between soil physical and chemical properties and fractal dimension.
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3.5.3. Changes in Principal Component Analysis of Soil Indicators under Intercropping

Principal component analysis was used to continue the analysis of the relationship
between intercropping on soil particle composition, fractal dimension, and physicochemical
properties. Two common factors with eigenvalues <3 were extracted, and the accumulated
contribution of common factors reached 63.1%, fulfilling the requirements of principal
component analysis. As shown in Figure 10, the first principal component was strongly
correlated with soil fractal dimension, soil sand content, soil powder content, and soil clay
content. Hence, the PC1 component mainly reflects the influence of soil fractal dimension
and soil particle content with planting pattern. The PC2 component was strongly correlated
with soil capillary water holding capacity, saturated water content, capillary porosity, and
relative water content, which mainly reflect the influence of soil physical properties and
cropping patterns. Two principal components reflected the driving factors of different
cropping patterns and soil environmental changes from different aspects.
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Figure 10. Principal component analysis of soil indexes under different treatments.

4. Discussion
4.1. The Changes of Soil Particle Size and Fractal Dimension

The correlation between soil fractal dimension and percent volume of fine particles
and soil nutrients was high, which can reflect the degree of surface wind erosion and soil
structure [21,22]. The results of this study showed that the soil clay content of S. miltiorrhiza
intercropping was significantly higher than that of monoculture. The soil sand content
of S. miltiorrhiza monoculture was significantly higher than that of intercropping. The
improvement of soil structure was more significant in S. miltiorrhiza intercropped with
L. perenne compared with that intercropped with M. sativa. As L. perenne plants have
more tillers and large root systems, which save fine particulate matter from blowing and
effectively intercept atmospheric dust materials during their growth, the redistribution
of soil particle composition can be significantly different in different intercropped plant-
ings, thus indirectly affecting soil structure and nutrient characteristics [23]. There are
significant differences in the single morphological structure of the two landscape trees in
Salix intercropping, especially between the plant height and branch sparseness, such as the
juvenile greenery seedlings of Sophora japonica, a shrub form with many twisted branches
and slender twigs, and the perennial trees of Lagerstroemia indica, with well-developed,
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dense, soft, and pendulous branches and a well-developed deep root system, due to the
differences in the external structure resulting in different soil particle composition for
the deposition of dusty material to the surface in the area, resulting in differences in soil
fractal dimension at 0–20 cm soil depth under different intercropping types, as well as
some variability among different species in the same soil layer, resulting in different soil
nutrient contents. The soil fine particulate matter of intercropped Lagerstroemia indica was
significantly larger than that of intercropped Sophora japonica, indicating that the differences
in the height, crown width, branch sparseness, and root development of individual plants
caused different intercropping methods on the wind-fixing effect and soil environment
improvement ability, which affected the composition of soil particles.

4.2. Study on the Changes of Planting Pattern on the Characteristics of Soil
Physicochemical Properties

Soil water holding capacity is the ability of soil to hold and retain water, which is an
important physical property of soil. When precipitation or irrigation water enters the soil, it
will be affected by the combined effect of molecular gravity, capillary force, and gravity of
soil particles, and thus the moisture will soak, move, and be held in the soil through the soil
pores. Soil water is a key factor affecting the physiological structure and function of crops
in the karst areas [24]. Studies have shown that soil water holding capacity is related to the
nature of the soil itself [25]; it is mainly held by the adsorption of water by soil particles and
capillary forces in soil capillary pores, and therefore soil surface area and soil pore space
directly determine soil water retention [26], while soil physical and chemical properties
such as soil bulk, texture, and organic matter content mainly affect soil by influencing pore
condition and specific surface area to water holding capacity. Soil water holding capacity
is closely related to organic carbon content [27] and is influenced by factors such as soil
particle distribution and capacitance, where soil particles affect water holding capacity by
influencing pore distribution [28,29]. As can be seen from Figure 7, soil water content in
general showed a negative correlation with increasing soil particles in the same soil depth,
which decreased with increasing soil depth, showing different differential changes in soil
water content between intercropping and monoculture. Through intercropping planting
in areas with coarse soil particles in karst rocky desertification, we found that the ground
cover gradually increased, dead leaves accumulated and plant leaves were retained at
different levels, the atmospheric precipitation was effectively absorbed by plants, and the
retained water increased, thus increasing the soil water holding capacity. Ling [30] showed
that intercropping can greatly improve the soil surface cover and increase the amount
of soil root distribution, which can make the soil surface less subject to erosion by water
and wind, lead to more humus content such as organic matter and other plant residues in
the soil, and lead to higher soil water holding capacity. In this study, the saturated water
content of soil was significantly higher in monoculture than in intercrop at different soil
depths, indicating that intercrop crops have greater uptake of soil water than monoculture.
The correlation of soil water holding capacity with organic carbon and ammonium nitrogen
was significant, but not with nitrate nitrogen, indicating that soil water holding capacity of
each soil layer in the study area was mainly influenced by soil particle distribution, organic
carbon, and ammonium nitrogen factors.

Soil organic carbon content is an important indicator of soil nutrient content [31]. The
variation of its content is not only influenced by the parent soil-forming material [32], but
also closely related to planting methods, tillage practices, ground cover conditions, and
plant root distribution characteristics [33–35]. The influence of plant roots on soil organic
carbon is mainly through root penetration, entanglement, and network sequestration to
influence the physical properties of the soil, which in turn improves the soil’s resistance to
erosion, infiltration, shear capacity, and ability to contain water and nutrients [36]. In karst
areas, the soil layer is shallow and thin, some areas have coarse soil particles mainly in
sandy loam, and the density of vegetation root volume generally decreases with an increase
in soil depth, which makes soil organic carbon decrease with an increase in soil depth. In
this study, we found that the soil organic carbon content of four intercrop plantings was
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significantly higher than that of monoculture plantings. The soil organic carbon content
of intercropped landscape trees was again significantly higher than that of intercropped
forage. Cong [37] also found that the soil organic carbon content of the intercrop pattern
was significantly higher than that of monocultures. The reason for this is, in addition to the
influence of soil particles, it is likely to be related to the ground cover condition and plant
root distribution characteristics, as the intercropping pattern has a significant biomass and
yield advantage. The root biomass is significantly higher than the monoculture treatment,
and the residual carbon is easily imported to the soil through the root system [38,39]. On
the other hand, in the intercropping pattern, there will be interaction between the roots of
different crops, promoting the growth of root secretion. In the intercropping pattern, there
is an interaction between the roots of different crops, which promotes the growth of root
secretions and increases the activity of soil microorganisms, sequestering and mineralizing
the soil’s organic carbon [40].

Nitrate nitrogen can promote photosynthetic carbon assimilation and sucrose accumu-
lation in plants. It has a positive effect on stem and leaf growth and regulation of leaf aging.
Ammonium nitrogen, meanwhile, can promote the accumulation of starch in plant leaves
and improve the photosynthetic capacity of plants, but its content should be kept within a
reasonable range as too much can lead to metabolic disorders and ‘ammonium poisoning’
in plants [41,42]. In this study, the nitrate and ammonium nitrogen contents in the surface
layer (0–20 cm) of the soils of the four intercropping patterns were significantly higher
than those of monoculture, which was mainly due to the fact that nitrate and ammonium
nitrogen in the surface layer of monoculture were not easily leached by soil adsorption,
and soil nitrogen was not easily leached by intercropping due to the influence of the root
system during growth, which indicated that intercropping could not only alleviate the
rapid leaching of nitrogen from the surface layer, but also increase soil adsorption of nitro-
gen and improve soil nitrogen utilization. This indicates that intercropping can not only
alleviate the rapid loss of nitrogen from the surface layer, but also increase soil nitrogen
sorption and improve soil nitrogen utilization. In the present study, the soil nitrogen
content of M. sativa intercropped with S. miltiorrhiza was significantly higher than that of
other intercrops and monocultures, which is similar to the findings of Liu et al. [43], who
found that the soil ammonium nitrogen content of alfalfa was higher than that of other
crops. On the one hand, it may be related to the nitrogen fixation by the roots of M. sativa;
on the other hand, the soil water content of intercropped M. sativa was lower than that for
the other treatments, which reduced the leaching of nitrogen from the soil surface layer
and enhanced the mineralization, thus making the soil nitrogen content higher than that
for the other treatments.

5. Conclusions

Intercropping planting occupies an important position in the stone desertification
agroforestry ecosystem by reasonably utilizing the ecological functions of different veg-
etation and coordinating the relationship between crops and the environment. Principal
component analysis and correlation analysis showed that the impact that intercropping
had on soil water content and capillary porosity was inconsistent. The soil water content
and capillary porosity were higher when forest intercropping S. miltiorrhiza than when
forage intercropping and S. miltiorrhiza intercropping could effectively improve the soil
fine particle matter. The finer the sand content, the greater the soil fractal dimension, indi-
cating that the fractal dimension could well reflect the degree of change of soil particle size
distribution under intercropping methods. Among the four intercropping methods, the soil
fine particulate matter content was the highest in the forest intercropping of S. miltiorrhiza,
the soil carbon and nitrogen content was significantly greater when intercropping than in
monocultures, the soil total carbon content was the best in the forest intercropping, and the
soil nitrogen content was the highest in the legume forage intercropping of S. miltiorrhiza.
This study is only a preliminary study to compare the ecological effects of four kinds of
S. miltiorrhiza species under one year of compound planting growth, and it is a single
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analysis of the soil–plant relationship without the long-term dynamic change process
and the influence of other ecological measures. Therefore, we recommend combining the
physiological characteristics of different plants, reasonable selection of crop species, and
management methods and long-term monitoring. Intercropping is used as a sustainable
development tool combined with other agroforestry development models and ecological
restoration measures in order to promote the structure and function of the damaged agro-
forestry ecosystem in stone desertification, promoting ecological restoration and economic
development in stone desertification areas.
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