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Abstract: Stem taper function is an important concept in forest growth and yield modeling, and forest
management. However, the additivity of the function and the inherent correlations between stem com-
ponents (diameter outside bark—dob, diameter inside bark—dib, and double-bark thickness—dbt)
are seldom considered. In this paper, a total disaggregation model (TDM) structure was developed
based on the well-known Kozak (2004) model to ensure the additivity of the stem components.
The reconstructed model was fitted with the data of 1281 felled Dahurian larch trees from three
regions of Daxing’anling Mountains in Northeast China. The results from TDM were compared
with other additive model structures including adjustment in proportion (AP), non-additive taper
models (NAM), and three logical structures of NSUR (AMO, SMI, SMB). The results showed that
the difference was significant among the three regions. The performance of TDM was slightly better
than those of other model structures. Therefore, TDM was considered as another optimal additive
system to estimate stem, bark thickness, and volume predicting for Dahurian larch in Northeast
China besides NSUR, a method widely used in calculating additive volume or biomass throughout
the world. We believe this work is cutting-edge, and that this methodology can be applied to other
tree species.

Keywords: additive system; stem taper; bark thickness; Dahurian larch

1. Introduction

The diameter outside bark (dob), inside bark (dib), and bark thickness are crucial
measurements in forestry. In particular, dib is used to calculate the wood volume of logs
and trees, and is usually measured by subtracting the bark thickness from the dob, whose
accuracy mainly depends on the precise estimation of the bark thickness and dob. Incorrect
estimation of bark thickness may lead to an inaccurate estimation of bark volume and stand
volume in forest inventory, increment study or the log trade [1]. In recent years, accurate
predictions of bark products have become a matter of interest for forest managers [2–5]. The
utility of bark has transformed from unnecessary residue to high-value biomass energy [6].
In addition, the value of bark volume has been growing progressively, as it can be used to
estimate biomass and quantify carbon stocks [7]. Therefore, new bark thickness models are
being developed, and their importance has been gradually recognized by forestry scholars.

Previously, model researchers usually considered the dob, dib or bark thickness
separately, and often neglected the inherent correlations among them, even if the accuracy
of a single model was very high. Recently, many scholars have solved the additive problem
by constructing additive models in forestry, such as additive volume, biomass or crown
width equations [8–13]. In this study, we used the stem taper function to construct additive
models for dob, dib and bark thickness. Through stem taper function, were able to quantify
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and estimate the whole stem volume, single log volumes of any length, merchantable
height in response to any diameter or from any stump height, and diameter inside/outside
bark at any point of the stem [14]. Numerous taper functions have been evaluated for
a wide range of tree species in different regions. In most cases, they were referenced to
dbh, total height, and height from the stump to predict the diameter inside bark [15–17],
and the diameter outside bark [18–21]. The bark thickness was rarely predicted in these
studies [22,23].

In forestry, four methods are often used for forcing additivity of a set of the nonlinear
models. These models include adjustment in proportion (AP), OLS with separating regres-
sion (OLSSR), nonlinear seemingly unrelated regression (NSUR), and total disaggregation
method (TDM) [24–31]. The AP method directly partitions the total dob of a tree into
two stem components—dib and double-bark thickness (dbt) by weighting, where dob,
dib and dbt are estimated by OLS first. NSUR, known as a joint-generalized least square
regression, proposed in the 1980s, is more flexible than AP and OLSSR [24,25], and has
been widely used in additive volume or biomass equations throughout the world [32–34].
However, TDM is the best way to reflect the inherent correlations among stem components,
integrating the advantages of NSUR and AP, which is also confirmed in the study.

In our study, data of 1281 harvested trees were used to establish an optimal additive
system of bark thickness and stem taper (TDM) for Dahurian larch in Northeast China.
The newly built system was also compared to other model structures. The additive system
of stem taper was shown to provide consistent stem volume estimates for Dahurian larch
with or without bark, and that the system would feasibly be a reliable method for scientific
forest management.

2. Materials and Methods
2.1. Study Area and Data Collection

The study site is located to the north of Daxing’anling Mountains in the Heilongjiang
and Inner Mongolia provinces of Northeast China (from 50◦04′ N to 53◦32′ N and from
121◦50′ E to 127◦00′ E). This region covers an area of 84,600 km2 and is among the main
areas producing high-quality wood in China. The natural secondary forest of Dahurian
larch (Larix gmelinii) is the major forest type here. Elevation ranges from 400 to 1000 m,
with a continental climate. The average annual precipitation is from 360 to 550 mm, of
which 80% occurs in the summer. The average annual temperature ranges from −1.2 to
−5.6 ◦C. The study area was assigned to three distinct regions [35]. The northwest and
the southeast of the northern slope of Yilehuli Mountain are designated as regions one
and two, respectively. The eastern slope of the northern part of Daxing’anling Mountain is
described as region three (Figure 1).

The data used in this study were collected from 1281 felled Dahurian larch trees.
Before felling, diameter at breast height (D, 1.3 m) was measured to the nearest 0.1 cm for
each tree. The trees were then felled and total height (H) was measured to the nearest 0.1 m.
The diameters over bark (dob) were measured at heights (h) 2, 4, 6, 8, 10, 15, 20, 30, 40, 50,
60, 70, 80, and 90% of total height, averaging 14 sections per tree (Table 1). Bark thickness
was taken with the bark gauge at each relative height. The diameter inside bark (dib) was
estimated with the formula: dib = dob − dbt, where dbt is double-bark thickness.

The data of the three regions were combined and randomly divided into two groups:
964 trees (75%) for model fitting and 317 trees (25%) for model validation. Summary
statistics for diameter at breast height and total height of sampled trees are provided in
Table 1.
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Table 1. Descriptive statistics for Dahurian larch sample trees in Daxing’anling.

Group Variables N Mean SD Min. Max.

Fitting data

Region
One

D (cm) 239 22.55 10.70 5.1 62.0
H (m) 239 16.88 4.37 4.5 25.9

Region
Two

D (cm) 282 26.61 13.08 5.2 63.4
H (m) 282 17.52 5.14 5.1 29.5

Region
Three

D (cm) 443 26.17 13.18 5.4 61.0
H (m) 443 18.45 5.19 6.4 30.8

Validation data

Region
One

D (cm) 81 23.16 12.30 5.5 50.2
H (m) 81 16.64 4.89 5.0 24.7

Region
Two

D (cm) 94 26.74 13.83 5.4 59.0
H (m) 94 17.14 5.31 5.3 26.5

Region
Three

D (cm) 142 26.36 13.21 5.5 54.6
H(m) 142 18.49 5.13 7.5 28.8

Note: N, number of trees; SD, standard deviation; Min., minimum; Max., maximum.

2.2. Base Model

To date, the stem taper function of Kozak [14] has performed well in several stem
taper studies around the world [18,20,36–40]. Therefore, we selected this variable exponent
function to model the stem taper in this study:

d = b1Db2 Hb3 QK (1)

K = b4T4 + b5

(
1
e

) D
H
+ b6Qm +

b7

D
+ b8H1−T

1
3 + b9Q

where d is stem taper; D is the diameter at breast height; H is total height; T = h/H, h is the
height from the stump to any given height; m and bi are parameters, and m = 0.1;

Q =
1− T1/3

1− (1.3/H)1/3
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For Equation (1), the stem taper function of Kozak [14], various simplified forms can
be generated by modifying some independent variables. Such modification can improve
the model fitting precision and decrease the multicollinearity of complex models with
many correlated variables. Initial model fitting results showed that Equation (1) could be
simplified by removing the Hb3 term, and the achieved model provided better fitting and
lower multicollinearity for modeling dob and dib. Removal of the b4T4 and b7

D terms from
Equation (1) further improved the fitting precision for dbt. The final modified forms are
as follows:

Ydob = fdob(x, b) = b1Db2 QKdob + εdob (2)

Kdob = b3T4 + b4

(
1
e

) D
H
+ b5Qm + b6/D + b7H1−T

1
3 + b8Q

Ydib = fdib(x, b) = b1Db2 QKdib + εdib (3)

Kdib = b3T4 + b4

(
1
e

) D
H
+ b5Qm + b6/D + b7H1−T

1
3 + b8Q

Ydbt = fdbt(x, b) = b1Db2 QKdbt + εdbt (4)

Kdbt = b3

(
1
e

) D
H
+ b4Qm + b5H1−T1/3

+ b6Q

where Ydob and Ydib is the stem taper of dob and dib, Ydbt is the double-bark thickness of
dbt, εdob, εdib, εdbt is an error term of dob, dib and dbt. Other parameters are the same as
aforementioned.

We introduced a dummy variable r to account for stem taper difference of three regions
(i.e., r1 = 1 and r2 = 0 for region one; r1 = 0 and r2 = 1 for region two; r1 = 0 and r2 = 0 for
region three). After imposing r on bi, models (2)–(4) take the following forms:

Ydob = fdob(x, r, b) = b1D(b2+λ1r2)QKdob + εdob (5)

Kdob = (b3 + λ2r1 + λ3r2)T4 + b4

(
1
e

) D
H
+ b5Qm + b6/D + b7H1−T1/3

+ b8Q

Ydib = fdib(x, r, b) = b1Db2 QKdib + εdib (6)

Kdib = (b3 + λ1r1 + λ2r2)T4 + b4

(
1
e

) D
H

+ (b5 + λ3r2)Qm + b6/D + b7H1−T1/3
+ b8Q

Ydbt = fdbt(x, r, b) = b1D(b2+λ1r1)QKdbt + εdbt (7)

Kdbt = b3

(
1
e

) D
H
+ (b4 + λ2r1)Qm + (b5 + λ3r1 + λ4r2)H1−T1/3

+ (b6 + λ5r1)Q

where λi are the parameters of dummy variables. Other parameters are the same as
mentioned above.

2.3. Total Disaggregation Method (TDM)

Tang et al. [26] proposed an additive method, disaggregation model structure. As
proposed, a total model was first developed, and the estimated total model was disaggre-
gated into components based on their proportions in the total model. The essence of this
method is also NSUR. In this paper, the dob was a total model with the components of dib
and dbt. This approach ensured that the sum of values of two components was equal to
dob, satisfying the additive property between the total and components. The models are
as follows:
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Ŷdob = fdob(x, r, b) + εdob

Ŷdib = fdib(x,r, b)
fdib(x,r, b)+ fdbt(x, r,b) × fdob(x, r, b) + εdib

Ŷdbt =
fdbt(x, r,b)

fdib(x,r, b)+ fdbt(x, r,b) × fdob(x, r, b) + εdbt

(8)

Based on the above model, the dob was separately fitted by nonlinear OLS. The dib
and dbt were estimated by disaggregating the total model into components based on
their proportions, through deducing and combining like terms, respectively, and using the
NSUR method. The formulas took the following forms:

Ŷdob = b1D(b2+λ1r2)QKdob + εdob

Ŷdib = Ŷdob/
(

1 + b1D(b2+λ1r1)QKdib
)
+ εdib

Ŷdbt = Ŷdob/
(

1 + 1
b1

D(−b2−λ1r1)QKdbt
)
+ εdbt

(9)

Kdob = (b3 + λ2r1 + λ3r2)T4 + b4

(
1
e

) D
H
+ b5Qm + b6/D + b7H1−T1/3

+ b8Q

Kdib = (b3 + λ2r1 + λ3r2)T4 + b4

(
1
e

) D
H
+
(

b5 + λ4r1 + λ5r2)Qm + b6/D + (b7 + λ6r1 + λ7r2)H1−T1/3
+ (b8 + λ8r1

)
Q

Kdbt = −(b3 + λ2r1 + λ3r2)T4 − b4

(
1
e

) D
H
−
(

b5 + λ4r1 + λ5r2)Qm − b6/D− (b7 + λ6r1 + λ7r2)H1−T1/3 − (b8 + λ8r1

)
Q

where parameters are the same as described before.

2.4. Adjustment in Proportion (AP)

Adjustment in proportion method is another additive method proposed by Tang
et al. [26], which ensures that the sum of values of trees components is equal to dob. For
example, when an indicator variable r was considered, base models (5)–(7) were separately
fitted by nonlinear OLS for dob, dib and dbt. There are many similarities between AP and
TDM. We made a comparison, firstly, and chose the best method to compare with other
model structures. The estimates of dib and dbt were calculated as follows:

Ŷdob = fdob

(
x, r, b̂dob

)
+ εdob

Ŷdib =
fdib(x,r,b̂dib)

fdib(x,r,b̂dib)+ fdbt(x, r,b̂dbt)
× fdob

(
x, r, b̂dob

)
+ εdib

Ŷdbt =
fdbt(x, r,b̂dbt)

fdib(x,r,b̂dib)+ fdbt(x, r,b̂dbt)
× fdob

(
x, r, b̂dob

)
+ εdbt

(10)

where Ŷdob, Ŷdib, Ŷdbt are estimates of Ydob, Ydib, Ydbt, respectively. b̂dob, b̂dib, b̂dbt are
estimates of the parameter vectors obtained by fitting models (5)–(7) for dob, dib and
dbt, respectively.

2.5. Other Model Structures to Compare
2.5.1. Non-Additive Taper Models (NAM)

The dib taper and dbt were separately fitted by OLS, and dob taper estimation was
obtained by adding the two components.

Ydob = fdib(x, r, b) + fdbt(x, r, b) + εdob (11)

2.5.2. Additive Taper Models with Dob Constraint (AMO)

Following the model structure, total amount control method as specified by Par-
resol [25], the dib taper function and dbt with NSUR approach were constrained to equal
the dob taper equation as follows:
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Ydib = fdib(x, r, b) + εdib
Ydbt = fdbt(x, r, b) + εdbt
Ydob = fdib(x, r, b) + fdbt(x, r, b) + εdob

(12)

2.5.3. Subtraction Taper Models with Dib Constraint (SMI)

First logistic transformation of the total amount control method, the dib taper equation
had the difference of simultaneous estimations of dob taper function and dbt taper equation
with those of the NSUR approach. The formulas are as follows:

Ydob = fdob(x, r, b) + εdob
Ydbt = fdbt(x, r, b) + εdbt
Ydib = fdob(x, r, b)− fdbt(x, r, b) + εdib

(13)

2.5.4. Subtraction Taper Models with Dbt Constraint (SMB)

Second logistic transformation of total amount control method, the dbt had the differ-
ence of simultaneous estimations of dob taper function and dib taper equation with those
of the NSUR approach. The formulas are as follows:

Ydob = fdob(x, r, b) + εdob
Ydib = fdib(x, r, b) + εdib
Ydbt = fdob(x, r, b)− fdib(x, r, b) + εdbt

(14)

where parameters are the same as aforementioned.
The model residuals of stem taper data often show heteroscedasticity. To overcome

the problem, we chose
√

1/Dk as the weight factor (where: k was determined for each
model). This factor was multiplied and programmed in the PROC MODEL procedure [41]
by specifying resid.Di = resid.Di/

√
Di

k (where: resid.Di is the model residual of Di). The
heteroscedasticity was obvious in the models of dbt which was corrected accordingly. For
the models of dob and dib, it was almost absent.

2.6. Model Assessment and Evaluation

Initially, the accuracy of the single estimate models with and without dummy variables
was assessed with the fitting dataset. Later, the predictive abilities of TDM models and
other models were evaluated with both fitting and validation dataset. Five statistical
indexes, i.e., adjusted coefficient of determination (Ra

2), mean error (e), residual variance
(δ), root mean square error (RMSE) and total relative error (TRE), were tested. The notations
for these indexes are as follows:

Ra
2 = 1−

(
1− R2

)(N − 1
N − p

)
(15)

e =
n

∑
i=1

(Yi − Ŷi)/N (16)

δ =
n

∑
i=1

(Yi − Ŷi)
2/(N − 1) (17)

RMSE =
√

e2 + δ (18)

TRE = 100× ∑n
i=1(Yi − Ŷi)

∑n
i=1 Ŷi

(19)

where Yi is the observation data, Ŷi is the predicted value, N is the total number of observa-
tions, and p is the number of parameters.

The condition number (CN) was used to test the multicollinearity. The criteria for a
CN value that indicated the extent of multicollinearity were arbitrary. It was considered
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that no collinearity existed in the model when the CN value was less than 30. The value of
CN between 30 and 100 signified the existence of multicollinearity, however the model was
still acceptable [42].

2.7. Ranking of Models

The ranking method proposed by Poudel and Cao [43] was used to obtain the relative
and exact position of different models. The relative rank of model i is defined as:

Ranki = 1 +
(m− 1)(Si − Smin)

Smax − Smin
(20)

where: Ranki is the relative rank of model i (i = 1, 2, . . . , m), Si is the goodness-of-fit
statistics, including Ra

2, e, δ, RMSE and TRE, produced by model i. Smin is the minimum
value of Si, and Smax is the maximum value of Si. Relative ranks of 1 and m indicate the
best and the worst model. Since the magnitude and the order of the Si’s both are included
in the ranking system, it should provide additional information than the conventional
ordinal ranks.

3. Results
3.1. Fitting the Base Model

Fitting statistics for dob, dib and dbt taper equations with and without dummy
variables are displayed in Table 2. The CN values of models (2)–(4) were less than 40,
indicating less or no multicollinearity in models. As expected, the models with dummy
variables (5)–(7) reflected some degree of variation and outperformed models (2)–(4). The
values of RMSE, Ra

2, e and δ of the models with dummy variables were superior to those
of the models without dummy variables. Based on three optimal models, additive systems
were constructed in the following section.

Table 2. Goodness-of-fit statistics of single estimate models with or without dummy variables.

Variable Models RMSE Ra
2 e δ AIC CN

dob
Model (2) 1.7896 0.9770 −0.0041 3.2027 7333 35
Model (5) 1.7624 0.9777 −0.0033 3.1062 7141

dib
Model (3) 1.9199 0.9675 −0.0020 3.6859 8216 36
Model (6) 1.8800 0.9689 −0.0008 3.5344 7952

dbt
Model (4) 1.0025 0.6456 0.2160 0.9584 54 21
Model (7) 0.9910 0.6535 0.2125 0.9370 −91

Note: Models (2)–(4) are reduced models; Models (5)–(7) contain dummy variables.

3.2. Model Fitting for Six Methods

The six additive methods (Equations (9)–(14)) were constructed based on models (5)–(7).
The goodness-of-fit statistics of six methods are shown in Table 3. Both total disaggregation
methods (TDM, AP) provided the same results for dob and both of them were estimated
by OLS. The same values of Ra

2 were rendered for dib. However, there was a marginal
difference in the values of RMSE, e, and δ between the methods. As per average rankings
of the methods, the TDM appeared to be more attractive than AP for dib and dbt models.

Among the six models, the dob of TDM/AP, dib of NAM, and dbt of SMB were
superior to the others. However, the dbt of SMI, and dob and dib of SMB, behaved
inadequately while fitting. This was reflected by the average of total ranks. In general,
TDM still performed slightly better than those with other methods (i.e., dib of TDM was
slightly better than that of AP and SMB, dbt of TDM was second only to that of SMB).
In this case, the TDM was slightly superior to the AMO, which has been widely used, in
RMSE, e, δ, TRE and Ra

2 by 1.8, 6.5, 3.1, 3.9 and 1.6%, respectively.



Forests 2021, 12, 1302 8 of 16

Table 3. Goodness of fit statistics of five additive models.

Methods Variable RMSE Ra
2 e δ rank

TDM
dob 1.7624 0.9777 −0.0033 3.1062 1.02
dib 1.9004 0.9685 −0.1981 3.5722 4.38
dbt 0.9730 0.6652 0.2034 0.9053 3.04

AP
dob 1.7624 0.9777 −0.0033 3.1062 1.02
dib 1.9022 0.9685 −0.1961 3.5801 4.57
dbt 0.9818 0.6574 0.1928 0.9268 3.79

NAM
dob 1.7926 0.9773 0.2117 3.1685 4.55
dib 1.8800 0.9689 −0.0008 3.5344 1.00
dbt 0.9910 0.6535 0.2125 0.9370 5.28

AMO
dob 1.7627 0.9777 0.0533 3.1042 1.34
dib 1.8986 0.9685 −0.1642 3.5776 4.17
dbt 0.9909 0.6545 0.2175 0.9345 5.37

SMI
dob 1.7668 0.9776 0.0668 3.1173 1.84
dib 1.8895 0.9688 −0.1585 3.5449 2.75
dbt 0.9950 0.6527 0.2253 0.9392 6.00

SMB
dob 1.7970 0.9768 0.0542 3.2263 5.08
dib 1.9074 0.9681 −0.1476 3.6165 5.68
dbt 0.9582 0.6756 0.2018 0.8774 1.35

Note: rank is the average rank of RMSE, Ra
2, e, and δ.

Figure 2 displays a set of the residual graphs to visually present the fitting effects of
additive systems for dob, dib and dbt with TDM methods. The residuals were randomly
distributed and the data points did not show error trends. The parameter estimation for
the taper equation systems of the six methods are listed in Table 4. All parameters were
significant (p < 0.0001), including the estimates of dummy variables λi, which indicated that
there was a significant difference in the taper equation systems among the three regions.
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Table 4. Parameter estimate of the additive system with all methods.

Para
TDM AP NAM AMO SMI SMB

dob dib dbt dob dib dbt dib dbt dib dbt dob dbt dob dib

b1
1.0766

(0.0072)
0.1639

(0.0051)
6.1013

(0.0051)
1.0766

(0.0072)
0.9027

(0.0073)
0.1581

(0.0043)
0.9027

(0.0073)
0.1581

(0.0043)
0.9642

(0.0073)
0.0882
(0.002)

1.0539
(0.0071)

0.0873
(0.0019)

1.0474
(0.007)

0.952
(0.0072)

b2
0.9744

(0.0019)
−0.1301
(0.0093)

0.1301
(0.0093)

0.9744
(0.0019)

0.992
(0.0023)

0.8454
(0.0081)

0.992
(0.0023)

0.8454
(0.0081)

0.9746
(0.0022)

1.0265
(0.0065)

0.9792
(0.0019)

1.0267
(0.0065)

0.9848
(0.0019)

0.978
(0.0022)

b3
0.4364

(0.0104)
0.0793

(0.0624)
−0.0793
(0.0624)

0.4364
(0.0104)

0.4662
(0.0125)

−0.7029
(0.0668)

0.4662
(0.0125)

−0.7029
(0.0668)

0.4516
(0.0113)

−1.2784
(0.0481)

0.4398
(0.0104)

−1.2595
(0.0475)

0.4627
(0.0104)

0.5169
(0.0114)

b4
−0.4433
(0.0252)

−0.2892
(0.1284)

0.2892
(0.1284)

−0.4433
(0.0252)

−0.4706
(0.0293)

0.7683
(0.0285)

−0.4706
(0.0293)

0.7683
(0.0285)

−0.4157
(0.0268)

0.9853
(0.0224)

−0.466
(0.0251)

0.9658
(0.0223)

−0.4286
(0.0249)

−0.4073
(0.0269)

b5
0.3163

(0.0054)
0.0221
(0.034)

−0.0221
(0.034)

0.3163
(0.0054)

0.3102
(0.0066)

0.2534
(0.0134)

0.3102
(0.0066)

0.2534
(0.0134)

0.3069
(0.0061)

0.2943
(0.0103)

0.3161
(0.0054)

0.3026
(0.0104)

0.3106
(0.0054)

0.2793
(0.006)

b6
2.0128

(0.1427)
0.2662

(0.0170)
−0.2662
(0.0170)

2.0128
(0.1427)

2.1943
(0.168)

−0.6483
(0.0632)

2.1943
(0.168)

−0.6483
(0.0632)

2.1083
(0.1527)

−0.5641
(0.0507)

2.0604
(0.1423)

−0.6503
(0.051)

1.8789
(0.1402)

2.0452
(0.1535)

b7
0.1013

(0.0033)
−0.2024
(0.0841)

0.2024
(0.0841)

0.1013
(0.0033)

0.0809
(0.004) – 0.0809

(0.004) – 0.0735
(0.0038) – 0.1043

(0.0033) – 0.1019
(0.0033)

0.0711
(0.0037)

b8
−0.2882
(0.0217)

1.9610
(0.5210)

−1.9610
(0.5210)

−0.2882
(0.0217)

−0.2713
(0.0259) – −0.2713

(0.0259) – −0.2671
(0.0241) – −0.2926

(0.0216) – −0.2700
(0.0215)

−0.2300
(0.0241)

λ1
−0.1488
(0.0092)

0.0478
(0.0034)

−0.0478
(0.0034)

−0.1488
(0.0092)

−0.1769
(0.0105)

0.0401
(0.0031)

−0.1769
(0.0105)

0.0401
(0.0031)

−0.1664
(0.0096)

0.0544
(0.0024)

0.003
(0.0004)

0.0548
(0.0025)

−0.1529
(0.0092)

−0.1754
(0.0099)

λ2
−0.1433
(0.0082)

0.6391
(0.083)

−0.6391
(0.083)

−0.1433
(0.0082)

−0.1076
(0.0122)

0.2576
(0.0388)

−0.1076
(0.0122)

0.2576
(0.0388)

−0.1049
(0.0111)

0.2809
(0.0278)

−0.1517
(0.0091)

0.2675
(0.0283)

−0.1873
(0.008)

−0.2197
(0.0088)

λ3
0.0012

(0.0004)
0.6082

(0.0636)
−0.6082
(0.0636)

0.0012
(0.0004)

−0.0402
(0.004)

−0.0758
(0.0254)

−0.0402
(0.004)

−0.0758
(0.0254)

−0.0302
(0.0037)

−0.0805
(0.0183)

−0.1419
(0.0082)

−0.0815
(0.0187)

−0.0082
(0.0002)

0.0166
(0.0012)

λ4 – 0.8942
(0.0623)

−0.8942
(0.0623) – – 0.0469

(0.0062) – 0.0469
(0.0062) – 0.0226

(0.0047) – 0.0355
(0.0048) – –

λ5 – −0.9709
(0.0488)

0.9709
(0.0488) – 0.3403

(0.1128) – 0.2884
(0.0864) – 0.4213

(0.0867) – –

λ6 – −0.1525
(0.0305)

0.1525
(0.0305) – – – – – – – –

λ7 – −0.2156
(0.0148)

0.2156
(0.0148) – – – – – – – –

λ8 – −0.1131
(0.1627)

0.1131
(0.1627) – – – – – – – –

Note: Approximate SEs appear in parentheses. dob: diameter outside bark. dib: diameter inside bark. dbt: double-bark thickness. bi: parameters to estimate. λi: Parameters of dummy variables.
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3.3. Model Validation for Six Methods

Table 5 shows the slight superiority of TDM, compared with other model structures.
The methods of NAM, AMO, SMI and SMB differed slightly, but were less accurate. The
prediction precision of TDM was higher than these four methods as evident from the
average ranks. The precision of TDM was closely followed by AP for all variables. The dob
and dib were overestimated by TDM model structure. In contrast, they were underesti-
mated by the NAM model. The dob was overestimated and the dib was underestimated
consistently by AMO, SMI and SMB models. All model structures underestimated dbt.
The differences in mean error (e) of dob, dib and dbt of each model structure reveals the
essence of additivity.

Table 5. Evaluation indices produced from TDM and other compared model structures.

Methods Variable e δ RMSE TRE rank

TDM
dob −0.0010 3.6637 1.9141 18.6417 1.08
dib −0.1684 3.9716 2.000 22.1320 2.25
dbt 0.1834 0.8734 0.9524 51.6132 1.60

AP
dob −0.0010 3.6637 1.9141 18.6417 1.08
dib −0.1653 3.9909 2.0046 22.2437 2.54
dbt 0.1718 0.8961 0.9621 52.5948 1.69

NAM
dob 0.2134 3.7208 1.9407 19.1411 3.68
dib 0.0240 4.0625 2.0157 22.8840 2.54
dbt 0.1893 0.8975 0.9661 53.2283 2.83

AMO
dob 0.0510 3.6751 1.9177 18.7497 1.63
dib −0.1371 4.1353 2.0382 23.0849 4.67
dbt 0.1881 0.9710 1.0032 57.5426 5.35

SMI
dob 0.0684 3.6535 1.9126 18.6558 1.42
dib −0.1276 4.1218 2.0342 23.0217 4.39
dbt 0.1960 0.9754 1.0069 58.0759 6.00

SMB
dob 0.0553 3.8947 1.9743 19.8742 5.08
dib −0.1225 4.2055 2.0544 23.4959 5.70
dbt 0.1777 0.8750 0.9522 51.5387 1.31

Note: rank is the average ranks of e, δ, RMSE and TRE.

To evaluate the predictive ability of each method across the entire stem, the relative
height was divided into nine sections. The six methods were further assessed on the basis
of graphical analysis (Figures 3–5). The three figures show the e, δ, RMSE, and TRE for the
six model structures across relative height classes for dob, dib and dbt.
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Figure 3 shows that additive models of dob with TDM and AP methods slightly
outperformed other models in terms of δ, RMSE, and TRE for most relative height classes,
with the exception of relative height classes (rh = 0.7 and rh = 0.8), which could be attributed
to the base of live crown. The change of tapering grades at the base of the live crown may
result in the defective performance of taper models. The results were in accordance with
those of Lee et al. [44] and Rodríguez et al. [23]. All methods underestimated the dob
(0.2 = < rh < 0.6 and rh = 0.9) and exhibited the smallest residuals.

Figure 4 shows that the additive models of dib with TDM and AP slightly outper-
formed other methods in terms of δ, RMSE, and TRE for most relative height classes,
with the exception of relative height classes (rh = 0.2 and rh = 0.9). Most additive mod-
els with six methods nearly overestimated the dib, with the exception of relative height
classes (0.2 = < rh < 0.6) for the model with the NAM method, relative height classes
(0.3 = < rh <0.4) for the models with SMI and SMB methods, and relative height classes
(rh = 0.9) for the models with TDM, AP and NAM methods.

Figure 5 shows that additive models of dbt with the TDM method slightly outper-
formed other models in terms of δ, RMSE, and TRE for most relative height classes
(0.3 = < rh < 0.8), and the model with the SMB method also outperformed other mod-
els in terms of e, δ, RMSE, and TRE for lower section (rh = 0.1). All model structures
underestimated values of dbt. These conclusions are consistent with Table 5.

The six methods were subsequently used to describe the stem tapers in the three
regions (Figure 6), each graph describing trees of the same size (i.e., same D and H),
representing the average tree. There were no great differences, with graphs showing that
all stem tapers for dob and dib were almost identical, and that these function plots had
consistent trends, except for a slight difference in the lower section among the three regions.
However, the graphs showed differences in the dbt curves across the six methods, and the
predicted values of SMB for dbt were relatively smaller than those of other methods in
region two at the interval (0.4 ≤ rh). The predicted values of TDM for dbt were relatively
bigger to those of other methods in region three at the interval (0.5 ≤ rh ≤ 0.7).
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4. Discussion

In this study, our data were collected across a large geographical region in Northeast
China covering a variety of topographic and stand conditions. Six forms of nonlinear
additive model structures were built and tested with the data. Our results demonstrated
that the TDM model structure was nearly as accurate as other models in goodness-of-fit
and predictive abilities in terms of average prediction errors for dob, dib and dbt. While
other models had a slight advantage, differences between the six model structures were
small. All model structures took into account the intrinsic correlations among the stem
components and provided efficient parameter estimation. In NSUR model structures (i.e.,
AMO), the prediction accuracy of dob depended on the accuracy of dib and dbt models.
The aggregation nature of the systems required that each component be estimated to obtain
dob. A relatively large prediction error in any component model could affect the prediction
accuracy of dob. The prediction precision of TDM and AP model structures depended on
the accuracy of the dob model, which was the most accurate among the dob, dib and dbt
models. The essence of TDM model structure is also the NSUR, which theoretically led to
the unbiased estimation, satisfying the additive property of the total and components, and
guaranteeing their proportions in the total model. It was also recognized that AMO, the
NSUR method, had been widely used in additive volume or biomass equations throughout
the world [32–34]. Admittedly, it was difficult to deduct and fit the additive system
derived from the TDM. However, the advantages of TDM were substantiated in this
study. These appealing characteristics of the TDM model structure were supported by our
results. Therefore, the TDM was shown to be another better choice to develop additive
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taper equations. This methodology would be useful for forest researchers interested in
developing more precise systems of stem taper models in the future.

It is known that stem volume is important for forest management. Therefore, we
further verified the prediction ability of six additive models for corresponding volume. The
following Table 6 shows the model validation results of each part of volume calculated by
numerical integration for each additive model. Comprehensive indicators and the precision
of TDM were closely followed by AP for all variables. The two additive volume model
methods are better than the other four models. They reflect the advantages of the additivity
model and volume model constructed by TDM.

Table 6. Volume prediction for six additive models.

Methods Variable e δ RMSE TRE ∑rank

TDM
dob_v 0.000335 0.000167 0.01293 0.39745 4.4
dib_v −0.000194 0.000157 0.01252 0.42954 5.6
dbt_v 0.000211 0.000009 0.00302 0.16405 7.1

AP
dob_v 0.000335 0.000167 0.01293 0.39745 4.4
dib_v −0.000198 0.000158 0.01259 0.43433 9.1
dbt_v 0.000214 0.000009 0.00301 0.16298 6.4

NAM
dob_v 0.001270 0.000169 0.01306 0.41129 13.5
dib_v 0.000603 0.000158 0.01259 0.44350 14.4
dbt_v 0.000349 0.000009 0.00305 0.16970 10.6

AMO
dob_v 0.000754 0.000166 0.01292 0.39974 6.6
dib_v 0.000001 0.000158 0.01256 0.43505 6.8
dbt_v 0.000435 0.000010 0.00316 0.18469 19.5

SMI
dob_v 0.000610 0.000166 0.01292 0.39866 5.7
dib_v 0.000286 0.000159 0.01262 0.44226 12.6
dbt_v 0.000005 0.000010 0.00319 0.17758 15.5

SMB
dob_v 0.000551 0.000180 0.01343 0.43078 20.2
dib_v 0.000018 0.000164 0.01281 0.45253 19.1
dbt_v 0.000215 0.000011 0.00325 0.19013 22.8

It should be noted that correlated error structure in the data was not taken into account
in the model fitting process due to convergence problems. For instance, a test of auto-
correlation for the TDM method showed that the models of dib and dbt failed to achieve
convergence. Prediction accuracy is little affected by the correlated error structure [45].
For practical applications, auto-correlation is generally ignored when using models for
prediction [46–50].

To date, additivity has been used in the forestry field, for calculations such as biomass,
volume [12,13,32], and crown [10,11]. However, it is rare to study the additivity of taper
equation. As stated earlier, only Rodríguez et al. [23] have conducted relevant research
with the NSUR (SMB) method based on 351 Corsican pines, where the authors considered
auto-correlation, and predicted the whole-tree volume and the different components of
Corsican pine. Inspired by this, our paper constructed a new additive model, which
compared the advantages and disadvantages of different existing additive structures. Our
work expanded and perfected the additive theoretical system of taper equation.

5. Conclusions

This research is believed to be a novel attempt to present a preliminary additive
system for Dahurian larch in Northeast China. Four approaches of TDM, AP, OLSSR, and
NSUR were used to develop the additive systems of stem taper models for Dahurian larch.
All model structures, particularly the TDM, demonstrated the additive property of stem
taper models efficiently, with TDM obtaining a slightly better performance. In addition,
the systems of stem taper models with the TDM method and dummy variable performed
much better than those without the dummy variable. This methodology would be useful
for forest researchers seeking to develop more precise systems of stem taper models, to
predict volume in the future.
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