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Abstract: Forest wildfire is an important threat and disturbance facing natural forest ecosystems.
Conducting wildfire risk assessments and zoning studies are of great practical significance in guiding
wildfire prevention, curbing fire occurrence, and mitigating the environmental effects of wildfire.
Taking Hunan Province, China as the case area, this study used remotely sensed high-temperature
fire data as the wildfire sample. Twelve factors related to topography, climatic conditions, vegetation
attributes, and human activities were used as environmental variables affecting wildfire occurrence.
Then, a Maxent wildfire risk assessment model was constructed with GIS, which analyzed the
contribution, importance, and response of environmental variables to wildfire in Hunan Province.
The results show that (1) the Maxent model has high applicability and feasibility when applied to
wildfire risk assessment after a test of wildfire sample sites; (2) the importance of meteorological
conditions and vegetation status variables to wildfire are 54.64% and 25.40%, respectively, and their
contribution to wildfire are 43.03% and 34.69%, respectively. The interaction between factors can
enhance or weaken the contribution of factors on wildfire. (3) The mechanism for the effects of
environmental variables on wildfire is not linear as generally believed; temperature, aridity, land use
type, GDP, distance from the road, and population density have a nonlinear positive correlation with
the probability of wildfire occurrence. Elevation, slope, precipitation, wind speed, and vegetation
cover within the suitable interval positively contribute to the probability of wildfire, while the
environmental conditions outside the suitable interval curb the occurrence of wildfire. The response
of wildfire probability to forest density is U-shaped, which means either too high or too low will
promote the occurrence of wildfire. (4) There is geographical variation of wildfire risk in Hunan
Province. The areas at high risk and below account for 74.48% of the total area, while the areas at
significantly high risk and above account for a relatively low proportion, 25.52%.

Keywords: wildfire; risk assessment; Maxent model; environment factors; zoning

1. Introduction

Wildfires are one of the important disturbance factors in forested ecosystems and
create the greatest potential for natural disaster related to natural, biological, and ecological
processes globally [1–3]. Globally, thousands of wildfires occur annually, and more than
a million hectares of forests are burned, which seriously disrupts the ecological balance
and poses a great threat to socioeconomic development and human safety [4], although
a wildfire may improve the soil carbon stock or soil fertility. Wildfires destroy surface
vegetation and accumulated dry matter; release large amounts of greenhouse gases, par-
ticulate matter, and trace gases; alter regional microclimates, soil structure, and nutrients;
destroy plant and animal habitats; and exacerbate soil erosion and air pollution [5]. Fires
are important drivers of global climate change [6–8]. In the case of China, 2345 fires burned
forested areas as large as 1.35 × 104 ha, of a total forest area of 2.08 × 108 km2, in 2019, with
an incidence of 11.27 wildfire per 10,000 km2 throughout China. Wildfire, together with
deforestation and insect infestation, are important factors related to forest environmental
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balance in China. Scientific forecasting and monitoring of wildfire are of great practical
importance in supporting efforts to curb the occurrence of wildfire and reduce wildfire
losses. As a part of wildfire risk assessment, zoning studies provide an important scientific
basis for building wildfire risk defense systems, deploying fire prevention forces, and
guiding wildfire prevention work. Fire risk evaluation has received an increasing amount
of attention from many scholars and international organizations [9,10].

With nearly a century of unremitting efforts, research on wildfire has made great
progress in wildfire monitoring, the analysis of driving factors, and the development of risk
assessment models and forecasting systems. (1) In terms of wildfire detection, traditional
measures such as ground-based observation towers, monitoring stations, and ground
patrols have played an active role in the early detection of wildfire occurrence. With
technological advances in aviation platforms and sensors, objective, efficient, and rapid
remote sensing technology is widely applied to the detection and monitoring of wildfires.
A large number of remote sensors have the capability of monitoring wildfire [11], such as
the Moderate Resolution Imaging Spectroradiometer Airborne Simulator [12], airborne
laser scanning [13], Carnegie Airborne Observatory [14], National Ecological Observa-
tory Network-Airborne Observation Platform [15], the US National Aeronautic and Space
Administration’s Goddard light detection and ranging (LiDAR) hyperspectral thermal
sensor [16], and the Chinese Academy of Forestry LiDAR–CCD–Hyperspectral Sensor [17].
Thanks to recent improvements in space observation technology and computing power,
wildfire signals, such as thermal infrared radiation signal, fire radiation energy, fire area,
interval, fire size, and spread rate, can be effectively recorded [9,18,19]. (2) Regarding the
drivers of wildfire, evidence indicates that topography, vegetation, combustible materials,
meteorological factors, human activities, and fire sources are the main environmental
factors determining the likelihood of a wildfire being started. The spatiotemporal resolu-
tions of these factors have a significant impact on wildfire risk prediction, and inputting
more and higher spatiotemporal resolution data related to environmental factors can ef-
fectively improve the explanatory power and confidence level of wildfire risk prediction
models [20–22]. (3) A wealth of research results exists on wildfire risk assessment and
prediction models. Scholars have established statistical models, such as logistic regres-
sion [23] (LR), geographically weighted logistic regression [24](GWLR), and gompit [25];
artificial neural network models, such as a back-propagation neural network [26]; and
machine learning methods, such as the random forest model [27,28], Maxent [29], and
Bayesian network [4,30], through empirical analysis of case areas. These are based on
datasets, such as the number of wildfire occurrences or burnt areas, and environmental
factors. (4) With recent research on wildfire forecasting, countries have developed wildfire
risk weather forecasting systems and released the results of wildfire risk analysis and
levels within regions in real time for guiding daily wildfire prevention work. For example,
the United States and Canada developed wildfire risk ranking systems in 1972 [31,32],
that include the national fire danger rating system of the US and the Canadian Wildfire
Danger Rating System. In addition, the Chinese government has published a ranking of
the regionalization on nationwide wildfire risk in 2008 and established a forecast system of
wildfire weather ranks (http://slcyfh.mem.gov.cn/index.aspx (accessed on 1 September
2021) provides details).

As an important research element in wildfire monitoring and prediction, wildfire
risk zoning is an important early warning technology that can provide a scientific basis
for wildfire protection, monitoring, and fighting [23,33]. Wildfire risk zoning involves
the classification of forest areas into different levels of zones of wildfire risk based on
the quantitative relationship between wildfire and environmental factors. In addition
to increasing the density of known wildfire samples and improving the spatiotemporal
resolution of relevant environmental factors, the development of quantitative assessment
models is important in making wildfire risk zones reliable. Among them, the maximum
entropy (Maxent) model is a more advanced model that has been successfully applied in
wildfire risk zoning research internationally in recent years. Jaynes proposed the Maxent
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model based on Shannon’s information entropy principle. Maxent uses environmental
variables and known sample information at a single point in time to select the distribution
with the highest entropy from each environmental variable as the optimal distribution.
The model is constructed to predict the spatial distribution of sample events [29,34]. The
Maxent model has been successfully applied to wildfire zoning studies because it is simply
constructed, easy to apply, and has a low input data requirement [35,36]; this machine
learning method has been initially reported in empirical case studies of wildfire risk zoning
in China [29,37].

In view of this, the present study took Hunan Province as the case area, adopting
remotely sensed high temperature fire locations from 2016–2020 as a sample set of wildfire
after the data had been converted, screened, and validated. The study selected 12 factors
from the four aspects of fire as environmental variables that control the rate and intensity
of fire spread to construct a wildfire risk assessment model based on Maxent with GIS
technical support. Those four aspects included topography, climatic conditions, vegeta-
tion attributes, and human activities. The model was used to analyze the contribution,
importance, and response relationship of environmental variables to wildfire, and to carry
out wildfire risk level assessment and zoning in Hunan Province. The main objectives
of this study are: (1) to construct a model framework for wildfire risk assessment; (2) to
investigate the response mechanisms of wildfire to relevant environmental factors; and
(3) to quantitatively visualize the potential wildfire risk levels and develop fire risk zone
mapping. It is hoped that this study will provide a basis for wildfire risk prevention and
management in Hunan Province.

2. Materials and Methods
2.1. Study Area

Hunan Province is located in the middle reaches of the Yangtze River in central China
at 24◦38′–30◦08′ N and 108◦47′–114◦15′ E and covers an area of 21.18× 104 km2 (Figure 1a).
Landform types include plains, basins, hills, and mountains. Hunan Province, located in
subtropical monsoon climate zone, features an annual precipitation of 1063–1979 mm and
an average annual temperature of 16–23 ◦C. The province’s topographical and hydrother-
mal conditions are suitable for forest growth. Hunan is rich in forest resources, mainly
subtropical evergreen broad-leaved forest vegetation, concentrated in the areas of Huaihua,
Shaoyang, Chenzhou, and Zhangjiajie. At the end of 2019, the forest area of Hunan Province
reached 1300 × 104 ha or 59.90% forest coverage (Figure 1b), the province’s forestry output
value reached 5029.77 × 108 RMB, and the live timber stock volume amounted to 5.95 ×
108 m3, accounting for 3.28% of the national live timber stock volume. Hunan Province
occupies an important place in terms of the forest area and live timber stock volume. The
wide distribution of forests and the intense human activities of the province have resulted
in an annual forest area damage rate of wildfire in Hunan Province of 0.06‰, which makes
it one of the key provinces requiring forest wildfire prevention in China.
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2.2. Wildfire Disaster-Causing Mechanisms

Wildfires occur very suddenly, often with unpredictable results. A review of existing
studies shows that the causes of wildfire can be categorized into four aspects: natural
lightning, arson, accidental fire ignition—perhaps caused by negligence—and others [6]. In
terms of the mechanisms involved in wildfire, in addition to factors related to ignition, the
properties of the factors creating disasters themselves and the surrounding environmental
conditions are the main drivers of fires that can spread rapidly and cause significant losses.
Among them, landform types, climatic conditions, vegetation attributes, and human
activities are important fire risk factors that affect the intensity and rate of spread of a
wildfire [7,33,38–40]. Specifically:

(1) Topography can affect the occurrence and development of wildfire in many ways. Ge-
ographical units with different terrain, elevation, slope, aspect, and relief, by affecting
the spatial distribution of climatic factors such as moisture, light, and heat will affect
the vegetation cover density, moisture accumulation, as well as the aridity and humid-
ity of surface forest vegetation. This provides different types of combustible reserves
and dry matter types that affect the nature of wildfire. Furthermore, when a wildfire
occurs, variations in terrain will cause different degrees of interference and difficulties
when humans attempt to control and extinguish a fire. Terrain can contribute to the
spread of wildfire and delay firefighting opportunities and operations.

(2) Climatic conditions vary at spatiotemporal scales and are very heterogeneous spatially,
but they are the important factors contributing to the nature of a wildfire. Studies
have shown that temperature, humidity, wind speed, and aridity have significant
effects on wildfire [33]. An increase in temperature increases the temperature of
combustible materials and reduces the heat required for combustible materials to
reach the ignition point, thus greatly increasing any wildfire risk index. Similarly,
precipitation is positively correlated with the water content of combustible materials.
An increase in precipitation increases the relative humidity of air and reduces the
dryness of combustible materials, thus significantly increasing the heat required for
combustible materials to reach the ignition point and therefore reduces wildfire risk.
Wind speed is the main factor that determines where a fire will burn and how rapidly
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a wildfire will spread. Greater wind speeds will help to cause a greater number of
uncontained fires, and the fire situation in a period of high winds will become more
dangerous.

(3) One of the three conditions needed for a wildfire to occur is the presence of com-
bustible material, the amount and nature of which can greatly affect the occurrence
and development of fires. The other two things a fire needs are an ignition source and
oxygen. Forest vegetation, as the main fuel for fires, is an important environmental fac-
tor affecting the distribution of wildfire. Differences in vegetation attributes, such as
vegetation type, vegetation cover, dryness of combustible materials, and types of com-
bustible materials present have different effects on the accumulation of combustible
material, the rate of wildfire spread, and the potential release of energy [41].

(4) Human activities significantly influence the occurrence of wildfire, such as by influ-
encing surface vegetation types, changing the state of combustible materials, actively
producing fire sources, and fire suppression efforts. Currently, the main factors often
used to characterize the impact of human activities on wildfire are population density,
arable land area, gross national product per capita, livestock load, road density, and
distance from roads.

Based on the above analysis, the mechanism and factors influencing the relationships
involved in wildfire are shown in Figure 2.
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2.3. Maxent Based Fire Risk Assessment

The Maxent model is a density estimation and event distribution prediction model
based on the maximum entropy theory, which has the advantages of providing stable
operation results and a short operation time. In predicting the suitable distribution interval
of events, a Maxent model can still provide a simulation with reasonable results by collect-
ing known geographical distribution information of events and relevant environmental
factors, but without making assumptions and speculations related to unknown informa-
tion, even if data about the events are partially missing or the sample size is small [42].
The spatial distribution of wildfire is influenced by whether a suitable distribution of
environmental variables exists that would allow a fire to spread. So, the Maxent model
can be used to assess and predict fire danger zones. Two types of data are required for
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wildfire risk assessment. One is the known actual distribution of sample points of wildfire
X, which is to be predicted, expressed in latitude and longitude; the other includes various
environmental variables Y within the distribution range of wildfire. The environmental
variables data require the model to use the same level of resolution for each cell. Other-
wise, the model will not operate properly. Suppose the wildfire X to be predicted takes
the value X = (x1, x2, . . . , xn); then, the information entropy of X can be calculated using
Equation (1):

H(x) = −
n

∑
i

p(x = xi) log p(x = xi) =−
n

∑
i

p(X) log p(X) (1)

The spatial distribution of wildfire X is influenced by the environmental variable Y.
The training sample set (X|Y) consisting of environmental variable Y and wildfire X can be
obtained by superimposing the environmental variable Y with the known spatial location
of wildfire X. Then, after the environmental variable Y is introduced, the probability
and information of Y’s influence on the spatial distribution of X will change, at which
time the information entropy of X becomes the conditional probability influenced by the
environmental variable Y (Equation (2)):

H(X|Y) = −
n

∑
i

p(X, Y) log p(X, Y) (2)

The Maxent model considers that the probability information entropy that satisfies all
known conditions and makes no assumptions about the unknown cases is the largest, and
the distribution will be the most uniform, at which time the risk of the predicted outcome
is the smallest. The Maxent model is finally trained based on the input database of known
samples and the objective function (Equation (3)).

X∗ = argmaxH(X|Y) (3)

The model is continuously trained by a random seed generation algorithm and obtains
the parameters in the maximum entropy, making its calculated values close to the actual
value data. To obtain better results, these original samples are split into two different
types of samples (training samples and testing samples) to facilitate cross-validation. The
probability of suitability of the model for a single training event is often subject to some
level of chance, and the average of multiple trainings is more reasonable as the final
result [34].

The area under the relative operating characteristics (ROC) curve (AUC) was used
to determine the accuracy of the Maxent model. The AUC is the enclosed area between
the ROC curve and the abscissa, with its value usually set to be 0.5 to 1.0. The larger
the value, the stronger the prediction ability of the model; an AUC of 0.5 is equivalent
to a completely random prediction, and an AUC of 1 is a perfect prediction. An AUC
value between 0.5 and 0.6 means that the model fails, and the model itself does not have
predictive power; a value between 0.6 and 0.7 indicates poor prediction. An AUC value
between 0.7 and 0.9 indicates moderate prediction; a value of >0.9 indicates a model with
very good predictive accuracy [43].

2.4. Influence Variables and Pre-Processing
2.4.1. Wildfire Locations

The known sample dataset used in the study, a wildfire location dataset, came from
SatSee-Fire, a near real-time surface temperature anomaly location tracking system pub-
lished by the Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences.
Data were acquired for the period of 1 January 2014 to 31 December 2020 (December data
were missing for the first 3 years); this dataset includes the anomalous high temperature
locations extracted by He et al. (2016) using Landsat remote sensing observational data
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such as Landsat-7/8 and Sentinel-2, based on the spectral characteristics of high tempera-
ture fire locations in the near-infrared and short-wave infrared bands [44]. They used a
threshold adaptively determined by the results of a normalized burning vegetation index
to extract anomalous high temperature locations; the attribute information included the
high temperature location ID, longitude, latitude, capture date, inversion temperature,
inversion area, and confidence. The original fire location dataset contains high temperature
anomalies such as wildfire, industrial chimney fires, oil field fires, field straw fires, and
wildfire that occurred in the last 6 years in the Asian region and was in text format. Data
pre-processing is required before extracting wildfire locations: first, the text data of anoma-
lous high temperature locations in Asian region day by day from the above time period
were transformed into vector point data, defined as Lambert projection. Next, suspected
fire locations with confidence below the threshold were removed to extract any information
related to anomalous high temperature locations within the land area of Hunan Province.
Then, stable fire locations (i.e., multiple similar high-temperature fire locations, including
chimney fire locations recorded at different sites in the same location) in the fire location
dataset were eliminated using Python programming. Finally, using the forest map of fire
locations of Hunan Province as a mask, the fire locations falling within the forest land were
extracted, i.e., a spatial dataset of wildfire locations in Hunan Province was constructed
(Figure 3a). A total of 8146 wildfire location points (not the burned area) in Hunan Province
occurring over the last seven years were identified and distributed in 2501 cells (Figure 3b).
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2.4.2. Environmental Variables

Based on the above analysis and the corresponding literature [23,37,45,46], 12 factors
were selected in the present study as factors that influence wildfire risk. These included
topography (elevation and slope), climatic conditions (average annual temperature, precip-
itation, wind speed, and aridity), vegetation attributes (proportion of forested land, vegeta-
tion cover, and vegetation type), and human activities (population density, distance from
the nearest road, and GDP density). The data required were obtained from the Resource
and Environment Science and Data Center (http://www.resdc.cn/ (accessed on 22 May
2021)) of China, the National Earth System Science Data Center (http://www.geodata.cn/
(accessed on 22 May 2021)) of China, and Google Map software. To avoid the influence of
multiple co-linearities among the factors influencing fire behavior on the model results,
all environmental variables were subjected to principal component analysis; the results

http://www.resdc.cn/
http://www.geodata.cn/
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show that no factors influencing fire behavior had a correlation >0.8 with any of the envi-
ronmental factors [47]. The raster layers with uniform projection system and cells (1 km ×
1 km) were plotted in ArcGIS 10.3 from ESRI (USA) and were spatially correlated with the
previously produced wildfire data from 2014–2019 in Hunan Province (wildfire locations
from 2020 were used to test model accuracy). Finally, a Maxent model was generated
for the required wildfire variables (using shape files in .shp format) and environmental
variables (in .csv format) required for the Maxent model. The environment variables are
shown in Table 1 and Figure 4.

2.5. Running the Maxent Model

A wildfire risk assessment model based on the Maxent model was established based on
the abovementioned spatial distribution of documented wildfire and related environmental
factors. In this study, Maxent version 3.4.1 was used for model calculations. During the
analysis, 75% of wildfire in Hunan Province were used as a training dataset for establishing
model parameters, and the remaining 25% was used as test data for model testing. The
setting options of the software during runtime used the system default combination of
parameters; the sample data were randomly selected. The output results obtained after
running the Maxent model were visually converted in ArcGIS 10.3.(ESRI, Redlands, CA,
USA) The output raster pixel value was between 0 to 1, representing the wildfire risk
coefficient, where a larger value indicates higher fire risk.

Table 1. The factors used in wildfire classification and the description of wildfire risk.

Type Factors Abbreviation
Data Properties

Data Sources
Min Max Mean Std Dev

Terrain
Elevation (m) DEM 37 2056 347 275.68 Resource and environment science

and data center.
http://www.resdc.cn/ (accessed

on 22 May 2021)
Terrain slope (◦) Slope 0 25.66 1.87 2.72

Climatic
variables

Average air
temperature (◦C) AT 6.9 19.1 15.88 1.45

National earth system science data
center. http://www.geodata.cn/

(accessed on 22 May 2021)

Annual precipitation
(mm) AP 1063 1979 1373 91.23

Annual wind speed
(m/s) AS 0.3 8.6 1.98 0.84

Average aridity AA 0.03 0.13 0.08 0.01

Vegetation

Forest land density
(%) FD 0 100 62.56 22.07

Resource and environment science
and data center.

http://www.resdc.cn/ (accessed
on 22 May 2021)

Vegetation cover
density (%) VD 0.01 0.92 0.8 0.11

Land cover type VT built-up areas/others:1, temporary
crop:2, pasture:3, shrub:4, forest:5

Human
activity

Population density
(persons/km2) PD 0 49,729 306 1854

Resource and environment science
and data center.

http://www.resdc.cn/, 2015
(accessed on 22 May 2021)

Distance from roads
(km) DR 0 21 2.31 2277 Google map, POI, 2019

Gross domestic
product density

(RMB/km2)
GD 0 50,089 599 2896

Resource and environment science
and data center.

http://www.resdc.cn/,
2015(accessed on 22 May 2021)

http://www.resdc.cn/
http://www.geodata.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
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3. Results and Analysis
3.1. Influence of Environmental Factors on Fire Risk

The ROC curve was used to test the results from running the model. The AUC val-
ues obtained from the training and test dataset were 0.816 and 0.802, respectively. Both
were higher than 0.8, indicating that the wildfire prediction model constructed based on
Maxent achieved high prediction accuracy and could meet the accuracy requirements
for model use. The output of the Maxent model (Table 2) shows that the contribution of
environmental variables characterizes the interaction between different environmental
variables, in descending order of climatic conditions (43.03%), vegetation (34.69%), topog-
raphy (12.19%), and human activities (10.09%). The importance of environmental variables
characterizes the degree of influence of individual environmental variables on the model
results, in descending order of climatic conditions (54.64%), vegetation (25.40%), human
activities (12.11%), and topography (7.86%). One can see that the importance values of
climatic conditions and human activities are higher than the contribution scores of the
variables, while the opposite is true for topography and vegetation factors. This indicates
that the interaction of environmental factors reduces the importance of climatic conditions
and human activities in the model, while on the contrary, the importance of topography
and vegetation variables increased. In terms of individual factors, average annual pre-
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cipitation and temperature as well as vegetation cover density ranked as the top three
in importance for wildfire. This indicates that climatic factors and the accumulation of
combustible materials have an important effect on the occurrence of wildfire; in addition,
the contributions of elevation, average annual temperature, average annual precipitation,
wind speed, and forest density were all higher than 10%, reaching a combined total of
71.60%. Only the factor importance of average annual temperature and precipitation was
greater than 10%, while the contributions of elevation, wind speed, and forest density were
higher than the factor importance. This indicates that the importance of these three factors
was increased by the interaction of environmental factors, while the importance of annual
average temperature and precipitation was weakened more obviously by the interaction of
the factors.

Table 2. Contribution and importance of major environmental variables to wildfire in Maxent
modeling.

Types Factors Permutation Importance (%) Contribution (%)

Terrain
DEM 6.24 10.43
Slope 1.62 1.76

Climatic variables

AT 16.98 10.57
AP 26.87 17.58
AS 5.33 12.21
AA 5.46 2.67

Vegetation
FD 7.96 20.81
VD 9.37 6.62
VT 8.07 7.26

Human activity
PD 2.33 2.07
DR 4.31 2.17
GD 5.47 5.85

3.2. Relationships between Environmental Factors with Wildfire

The environmental variable response curve (Figure 5) of wildfire in Hunan Province
can be obtained. It can be seen from the figure that the impact mechanism of environmen-
tal variables on wildfire is complex and variable. The response curve of wildfire to all
environmental variables is not linear but is a complex nonlinear relationship; the impacts
of multi-year temperature, aridity, land use type, GDP density, and distance from road
on wildfire are generally nonlinear and positively correlated, while the correlations of
other environmental variables change significantly and differ from interval to interval. It
is generally accepted that when there is a probability greater than 0.5, the value of the
corresponding interval of environmental variables will contribute to the occurrence of
wildfire. For individual factors, different environmental variables have their own suitable
intervals related to their effects on contributing to the probability of the start and spread of
wildfire.

(1) The probability of wildfire increases and then decreases with increasing elevation.
That is, wildfire is more likely to be distributed in low elevation areas, with the
suitable interval being 40–780 m and 620 m being the most suitable elevation, which
may be related to the fact that fewer human activities occur in high elevation areas.
The probability of wildfire increases significantly as the slope increases from 0◦ to 9◦,
with a peak at about 5◦, after which the probability of wildfire decreases sharply as
the slope increases. Fires are more prone to occur on flat and gentle slopes, while the
probability of wildfire on steep slopes is lower due to poor accessibility to humans
who start fewer fires on steep slopes.

(2) The average annual temperature plays a positive role in promoting wildfire; the
probability of wildfire increases with increasing temperature. When the annual
average temperature is higher than 11.7 ◦C, the probability of wildfire is greater than
0.5. When the annual average temperature is higher than 14 ◦C, the change in the
probability of wildfire is not significant. Meanwhile, when the temperature is too low,
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the cumulative temperature of combustible materials is lower, so that more heat is
needed to reach the point of ignition, so the probability of wildfire should be lower. As
the temperature increases, the limiting factor that restricts the ignition of combustible
materials may change from temperature to such factors as fire source, combustible
material state, and precipitation.

(3) The response of wildfire probability to aridity, land use type, GDP density, and dis-
tance from road is essentially similar to that of annual average temperature. The
higher the aridity, the higher the probability of wildfire. When the land use type is
dominated by forest, scrub, and other vegetation types, the accumulation of com-
bustible materials is higher, and the probability of wildfire increases. Areas with a
high GDP density will have more intense economic activity, creating a greater possi-
bility of wildfire. The response mechanism of wildfire to distance from the nearest
road conflicts with the past popular belief, i.e., the more distant the area from roads,
the greater the possibility of fires; this may be related to the fact that an initial fire
source is not easily detected or extinguished in areas farther from roads.

(4) The suitable annual average precipitation interval for wildfire is from 1000 to 1830 mm,
while an annual precipitation of 1580 mm is the most suitable peak for wildfire to occur.
The probability of wildfire is less than 0.5 when the annual precipitation is higher than
1830 mm. Precipitation determines the rate of forest growth and the accumulation
of stock volume. If the annual precipitation is too low, the site is not suitable for
forest growth. If the annual precipitation is too high, the accumulated temperature of
combustible materials will decline, causing an increase in the temperature required
for ignition, thus reducing the probability of wildfire.

(5) The response curves of the wildfire probability to wind speed and vegetation cover
show a single-peak trend. When the wind speed is lower than 0.9 m/s or higher
than 4.8 m/s, the wildfire probability is significantly lower than 0.5. The probability
of wildfire peaks with a wind speed of 1.1 m/s. When the forest vegetation cover
is between 32% and 85%, the probability of wildfire is significantly higher than 0.5
and peaks at 67%. Areas with vegetation cover greater than 85% are not suitable for
wildfire. The response of the probability of wildfire to woodland density showed a
U-shaped pattern. When woodland density is either too high or too low, this will
promote the occurrence of wildfire. The probability of wildfire increases significantly
when the density of woodland is below 41% or above 52%.

(6) The response of the probability of wildfire to population density is generally consistent
with popular beliefs, i.e., the higher the population density, the greater the chance
of wildfire occurrence. Specifically, the probability of wildfire gradually decreases
or increases when the population density is lower or higher than 100 people/km2,
respectively. However, it remains unchanged when the population density reaches
9500 people/km2 or higher. This response pattern may be related to natural or man-
made fire sources. When the population density is less than 100 people/km2, human
activities disturb fewer areas. In this case, wildfires are more likely to be caused by
natural conditions, such as lightning fires, the spontaneous combustion of peak, and
sparks caused by rolling rocks. In contrast, with increasing population density, human
activities are more widespread, intensifying disturbance, so that the possibility of
human-caused fire increases dramatically, thus increasing the likelihood of wildfire.
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3.3. Fire Risk Zoning

The present study used the natural breaks classification method to divide the assessed
risk values of wildfire in Hunan Province into five levels. The five subdivisions with
different levels of risk classified as low, moderate, high, significantly high, and extremely
high risk areas account for 6.08%, 34.09%, 34.31%, 18.43%, and 7.09% of the area under the
jurisdiction of Hunan Province, respectively. The areas at high risk and below accounted for
74.48% of the total area, while significantly high and extremely high risk areas accounted
for 25.52%. Thus, it can be seen that the areas at and above the significantly high risk
level for wildfire account for a relatively low percentage of Hunan Province. From the
perspective of the spatial distribution pattern, the wildfire risk in Hunan Province has
significant geographical variation. The extremely high risk areas are mainly distributed in
Nanling, Yangming Mountains, Dawei Mountains, and the middle reaches of Yuanjiang
River, where the topography is mainly low and medium elevation mountains and hills,
with high forest cover and a large forest biomass stock volume. These areas are the dense
forest areas and concentrated protection areas in Hunan Province; the significantly high
risk areas are concentrated in Yiyang, Yueyang, and Changzhutan areas along Dongting
Lake, with a large population, developed transportation, high economic density, and a
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high possibility of human-induced fires. High and moderate risk areas account for the
largest proportion, but the spatial distribution of clustering is not obvious, and the areas are
distributed in all administrative regions. Low risk areas are concentrated in the Wuyi and
Xuefeng mountain ranges. Although these areas have a high forest density, the mountains
there have high elevations with more complex topographic changes, and the population is
sparsely distributed. The possibility of human-induced wildfire is relatively low, so the fire
risk is low.

In order to verify the rationality of the results, the wildfire risk zoning results were
verified using the wildfire location data for Hunan Province in 2020. This analysis found
that the 263 observed wildfire locations fell into the low, moderate, high, significantly high,
and extremely high risk zones with the proportions of 8.37%, 18.63%, 23.57%, 33.46%, and
15.97%, respectively. This means that nearly half of all wildfires occur in significantly and
extremely high risk areas, and wildfires show a normal distribution skewed to the right
in each risk area. This indicates that the Maxent model-based wildfire risk zoning can
simulate the high risk and vulnerable areas of wildfire quite accurately, which, to some
extent, verifies the reliability of the model’s zoning results (see Figures 6b and 7).
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Figure 7. Representation of each hazard class of observed wildfire (%).

4. Discussions and Conclusions
4.1. Discussions
4.1.1. Comparison of BLR and Maxent

A very large number of models are available for wildfire risk assessment, among
which binary logistics regression (BLR) is the most widely used model. To further evaluate
the rationality of using the Maxent model, this study used the aforementioned wildfire and
environmental factor data as input data to assess the wildfire risk in Hunan Province using
the BLR model. Here, the BLR regression model was constructed using the occurrence or
nonoccurrence of wildfire as the dependent variable with values of 1 or 0 for the occurrence
or nonoccurrence of wildfire, respectively. Twelve environmental factors were used that
were classified in the four aspects of topography, climatic conditions, vegetation attributes,
and human activities as the independent variables of wildfire risk as described previously
(the extreme value standardization method was used to reduce the dimensions of some
dependent variables). The extracted sample data were imported into SPSS 26 software
(IBM, New York, USA) for regression processing; the regression model parameters for
wildfire risk assessment were calculated as shown in Table 3.

Table 3. Wildfire model variables and test results.

Variable Model Parameters SE Wald Sig. Exp(B)

DEM −0.770 0.325 5.636 0.018 0.463
SLOPE −0.239 0.207 2.332 0.248 0.787

AT 0.673 0.307 4.797 0.029 1.961
AP 3.247 0.296 120.543 0.000 25.715
AS −1.101 0.273 16.285 0.000 0.333
AA 2.741 0.323 71.823 0.000 15.508
FD −0.196 0.094 4.352 0.037 0.822
VD −0.323 0.259 2.562 0.211 0.724
VT 0.332 0.072 21.042 0.000 1.393
PD −1.330 0.852 2.438 0.118 0.265
DR 1.091 0.214 26.097 0.000 2.978
GD 1.255 0.503 6.217 0.013 3.507

Constant −3.932 0.400 96.858 0.000 0.020
Note: the abbreviation meanings of variable are the same as Table 1.
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Table 3 shows the corresponding significant values of the environmental factors
influencing wildfire is below p < 0.05 level of significance, which passed the Wald test,
indicating that the environmental factors have a significant impact on the development
of wildfire. In this study, Exp(B) is the ratio of the frequency of occurrence of wildfire to
the frequency of nonoccurrence, indicating a change in the occurrence of the dependent
variable wildfire for every one unit increase in the independent variable. The higher the
value, the greater the impact of the environmental variable on wildfire. It can be seen
that the regression parameters of average annual precipitation, aridity, economic density,
distance from the nearest road, average annual temperature, and land cover type are
positive, and the Exp(B) values are greater than 1, indicating that these environmental
variables have a positive contribution to the occurrence of wildfire, significantly impacting
the occurrence of wildfire. By comparing the output results of Maxent model, it can be seen
that the factors of average annual precipitation and temperature have a strong contribution
to the occurrence of wildfire in both models, while the contributions and effects of the
remaining factors vary. In addition, in the context of Figure 4, one can see that the Maxent
model can further reflect the quantitative correlation between environmental factors and
wildfire and can capture in detail the correspondence between environmental factors and
wildfire at different levels or scores, rather than the rough positive or negative correlation
derived from the BLR model.

The AUC value of the BLR model was calculated in the ROC analysis module of
SPSS as 0.738, which indicates that the prediction results of the BLR model are basically
reasonable. This also indirectly indicates the advantage of this model that is currently being
widely used for zoning as a part of wildfire risk assessment. However, the AUC value of
the Maxent model was 0.816, which is higher than that of the BLR model, indicating that the
prediction accuracy of the Maxent model is slightly better than that of the BLR model, which
has been shown previously in the studies of Bar et al. (2012) [48], Liu and Yang (2013) [29].
The difference between the two models for fitting wildfire and environmental variables may
be related to the implementation mechanism of these two models. The BLR model does not
consider the spatial correlation and heterogeneity of environmental variables, assuming
in advance the existence of a linear function between the explanatory variables and their
corresponding coefficients, which can only yield positive and negative correlations between
the independent and dependent variables. However, overfitting occurs when the model fits
any independent variables with strong spatial autocorrelation. In addition, the BLR model
requires a separate collinearity test for the independent variables before fitting, and there
is a risk that significant variables will be removed early. The Maxent model is a machine
learning method, which can fully consider the complex nonlinear relationships between
predictor variables and response variables. Meanwhile, it is simply constructed, easy to
apply, and has a low input data requirement for Maxent model. However, the disadvantage
of Maxent is that the quantitative relationship between wildfire and explanatory variables
cannot be obtained, and the relationship can only be expressed in the form of response
curves.

4.1.2. Future Research

Improving the accuracy of wildfire prediction in real-time and establishing a dynamic,
high-accuracy, and high-resolution grid-scale wildfire prediction model is critical to the
daily management of wildfire prevention, firefighting, and fire control command. Al-
though static, large-scale wildfire risk assessment can scientifically guide the assessment
and zoning of wildfire risk at mid-scales as well as obtain the general patterns of wildfire
occurrence easily. The spatial heterogeneity, temporal dynamics, and distribution nonlin-
earity of environmental factors affecting wildfire occurrence, especially meteorological
and combustible fuels factors, are particularly important. Using data related to multi-
year average meteorological factors or to the accumulation of combustible fuels, aridity
and humidity, and temperature to fit risks or levels of wildfire occurrence will make the
assessment results less useful for practical guidance. In a follow-up study, the input of
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monthly, weekly, daily, and temporal scale meteorological factors, such as daily average
temperature, daily maximum and minimum temperatures, daily precipitation, and daily
wind speed into a wildfire prediction model with high precision spatial interpolation raster
data will effectively improve the real-time data and reliability of wildfire risk assessment.
The known fire location and burned area inputting the model may help the wildfire risk
model to evaluate the higher and more reliable risk distribution. Aside from the traditional
BLR, GWR, and gompit models, machine learning models, such as random forest, neural
networks, Maxent, support vector machines, and Bayesian networks, have the advantages
of high fault tolerance, intelligence, self-learning, and the effective avoidance of overfitting.
They have become the new choices of wildfire risk prediction and assessment models. In
addition, scholars should pay more attention to the environmental effect of wildfire such as
improving the soil fertility and quality of habitats, reducing the forest pests, and updating
the wild species.

4.2. Conclusions

Combining Maxent model and GIS to construct a wildfire risk assessment model using
known wildfire locations and environmental variables can provide an intuitive, detailed,
and highly accurate technical means of wildfire risk assessment and zoning. In this study, a
Maxent wildfire risk assessment model was constructed with GIS technical support using a
2016–2020 dataset of wildfire locations and 12 environmental variables in Hunan Province,
so that a provincial-scale wildfire risk assessment and zoning study could be conducted.
The results show that:

(1) For wildfire, the importance of environmental variables in descending order includes
climatic conditions, vegetation, human activities, and topography, while the contri-
bution of environmental variables in descending order includes climatic conditions,
vegetation, topography, and human activities. The interaction between environmental
factors reduces the importance of climatic conditions and human activities in the
model, while in contrast, the importance of topography and vegetation variables
increased.

(2) The mechanisms by which environmental variables affect wildfire are complex and
variable. The response curves of wildfire to the 12 selected environmental variables
are not linear but are complex and nonlinear; the average annual temperature, aridity,
land use type, GDP density, distance from roads, and population density have a
nonlinear positive correlation with wildfire probability. In contrast, elevation, slope,
precipitation, wind speed, and vegetation cover within a suitable interval have a
positive promoting effect on wildfire probability. The environmental state outside
the suitable interval will curb wildfire. The response of wildfire probability to forest
density is U-shaped. When forest density is either too high or too low, density will
promote the occurrence of wildfire.

(3) The geographical differentiation of wildfire risk in Hunan Province is obvious. The
areas at lowest to high risk accounted for 74.48% of the total area, while the areas at
significantly high risk and above accounted for a relatively low 25.52%. From the
spatial distribution pattern, the extremely high risk areas are mainly distributed in
Nanling, and the Yangming and Dawei mountains, along with the middle reaches
of Yuanjiang River. The areas of significantly high risk are concentrated in Yiyang,
Yueyang, and Changzhutan areas along Dongting Lake. The high and moderate risk
areas account for the largest proportion, but the spatial distribution of clustering is
not obvious. The low risk areas are concentrated in the Wuyi and Xuefeng mountain
ranges.
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