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Abstract: The aim of this study was to evaluate Scots pine stand degradation caused by the pollutants
emitted from Zakłądy Azotowe Puławy, one of the biggest polluters of the environment in Poland for
over 25 years (1966–1990). To assess the pollution stress in trees, we chose the dendrochronological
analysis We outlined three directions for our research: (i) the spatio-temporal distribution of the
growth response of trees to the stress associated with air pollution; (ii) the direct and indirect effects
of air pollution which may have influenced the growth response of trees; and (iii) the role of local
factors, both environmental and technological, in shaping the growth response of trees. Eight Scots
pine stands were selected for study, seven plots located in different damage zones and a reference
plot in an undamaged stand. We found that pollutant emission caused disturbances of incremental
dynamics and long-term strong reduction of growth. A significant decrease in growth was observed
for the majority of investigated trees (75%) from 1966 (start of factory) to the end of the 1990s. The
zone of destruction extended primarily in easterly and southern directions, from the pollution source,
associated with the prevailing winds of the region. At the end of the 1990s, the decreasing trend
stopped and the wider tree-rings could be observed. This situation was related to a radical reduction
in ammonia emissions and an improvement in environmental conditions. However, the growth of
damaged trees due to the weakened health condition is lower than the growth of Scots pine on the
reference plot and trees are more sensitive to stressful climatic conditions, especially to drought.

Keywords: Scots pine; tree-ring; air pollution; growth reduction; climate change; Poland

1. Introduction

Air pollution and climate change are regarded as key stressors that entail a global
threat to forest health and sustainability [1–3]. Interactions between these factors—synergistic
on the one hand and antagonistic on the other—that result in direct and indirect changes to
forest ecosystems have been described in many studies over the last few decades [4–11].
The synergistic, mutually reinforcing interaction of these factors results in a cumulative
negative impact on the metabolism and physiological processes of trees [12]. High con-
centrations of air pollutants (mainly SO2 and NO2) can damage trees directly through the
foliage and indirectly through the soil [1,3]. Typical symptoms include disturbances in
photosynthesis and stomatal conductance, shifts in carbon dioxide allocation and water
use efficiency, and leaf loss. The mechanism and effects of the impact of toxic chemicals
on the course of physiological processes in plants have been described in numerous stud-
ies [12–18]. Additionally, the deposition of pollutants influences the way in which trees
respond to other abiotic and biotic stressors, an example being increased sensitivity to
drought and pathogen attacks [19].

Global warming is causing an increase in extreme weather events, and in particular in
severe droughts—further compounded by unusually high temperatures [20]. Increasingly,
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trees are exposed to water stress which can cause physiological damage [21]. Trees weak-
ened by the deposition of contaminants and, at the same time, by unfavourable weather
conditions become predisposed to secondary stress (from insects, diseases, or fires). Interac-
tions between these factors cause a gradual reduction in tree vigour and growth, which—in
extreme cases—may lead to dieback of trees or certain species of trees and to changes in the
ecosystem [22]. According to Manion’s concept [22], air pollution can be a factor that both
predisposes forests to dieback and initiates this process. A schematic view of the integrated
impact of air pollution, climatic conditions, and pathogens is presented in Figure 1.
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Figure 1. A schematic, integrated influence of air pollution, climatic conditions, and pathogens
on trees. Explanation of the colours used in the figure: green—changes taking place in plants;
grey—changes in the soil environment; brown—a growth reaction recorded in tree rings.

Despite the significant changes that have occurred over the recent decades in the
chemistry, concentration, and geographical distribution of air pollutants (reduction in
SOX emissions by 80% and NOX emissions by 30%), the influence of these pollutants on
the structure and functioning of forest ecosystems is still visible [3,6,16,18,19,23,24]. A
significant proportion of forest ecosystems remain at risk due to the excessive deposition
of nitrogen compounds (ammonia NH3) and nitrogen oxides (NOX) [3,17,23–25].

To assess the pollution stress in trees, many biochemical, physiological, and mor-
phological methods are used [14–19,26]. Among the morphological methods, the most
common approach is tree-ring analysis [27–35]. A retrospective analysis of annual ring
widths and other tree-ring parameters (e.g., chemical composition of the wood, stable
isotopes) makes it possible to obtain information on the state of the environment at a
high time resolution. Hence, tree rings are often used to assess the long-term effects of air
pollution in the environment [29–38]. These studies have indicated that trees growing in a
polluted environment have narrower increments or, in extreme cases, do not produce any
increments in a given year [36–38].

It is commonly believed that on a global scale, the second half of the 20th century
was the period with the greatest pressure of industrial pollution on forest ecosystems
e.g., [1–3,23]. Since the 1960s, Poland has been classified as one of the countries with the
worst air pollution indicators in Central Europe. For almost forty years, significant amounts
of toxic pollutants have been emitted into the atmosphere, causing damage to forests and,
in extreme cases, resulting in the dieback of entire stands [39]. The degree of forest stand
degradation has varied spatially depending on the amount, type, and concentration of
the pollutants as well as the duration of emission, distance from the emitter, and local
orographic and climatic conditions. Most of the forest areas exposed to long-term stress
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related to environmental pollution suffered chronic damage and progressive deterioration
of tree health, sometimes resulting in death [34–40]. The most severe damage affected
forests growing in areas having a high concentration of industrial plants and subjected
to the long-term negative influence of various toxic substances. This problem has been
widely described in the literature [30,35–41].

Against this background, the rapid degradation of forest ecosystems caused by pollu-
tant emissions from one plant—the nitrogen fertiliser factory in Puławy (Zakłady Azotowe
Puławy)—was unique both in Poland and in Central Europe. The sudden interference with
the environment in the form of high concentrations of toxic substances emitted by the plant
resulted in rapid degradation of many hectares of forest within a period of several years
and in the creation of a “biological death zone.” Initially very abrupt, the changes in the
forest environment later became chronic. A more detailed description of the damage is
provided in the further sections of this paper. The degradation of the environment caused
by the operation of the nitrogen fertiliser factory in Puławy has been described in many
publications, e.g., [42–49]. However, the ecological interaction between air pollution and
the resistance of forests to the abiotic stress that comes with climate change, especially
drought, has not been examined. The role of other environmental and technological factors
that could result in such extensive degradation of the forest has not been analysed to
date, either.

Hence, in this study, we decided to expand the existing knowledge on the impact of
pollutants emitted by the fertiliser plant in Puławy on the degradation of the pine stands
growing in the surrounding area. We outlined three directions for our research: (i) the
spatio-temporal distribution of the growth response of trees to the stress associated with
air pollution; (ii) the direct and indirect effects of air pollution which may have influenced
the growth response of trees; and (iii) the role of local factors, both environmental and
technological, in shaping the growth response of trees. We set ourselves the goal of testing
the following hypotheses: (i) that the emission of pollutants had caused a long-term
reduction in the annual growth of pine, with the distribution and intensity of this reduction
varying spatially and temporally; (ii) that the extent and spatial coverage of the reduction
in the growth of pine stands can be attributed to the amount and type of pollutants, but also
to local factors, especially anemometric and habitat conditions; and (iii) that the negative
impact of pollutants on the growth response persists for a very long time and that even
after a radical reduction in emissions, the trees continue to show reduced resistance to
abiotic stress related to climate change (especially drought). To test the above hypotheses,
we chose the dendrochronological analysis methods used in previous spatial-temporal
studies on changes in the growth responses of trees growing in other industrial areas of
Poland see [34–41]. The following reasons determined the choice of pine as the species to
be studied: (i) pine is the dominant species in Poland and in the study area (accounting for
58% and 71% of forests in Poland and in the Puławy Forest District, respectively); (ii) pine
as a species is very sensitive to air pollution (exposure of needles to pollution may lead
to the decline of trees, e.g., [14,15,29–32,35,36]); and (iii) the spatial and temporal growth
responses of pine to air pollution are being analysed for other regions of Poland. The last
premise and the choice of the dendrochronological method also make it possible to use the
results of this study to obtain a geographical and historical view of the impact of industrial
pollution on the pine stands growing in Poland.

2. Study Area, Materials and Methods
2.1. Study Area
2.1.1. The Nitrogen Fertiliser Factory in Puławy

The nitrogen fertiliser factory in Puławy (Zakłady Azotowe Puławy) is located in
central-eastern Poland (51◦27′ N & 21◦58′ E), in a region with prevailing westerly winds
(Figure 2). The area had no significant air pollution prior to the launch of the factory.
The industrial plant was built on the western edge of a large forest complex, in an area
covered by oligotrophic habitats types, dominated by Scots pine, formed on sandy soils
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low in nutrients and suffering from periodical acute water deficits [45,50]. The facility was
commissioned in the autumn of 1966, and the first signs of damage to pine stands were
already observed in the early spring of 1967. In the same year, many trees died within
an area of 70 hectares [41]. The zone of forest destruction kept rapidly increasing in size:
within the next three years, an area of 500 hectares of the forest on the eastern side of the
plant was completely degraded (with all trees being dead), creating a “biological death
zone”. The extent of damage to tree stands in the remaining areas was varied, with more
than 75% of dry or severely damaged trees in the most affected zone. From 1970 onwards,
as the devastation of the environment progressed, the zones of destruction continued
to expand outwards from the fertiliser plant. Currently, severely damaged forests (with
more than 75% of trees affected) cover an area of 1200 hectares, and forests with moderate
damage (31% to 75% of trees) and minor damage (5% to 30% of trees) cover approximately
500 hectares and 7000 hectares, respectively [50]. The amount of air pollutants emitted
from the factory in the different years is shown in Figure 2 (bottom).
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Figure 2. (Top): Location of the study plots. Also marked on the map of Poland are the locations
of Polish industrial plants which emit toxic pollutants that cause damage to forests in Poland;
Explanation: red circles—nitrogen plants, blue sign- other plants or the industrial region. Information
on the impact of pollution on forests in the regions shown on the map can be found in the following
studies: 30; 35–38; 40–49. (Bottom) Emission of gaseous pollutants (SO2, NH3, NOx) from the emitters
at Zakłady Azotowe Puławy in 1970–2015.

However, in addition to emissions resulting from the normal manufacturing process,
there were also uncontrolled emissions associated with equipment failures as a result of
which toxic substances were released into the atmosphere at concentrations well in excess
of the annual average values. In the early years of the plant’s operation, the deposition
of pollutants reached 1000–1200 kg ha−1 yr−1 (42,46,48,51). Beginning in the early 1990s,
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pollutant emissions began to decrease gradually as a result of modernisation, with a radical
decrease—especially in the amount of ammonia—taking place in 1995. In 2014, there was a
further reduction in pollutant emissions. The current level of emissions is 15% of the value
recorded at the beginning of the plant’s operation [51].

2.1.2. Climatic Conditions

The meteorological data used in this study—originating from the Puławy Meteoro-
logical Station—was acquired courtesy of the Polish Institute of Meteorology and Water
Management (IMGW-PIB). The monthly average air temperatures, monthly precipitation
totals and monthly average wind speed and direction values for 1951–2015 were used to
determine the climate characteristics.

The 1951–2015 period was characterised by an annual average temperature of ap-
proximately 8.2 ◦C (with data points ranging from 6.1 to 10.2 ◦C) and a mean annual
precipitation total of around 572 mm (with data points ranging from 403 to 797 mm per
year). The growing season (GS) began in April and lasted until the end of October. The
average GS air temperature was 14.0 ◦C (with data points ranging from 12.4 to 15.3 ◦C),
and the mean precipitation total in this period was 368 mm (with data points ranging from
207 to 570 mm). The lowest level of precipitation was observed between the mid-1980s and
mid-1990s and in the first decade of the 21st century. The wind conditions in the region
were characterised by a relatively low average wind speed (2.1 m/s) and a high frequency
of calm periods, especially between June and September. The dominant wind directions
were north-west and south (Figure 3).
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Within the research area, climate change mainly manifested itself in an increase in air
temperature (Figure 3). In the years 1951–2015, a statistically significant increase in the
annual average air temperature (0.26 ◦C per 10 years) and the average temperatures in the
winter months (December to February), in spring (March) and in summer (June to August)
was recorded in the study area. The greatest increase in air temperature was recorded
for March, February and January (0.512, 0.49 and 0.33 ◦C over 10 years, respectively).
In the case of precipitation, the changes were not statistically significant; there was a
slight upward trend in the total annual rainfall with a negative trend in summer rainfall,
especially in June and August.

2.2. Research Materials and Methods
2.2.1. Study Plots and Sample Acquisition

Eight Scots pine stands were selected for the study: seven plots located in different
damage zones and a reference plot in an undamaged stand (Figure 2). When selecting the
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plots, we applied the following criteria: (i) all stands under study must be growing in the
same habitat; (ii) the stands must be of similar age; (iii) the stands must be growing in dif-
ferent damage zones; and (iv) the stands must be located in different compass directions in
relation to the emitter. The first two criteria made it possible to largely eliminate the impact
of habitat and age, whereas the third and fourth criteria allowed us to determine the tempo-
ral and spatial distribution of the growth reduction and the influence of wind direction on
the degree of that reduction. All the stands under study represented an oligotrophic mixed
coniferous forest habitat and were about 120 to 130 years old (Supplementary Material,
Table S1). At each site, 20 trees were sampled with a Pressler increment borer at breast
height, one core per tree. The sampling was performed at the end of the 2015 growing
season (in November). In total, we collected cores from 160 pines growing at different
distances and in different compass directions from the factory. The cores were prepared
for measurement using standard dendrochronological procedures [52,53]. The samples
were dried, placed in wooden mounts and sanded with progressively finer abrasive paper
(80, 120, 180, 240 and 400 grit).

2.2.2. Data Analyses

The sanded core samples were scanned at a resolution of 2400 dpi using a standard
scanner (EPSON Expression 10,000XL). Tree-ring widths were measured to the nearest
0.01 mm using Coo Recorder software [54], and individual growth sequences were created
for each tree. Cross-matching checks were performed using the COFECHA program [55].
Then, TRW chronologies (raw and residual) were produced for each test site using the
ARSTAN program [56]. The residual chronologies were obtained from double detrending
(using a negative exponential curve followed by a cubic spline function with a rigidity
of 64 years and 50% frequency cut-off); autoregressive modelling was also applied [53].
The homogeneity of the growth reactions and the strength of the environmental signal in
the chronologies were estimated using the expressed population signal (EPS), correlation
coefficient, GLK (Gleichläufigkeit) coefficient and t values between all pairs of series
included in the chronology [52,53,57]. The following statistics were used to characterise the
site chronologies (raw and residual): mean value, measures of variability, mean sensitivity,
and autocorrelation [52,53]. These statistics have been calculated for three periods: a period
before starting factory (1931–1966); a period of extremely high air pollution (1967–1995)
and a period with a decrease in the emission of ammonia and a gradual decrease in air
pollution (1996–2015). The Kruskal–Wallis test was used to determine the significance of
differences between the respective research and control plots [58].

The Schweingruber method [59] was used to evaluate the impact of air pollution on
the pine stands under study. This method relies on the analysis of characteristic years
and abrupt changes in tree-ring width. The abrupt changes reflect major shifts in eco-
physiological conditions that lead to the stimulation or inhibition of cambial activity over
several successive years [59]. By using this method, it is possible to determine the exact
onset and duration of abrupt changes in tree-ring width. With this method, the duration
and degree of TRW reductions are calculated from the ratio of the sum of the reduced ring
widths to the sum of the ring widths from the period preceding the reduction. The size of
the reduction is classified as follows: RI (30–50%)—low reduction; RII (50–70%)—strong
reduction; and RIII (above 70%)—very strong reduction. This research methodology has
been successfully used in numerous studies on the impact of industrial emissions on forest
stands in Poland [30,35,36,40,41]. The reduction in annual ring width was determined for
each sample using the Quercus program [60]. This was done by comparing the dendrogram
of each individual sample with the chronology developed for the reference site (plot no. 8).

The climate–growth relationships were investigated by calculating bootstrapped mul-
tivariate response functions between residual chronology and climate variables: monthly
average air temperatures and monthly precipitation totals [52,53]. Response function anal-
ysis is a correlation and multiple regression model that links growth indices (as dependent
variables) with climate parameters (as explanatory variables). The analyses were performed
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with reference to each study plot for the period spanning from June of the year preceding
ring formation to September of the year of the current growth (16 months in total) using
DendroClim2002 software [61]. The significance of the correlations was determined at p
= 0.05. The climate data originated from the meteorological station in Puławy (see 2.1.2).
Taking note of reports in the literature that the deposition of pollutants may potentially
be a factor in the varying sensitivity of pine to climatic conditions [31,38], we performed
dendroclimatic analyses for all plots separately for three periods: 1931–1966 (a period
of 35 years before the commissioning of the factory); 1967–1995 (a period of 30 years of
extremely high air pollution) and 1996–2015 (with a decrease in the emission of ammonia
and a gradual decrease in air pollution from 1995 onwards) (Figure 4).
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Figure 4. Illustration of a zone with reduced radial growth (sample taken from a pine growing on
the 1st plot).

3. Results and Discussion

Our dendrochronological analyses have indicated the existence of significant and
prolonged reductions in the annual ring widths of the Scots pine trees growing in all the
forest stands under study (Figure 5). This points to a persistent, chronic decline in the
vitality of the trees being examined. The decline began in the late 1960s, following the
commissioning of the nitrogen fertiliser plant, which is when the pollutant emissions began.
Reductions occurred in a majority of the trees under study (Table 1), although they were
differentiated spatially and temporally.
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missioning of the nitrogen fertiliser plant, which is when the pollutant emissions began. Reductions
occurred in a majority of the trees under study (Table 1), although they were differentiated spatially
and temporally.
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Table 1. Characteristics of tree-ring chronologies, and results of calculation of growth changes under
influence of air pollution from the nitrogen fertilizer factory in Puławy.

Plots
% of Absent

Rings
% Trees with

Reduction > 30%

Average Tree Ring Width a Period [index]

1931–1965 1966–1995 1996–2015

P1 5.7 66.7 1.14 0.72 0.89

P2 9.1 89.7 1.22 0.61 0.71

P3 6.7 76.9 1.2 0.66 0.82

P4 10.1 88.1 1.18 0.72 0.85

P5 3.9 62.5 1.04 0.8 0.96

P6 4.1 66.5 1.15 0.71 0.96

P7 1.7 41.2 1.00 0.85 0.97

P8-Reference 0.9 0 1.03 1.01 1.01

The most rapid and severe response to the pollution and the most pronounced reduc-
tion in growth (and thus decline in vitality) occurred within a radius of 3 km from the plant
(plots 1 through 4) (Figure 6). In this zone, the share of trees with reduced growth was
as high as 88%–89%. The ring width reductions occurred abruptly in the first two years
after the commissioning of the plant and persisted over an extended period of time (more
than 30 years); they were not directly linked to the prevailing wind directions. In plots
1 through 3, the reductions in growth persisted until around 1995 and were followed by an
increase in growth. Then, after 2003, there occurred another growth reduction, although
less pronounced. In plot 4, the reduction in growth began in 1968 and was still visible in
2015 (Figure 6).

Figure 6. Reductions in the radial growth of the Scots pines growing in the vicinity of Zakłady
Azotowe Puławy (selected plots). Explanation of markings: Brown lines—pine chronologies on
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research plots, green line pine growth on the reference plot. Red horizontal arrows indicate the period
of word reduction on surfaces located in the zone up to 3 km from the factory, blue arrows indicate
the period of reduction in rings on surfaces located further from the factory. Vertical green lines
indicate which the period to be taken into account when calculating the rate of growth reduction,
reduction, following the Schweingruber method [59], e.g., diagram P1—the reduction period lasts
from 1967 to 1995 (28 years), hence the preceding period 1938–1966 was used for the calculation of
the reduction rate. See explanation in the text, methods section.

The spatial and temporal distribution of the growth reduction between the different
study plots is shown in Figures 7 and 8. This distribution points to a clear relationship
between the size of the reduction on the one part and the distance from the emitter and
the prevailing wind direction on the other. Within a radius of 3 km from the source of the
emissions, reductions in growth occurred almost simultaneously in a majority of the trees
being studied (66.7% to 88.1%); the reductions lasted for many years and were strong or
very strong (above 50%). The largest share of trees showing a very strong reduction in
growth (above 70%) could be found in plot 2, which is located approximately 2.5 km east
of the emitter, whereas the pines growing in the northern part of the zone (plot 1) showed
a lesser degree of reduction. In the stands located further away from the emitter, the
extent of damage to the trees generally decreased with distance from the emitter. However,
trees growing in stands located in the prevailing downwind direction were affected more
severely than those growing at a similar distance from the factory but located to the north
of it (Figure 7).
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In comparison with forest complexes growing near other nitrogen factories in Poland,
the reductions in tree-ring width and the damage to pine stands in Puławy were much
greater [30,62]. A similar degree of damage can be observed in forests growing in Silesia,
which is the most polluted region of Poland. There, however, the negative effect of air pol-
lution was more prolonged and the amount of pollution was significantly greater [36,63,64].
For that reason, we decided to search for an answer to the question of what other factors—
apart from the excessive emissions of toxic substances—could have caused such reductions
in growth and determined their spatial distribution.

We believe that the severe damage to the stands growing around the nitrogen factory
in Puławy might have resulted from the synergistic influence of three factors: the emission
of toxic substances, the relatively low height of the exhaust stacks that emit nitrogen
compounds and the anemometric conditions that prevail in the region (Figure 9). The
concentrations of gaseous pollutants are inversely proportional to the height of the emitter.
Toxic nitrogen compounds were emitted from six stacks with a height of 47 m (ammonium
nitrate) and five stacks with a height of 30 m (gaseous ammonia) [47]. Some of the nitrogen
compounds also permeated into the atmosphere from the surface of industrial effluent
tanks. The excessive emissions of nitrogen-based pollutants from the relatively low stacks
under low wind speed conditions (with an average wind speed of 2.1 m/s) and the
frequent periods of lull, especially in summer, resulted in the formation of particularly
high concentrations of various pollutants near the factory itself (Figure 10). Consequently,
the stands located in the immediate vicinity of the factory suffered the greatest amount of
damage, regardless of their location in relation to the prevailing wind direction. Sulphur
dioxide was emitted from a 160 metre-tall exhaust stack, which resulted in lower SO2 levels
in the vicinity of the nitrogen fertiliser factory itself, but the pollutants were transported
over distances of up to 120 km (Figure 10). Therefore, one could conclude that the toxic
nitrogen compounds (especially ammonia) were the main factors behind the degradation
of the pine stands around Zakłady Azotowe Puławy.
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In our opinion, this degradation—as recorded in the annual rings in the form of an
abrupt and prolonged reduction in radial growth—is the result of both direct and indirect
effects of toxic nitrogen compounds on the entire forest ecosystem. Our concept of this
impact is shown in Figure 11. The sudden introduction of very high concentrations of nitro-
gen compounds into the forest environment caused a rapid, excessive toxic accumulation
of nitrogen in pine needles, thus disturbing metabolic processes, causing a failure of the
assimilation apparatus and death of apices, and ultimately leading to the dieback of some
of the trees [43,44]. This, in turn, resulted in decreased stand density. In some of the pines,
the dieback of needles and shoots caused a thinning of the crown. This permitted greater
penetration of toxic pollutants and increased deposition of toxins on the needles, which
was an ongoing process. At the same time, the decrease in stand density and the thinning
of the crown allowed more sunlight to penetrate to the forest floor, causing changes in
the microclimate—in particular by increasing the difference between the maximum and
minimum air temperature. This entailed an increase in potential evaporation, decrease in
mean air moisture level, increase in soil temperature, drying up of the soil, extension of the
drought period and increase in water deficit [65].
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Figure 11. Concept of the direct and indirect impact of air pollution on the growth of the Scots pine
stands under study. Explanation of the colours used in the figure: green—changes taking place
in pine trees; blue—changes in the microclimate and water available; brown—changes in the soil
environment; red—changes in vitality of Scots pine.

Very high concentrations of nitrogen compounds resulted in a sudden enrichment of
the soil with excess nitrogen, which—as a consequence—caused an intensive transforma-
tion of the soil environment [46–48]. Prior to the construction of the factory, the soils in the
area had generally been poor and characterised by periodic deficits of water and certain
nutrients, especially nitrogen. The dieback of pine needles and shoots resulted in more
sunlight penetrating to the forest floor, which—combined with a transitory increase in soil
fertility—enabled extensive development of the undergrowth as well as bushes and birch
and oak trees [42,46,47]. Changes to the composition of plant communities contributed to
a rapid depletion of nutrients and an increase in water deficit. This was accompanied by
changes to soil fauna and microbes and a reduction in the microbial activity of the soil [46].

Changes in the pine forest stands, microclimate and soil environment resulted in
continuous deterioration of pine tree growth conditions, long-term chronic stress, a decline
in vitality and decrease in resistance to biotic and abiotic factors. Interestingly, unlike the
Scots pine, the emission from the nitrogen fertiliser factory in Puławy had a beneficial effect
on oak and larches trees growing in the experimental Forest Range Ruda in Puławy (ca
3 km from factory), [66]. In the case of larch, an increase in the width of the annual rings
was observed during the first decades of exposure to pollution, while oak increased its
growth throughout the pollution period. According to Karolewski et al. [66], it is related
both to the lower sensitivity of these trees to pollution than Scots pine, as well as to the
fertilizing effect of nitrogen compounds.

As noted in the literature, pine trees weakened by air pollution are very often colonised
by pests [22]. However, as the pest threat to the pine stands under study had been relatively
low from the 1970s onwards [4,5], the impact of pests could not be investigated.

In regards to the climate, the question is whether the damaged trees are in fact more
sensitive to climatic conditions.

A response function analysis performed for the 1951–2015 period showed that the
main determinants of growth in the pines under study were temperature conditions in
winter and early spring and precipitation in summer (Figure 12A). The above-average air
temperatures of the January–March period contributed to the production of wide annual
rings in the next growing season. Another factor that determined the trees’ good health
and the production of wide annual rings was the supply of water in June–August, that
is during the period of greatest cambial activity in pine [31]. Droughts in that period
were a strong inhibitor of growth. The dominant role of late-winter and early-spring
temperatures in the development of annual rings in pine has also been noted by other



Forests 2021, 12, 1421 13 of 17

authors [34,49,62–64,67,68]. The existing body of research confirms the existence of a
common climate signal for Central Europe that differentiates the growth rhythm of this
species [67]. As winter ends and daylight lengthens, pine loses its frost resistance and
becomes sensitive to low temperatures. The freezing of needles, branches and trunks
(resulting in frost damage), the drying-off caused by cold winds and the mechanical
damage from snow all contribute to the deterioration of the trees’ health and reduction in
growth dynamics during the next growing season.
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Figure 12. Climate—growth relationships for Scots pine growing on study plots. (A)—Results of
correlation and response analyses for index pine chronologies from study plots (the values of correla-
tion coefficients in Supplementary Material Figure S2); (B)—correlation coefficients between index
chronologies, and winter temperature and summer precipitations, for different period; (C)—Tree-ring
width of Scots pines growing on research plots (plots 1–4) in %TRW of Scots pine growing on reference
plot, only years with extreme drought.

Analyses performed for shorter time periods—covering the years prior to the com-
missioning of the plant (1931–1965), the years of increased emission of airborne pollu-
tants (1966–1995) and the years of successive reduction in toxic emissions (1996–2015)—
demonstrated that the impact of climatic conditions on pine growth was similar in trend
for all plots, but differences between the plots in terms of the strength of linkages began
appearing in the late 1960s. Interestingly the correlation coefficient between TRW and
mean air temperature of winter months decreases over time in the reference plot, while
that with summer precipitation increases, witnessing the ongoing climate change with
milder winters and drier summers (12B). Pines exposed to toxic pollutants were more
vulnerable to cold winters and prolonged summer droughts. The reduction in industrial
emissions and improvement of environmental conditions in the last decade of the 20th
century resulted in the formation of wider annual rings.

Nevertheless, the trees are still weakened: they show reduced immunity to cli-
matic stress and are more sensitive to adverse weather conditions, especially drought
(Figure 12C). Similar observations concerning pine stands have been made by Oleksyn [69],
Augustiastis [70,71], Vacek [26] and Putalova [34]. Furthermore, Vacek [26] demonstrated
that the most severe damage can be attributed to the synergistic interaction between
chemical stress and climatic stress, in particular in connection with a severe drought.

4. Conclusions

The extent and spatial coverage of forest ecosystem degradation in the Puławy area
can be attributed to the amount and type of pollutants and to a number of local factors,
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especially the anemometric and habitat conditions and the height of the exhaust stacks
(Figure 13). The high frequency of periods of lull combined with the low height of the
stacks emitting the toxic pollutants multiplied the negative effects of the emissions. A
radical reduction in pollutant emissions improved the environmental conditions, enabling
the tress to grow once again, but the prolonged period of strong anthropopressure caused
a long-term reduction in the trees’ resistance to abiotic factors. Our research indicates that
in areas with prolonged exposure to a high concentration of pollutants, the adverse impact
of pollution on forests persists for a very long time and may be observed even 20 years
after a radical reduction in emissions. These forests have reduced resistance to abiotic
stress related to climate change, especially drought. Therefore, a greater impact of climate
change—and in particular of extreme events—on the dieback of the trees growing in areas
with strong anthropopressure can be expected.
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49. Kalbarczyk, R.; Ziemiańska, M.; Nieróbca, A.; Dobrzańska, J. The impact of climate change and strong anthropopressure on the
annual growth of Scots Pine (Pinus sylvestris L.) wood growing in Eastern Poland. Forests 2018, 9, 661. [CrossRef]

50. Habitat Elaborat for Puławy Forest District. BULiGL Lublin, Poland. Unpublished work. 2017. (In Polish)
51. Grupa Azoty Zakłady Azotowe “Puławy” S.A. Emissions of Pollutants into the Air in the Years 1970—2015. Unpublished work.

(In Polish)
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