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Abstract: Traditional site index curves are frequently produced for shade-intolerant species but
are scarce for shade-tolerant species. Red spruce (Picea rubens Sarg.) can be found in three distinct
geographic regions (northern, central, and southern) within the Appalachian Mountains. The one
commonly used set of red spruce site index curves is over ninety years old. A definite need exists for
a modern, regionally applicable set of site index curves. This research sampled 83 plots randomly
located in the central Appalachians of West Virginia. Three sets of anamorphic site index curves
were created after careful examination of height models built using Chapman-Richards and Meyer
functions. One set of curves was constructed with traditional age height pairs. The second utilized a
suppression-corrected age and height pair. The third set examined diameter at breast height (DBH)
and height pairs. Fit statistics indicated better performance for the suppression-corrected age–height
pair site index and the DBH–height pair site index versus the traditional age–height pair models.
Site index conversion equations were also investigated for the red spruce age-corrected site index.
Linear regression was used to determine significant geographic and climate variables and the utility
of including site index values for red maple (Acer rubrum L.) and yellow birch (Betula alleghaniensis
Britton) in the model to predict red spruce site index. Significant models were found for varying
combinations of species site index, climate, and geographic variables with R2

adj in the range of
0.139–0.455. These new site index curves and conversion equations should provide utility for site
productivity estimation and growth and yield modeling while aiding in restoration efforts for this
important central Appalachian species.

Keywords: climate; dendrochronology; red spruce; restoration; site index

1. Introduction

Site index models are primarily developed using tree age and height for shade-
intolerant species in even-aged stands. Potential growth suppression can limit shade-
tolerant species as candidates for traditional site index research per standard protocols.
Central Appalachian red spruce (Picea rubens) is one such species which frequently experi-
ences suppression periods, as it transitions through canopy classes [1] and is often found
growing in uneven-aged stands for which few site index models have been developed [2].
An extensive review of traditional site index curves for eastern United States tree species [3]
includes just a single study of red spruce site index [4].

Recognition of the inherent limitation of the traditional approach of using free growing
dominant and codominant trees to model site index has led to alternate, non-traditional
methods. Meyer [5] proposed a two-parameter height equation (Meyer 2P) that could
use either age and height pairs (A, H) or DBH and height pairs (DBH, H) for uneven-
aged stands. McLintock and Bickford [6] used (DBH, H) pairs and the Meyer 2P model
to generate site index curves for red spruce stands in northern Maine. Nicholas and
Zedaker [2] applied both the Meyer 2P and the Chapman–Richards function [7,8] to
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estimate red spruce site index using (DBH, H) in the southern Appalachian Mountains of
Virginia and Tennessee. One novel method of accounting for suppression in red spruce
was developed by Seymour and Fajvan [9]. This method involves using free-growth age
of the tree instead of the true age of the tree by replacing time periods during lengths of
suppression on tree cores with free-growth age of the same length following the suppressed
period. Both age correction to account for suppression and the use of DBH instead of age are
therefore different methods to address the shade tolerance of red spruce when predicting
height and site index.

The extent of the limited red spruce site index research has focused on red spruce at
the northern and southern portions of its range [2,6,9–12] with the exception of a Picea spp.
group model for the Northeastern United States [13]. No site index models are currently
available for central Appalachian red spruce. This is unfortunate, as red spruce is a species
of high restoration interest in the central Appalachian region. A model used to estimate
red spruce height and site index values for central Appalachian red spruce could be a
valuable tool for estimating red spruce growth and could allow land managers to make
land suitability decisions when identifying possible locations for red spruce restoration
activities such as plantings.

Models have been created to predict and quantify site quality using metrics other than
height at a base age. Forest site quality index (FSQI) has been used in the Appalachian
Mountains to quantify site quality [14]. FSQI is a land ranking system that ranks forest
lands in terms of productivity by assessing geographic features that impact soil moisture,
such as aspect, slope, and landscape position [14,15]. Other models have been created that
use climate specific variables and geographic FSQI-related variables to predict a site index
for other spruce species in northern latitudes [16]. Jiang et al. [17] developed models to
predict site index for conifers in the eastern United States (including red spruce) using
climate variables. Using combinations of geographic and climatic variables on a site level
may be an effective method of predicting central Appalachian red spruce site index.

Much of the forest land in the central Appalachians that was once dominated by red
spruce is now dominated by associated hardwood species, such as red maple (Acer rubrum)
and yellow birch (Betula alleghaniensis) [18–20]. There have been no studies published that
predict the site index of red spruce using site index values of associated species. Steele and
Cooper [21] developed linear models to predict site index values of western timber species
using the site index values of associated species. Older studies conducted in the eastern
United States developed models that use site index of common timber species to predict
the site index of associated commercial timber species [22–24]. Carmean [25] created linear
models to predict site index values between 12 common timber species in the mid-western
United States. Developing models that can estimate red spruce site index using associated
hardwood species could be an effective method of assessing the suitability of forested land
for potential red spruce management activities.

The first objective of this research is to develop regionally accurate site index curves
for red spruce. This will be accomplished by examining traditional data sources for site
index such as (A, H) pairs, less commonly used data such as (DBH, H) pairs, and testing
the efficacy of a more novel measure for red spruce, the suppression-corrected age (AC).
The second objective of this research is to develop models to predict red spruce site index
at sites where dominant or codominant red spruce are absent from the overstory. This will
be accomplished by using the site index values of common hardwood associates of red
spruce combined with easily obtainable climatic and geographic data. Models to predict
red spruce site index where the species is currently absent would be an important tool in
pinpointing optimal locations for future red spruce restoration activities.

2. Materials and Methods
2.1. Field Sampling Methods

Field sampling occurred on the Monongahela National Forest (MNF) in the state of
West Virginia. Random sampling locations were determined by using the random sample
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tool within the data management ArcToolbox in ArcGIS (ESRI, Redlands, CA) [26]. Ran-
dom points were placed on portions of the MNF that contained at least 10% estimated red
spruce canopy cover using the red spruce landcover dataset obtained from the state of West
Virginia’s GIS clearinghouse website [27]. A total of 150 random sample points were identi-
fied with a goal to sample 100 plots. A total of 83 plots were ultimately sampled (Figure 1)
due to restrictions associated with identified sample points such as potential endangered
species habitat, location on private property, and locations difficult to safely access.
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Forest in West Virginia.

Garmin Oregon 650 GPS units (Garmin, Olathe, KS) were used to navigate to the
randomly selected sample points. Once at the random sample point, a temporary plot
marker was installed, and sampling occurred. Sampling was conducted using a circular
plot with a 10 m radius (0.02337 hectare area) that had a random azimuth generated to
begin sampling. From plot center, a 10 m tape was extended along the azimuth. Sampling
was then conducted from the random azimuth in a clockwise rotation until all samples
were collected. The first red spruce tree that was encountered in this clockwise sweep
that was larger than 10.16 cm diameter at breast height (DBH) (1.37 m from ground) was
determined to be the primary red spruce. The primary red spruce was the spruce tree
that was to be destructively sampled for future stem analysis. Once the primary spruce
was selected, sampling continued clockwise until the next red spruce was encountered
in the sample sweep; if this tree was in the codominant or dominant canopy class, it was
the one used in this study for anamorphic site index curves, otherwise, the sample sweep
continued until a dominant/co-dominant red spruce was identified. In addition, the first
black cherry (Prunus serotina Ehrh.), American beech (Fagus grandifolia Ehrh.), yellow birch,
and red maple occurring in the dominant or codominant canopy class were sampled for
site index conversion modeling. If one of the trees selected for sampling had visible signs
of poor health, defects, or crown damage, the tree was not sampled, and the next suitable
tree of that species was selected. Two increment cores were extracted at breast height on
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the secondary red spruce and for each sampled hardwood tree. Increment cores were taken
perpendicular to slope on opposite sides of the tree to avoid sampling reaction wood. Total
height (H), crown height, bark thickness, crown class, and diameter at breast height (DBH)
were recorded for each tree. Heights were measured using a Haglof Vertex Laser Geo
(Haglof, Järfälla, Sweden).

2.2. Laboratory Methods

Extracted increment cores were stored in large paper straws and labeled according
to the plot number and tree sample number. Cores were then oven dried in a laboratory
oven. Once dry, increment cores were mounted to wooden core mounts and pressed. Once
mounted, cores were then sanded using an electric palm sander. All cores were sanded to
a minimum grit level of 400. Red spruce cores that showed growth suppression and all
hardwood species cores were sanded further to a grit level of 800.

Sanded increment cores were then visually crossdated using a dissecting micro-
scope [28]. Starting, ending, decadal, and narrow, rings were marked for each sample core.
Each core was dated by ensuring narrow marker rings were the same age on both cores
extracted from the tree. Starting and ending years of each core were noted to determine
true age (A) of the sample core. Suppression periods within the red spruce increment
cores were identified and were processed according to the suppression correction methods
developed by Seymour and Fajvan [9]. Periods of growth suppression were measured with
a micrometer to a precision of 0.01 mm. Age of suppression was noted, and the distance
associated with the suppressed period was marked on the cores along the free-growth
period following the suppression. The number of free-growth annual increments counted
along this distance on the core was noted. A suppression-corrected age (AC) was then
determined for the increment core by replacing the suppression period age with the follow-
ing free-growth age. A total of 40 of the 83 sampled trees required suppression-corrected
ages, as they experienced at least one suppression period at breast height. Average ring
width measurement was noted for each suppression period. Average 10-year ring width
measurements were noted for periods preceding and following suppression periods.

Once cores were visually dated, they were then scanned with a high-resolution scanner
at a resolution of 2400 dots per inch. Scanned images of each core were then processed in
CooRecorder (Version 9.0) (Cybis, Saltsjöbaden, Sweden) by measuring and dating each
annual growth ring. The pith estimation tool was used in CooRecorder to estimate rings to
the pith on samples that did not reach the pith. CooRecorder’s pith estimation value was
used for future predicted age values for all cores that did not contain the pith of the tree.

2.3. Height Modeling

Both the two-parameter Meyer [5] (Meyer 2P) and the three-parameter [7,8] (C-R 3P)
height models were considered for modeling height. The Meyer 2P model is as follows:

H = 1.37 + θ1

(
1 − eθ2 A

)
where H is the height (m), A is the age (true or suppression-corrected) at DBH, and θ1 and
θ2 are parameters. A Meyer 2P height model may be fit by replacing age with DBH. The
three-parameter Chapman–Richards function is as follows:

H = 1.37 + θ1

(
1 − eθ2 A

)θ3

with H and A as in [1] and θ1 . . . θ3 are parameters. Note that the Meyer 2P model is a
reduced form of the C-R 3P model with θ3 = 1. Models were fit with the Gauss–Newton
method using nonlinear regression in SAS (SAS Version 9.4) (SAS Institute, Cary, NC). Best
models were selected using the Akaike information criterion corrected (AICc), calculation
of the predicted error sum of squares (PRESS) statistic, and bias (mean of the residuals).
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Six model forms were chosen for evaluation: a C-R 3P model and a Meyer 2P using
(AC, H) pairs, a C-R 3P model and a Meyer 2P using (DBH, H) pairs, and a C-R 3P model
and a Meyer 2P model using (A, H) pairs. This allows comparison of the C-R 3P model
versus the Meyer 2P for the three different independent variable pairs as well examination
of the best paring of independent variables.

Reference guide curves were generated for a range of site index values aligning
with the estimated site indices of the study plots. Individual reference curves use the
estimates for θ2 and θ3 from the six models, the reference curve site index as the height,
and a base age of 50 in order to solve for the necessary value of θ1 for the reference curve
per the anamorphic guide curve estimation described in Clutter et al. [29]. Estimates of
individual plot site index can then be made using a known height age pair, θ2 (and θ3
where applicable), and the base age. Substituting DBH or AC for A generates the reference
curves and plot estimates of site index for (DBH, H) and (A, H) models, respectively.

2.4. Site Index Conversion Models

Multiple linear regression was used to develop conversion equations to predict red
spruce site index from associated species site index values, climate, and geographic vari-
ables. Red maple and yellow birch were the most commonly associated species at the
sample plots, and site index was determined using the site index curves in Carmean, Hahn,
and Jacobs [3]. Twenty-three climatic variables (30-year mean values from 1981 to 2010)
considered for modeling were obtained from Oregon State University’s PRISM website
(prism.oregonstate.edu, 02/20/2020) [30]. Geographic variables were determined using
data collected during field sampling, such as slope, latitude and longitude coordinates,
elevation, and aspect (Table 1). Table 1 shows a list of the climatic and geographic variables
considered for linear site index modeling.

Table 1. Climatic and geographic variables considered in site index conversion models.

Derived Annual Climate Variables Directly Calculated Annual Climate Variables

DD0 Degree-Days Below 0 ◦C, Chilling
Degree-Days MAT Mean Annual Temperature (◦C)

DD5 Degree-Days Above 5 ◦C, Growing
Degree-Days MWMT Mean Warmest Month Temperature (◦C)

DD18 Degree-Days Below 18 ◦C, Heating
Degree-Days MCMT Mean Coldest Month Temperature (◦C)

DD18 Degree-Days Above 18 ◦C, Cooling
Degree-Days MAP Mean Annual Precipitation (mm)

NFFD Number of Frost-Free Days MSP May-September Precipitation (mm)
bFFP Day of The Year on Which FFP Begins AHM Annual Heat-Moisture Index (MAT+10)/(MAP/1000))

eFFP Day of The Year on Which FFP Ends SHM Summer Heat-Moisture Index
((MWMT)/(MSP/1000))

PAS Precipitation as Snow Previous Aug–July (mm)
EMT Extreme Minimum Temperature Over 30 Years Geographic Variables
EXT Extreme Maximum Temperature Over 30 Years Slope Average % Slope
Eref Hargreaves Reference Evaporation (mm) Latitude Latitude-Decimal Degrees
CMD Hargreaves Climatic Moisture Deficit (mm) Longitude Longitude-Decimal Degrees
MAR Mean Annual Solar Radiation (Mj m-2 d-1) Slope-Aspect Azimuth with Cosine Transfer (Stage and Sales, 2007)
RH Mean Annual Relative Humidity (%) Elevation Elevation (m)

Models were generated using all subsets multiple linear regression, but given the
size of the data set (n = 83), models were limited to eight or fewer independent variables.
The all subsets procedure was conducted in four pools of variables. All pools of variables
included all the geographic and climate variables. One pool had no species site index
(C + G), one pool forced yellow birch site index (YB + C + G), one pool forced red maple
(RM + C + G), and the last forced both red maple and yellow birch (YB + RM + C + G). Best
models having all significant predictors were selected in each group and ranked by AICc,
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R2
adj, and PRESS. Conversion equations were also generated for red maple alone (RM),

yellow birch alone (YM), and red maple and yellow birch together (RM + YB).

3. Results
3.1. Height Modeling Results

Most commonly, site index is calculated from age–height pairs. All parameter estimates
for both the C-R 3P and Meyer 2P models using age–height pairs (A, H) were significant
(Table 2). AICc (smaller is better) was slightly less for the C-R 3P model versus the Meyer
2P, at 482.0 and 482.9, respectively. The Meyer 2P PRESS statistic (smaller is better) was
1581.8, which was greater than that of the C-R 3P, at 1548.3. Both models were unbiased,
but the Meyer 2P model had a slightly wider 95% confidence interval (−1.01, 0.87) than
the interval for the C-R 3P (−0.91, 0.93) (Table 3). While the θ3 parameter was significantly
different than zero, its 95% confidence interval includes the value of one, indicating it is not
statistically necessary. While the C-R 3P model performed slightly better than the Meyer
2P model, given the parameter θ3 was not statistically different than 1, the Meyer 2P was
selected for the base age 50 site index curves (Figure 2).

Table 2. Parameter estimates for Chapman–Richards three-parameter and Meyer two-parameter models of (Age, Height),
(Corrected Age, Height), and (DBH, Height) pairs. DBH: diameter at breast height.

Model Parameter Lower 95%
Confidence Limit Estimate Upper 95%

Confidence Limit SE p

Chapman–Richards 3P Age θ1 21.73 23.56 25.39 0.9208 <0.0001
θ2 −0.05 −0.03 −0.02 0.0084 0.0002
θ3 0.32 2.09 3.85 0.8887 0.0213

Meyer 2P Age θ1 22.42 24.55 26.67 1.0703 <0.0001
θ2 −0.03 −0.02 −0.01 0.0027 <0.0001

Chapman–Richards 3P
Corrected Age θ1 21.94 26.64 31.34 2.3643 <0.0001

θ2 −0.04 −0.02 0.00 0.0085 0.0126
θ3 0.28 1.39 2.50 0.5570 0.0146

Meyer 2P Corrected Age θ1 24.18 28.70 33.23 2.2748 <0.0001
θ2 −0.02 −0.02 −0.01 0.0026 <0.0001

Meyer 2P DBH θ1 29.41 36.86 44.31 3.7453 <0.0001
θ2 −0.03 −0.02 −0.01 0.0037 <0.0001

Table 3. Fit statistics for Chapman–Richards three-parameter and Meyer two-parameter models of (Age, Height), (Corrected
Age, Height), and (DBH, Height) pairs. AICc: Akaike information criterion corrected; PRESS: predicted error sum of
squares.

Model AICc PRESS Lower 95%
Confidence Limit Bias Upper 95%

Confidence Limit

Chapman–Richards 3P Age 482.0 1548.3 −0.9140 0.0071 0.9282
Meyer 2P Age 482.9 1581.8 −1.0103 −0.0720 0.8663

Chapman–Richards 3P
Corrected Age 471.0 1371.3 −0.8627 −0.0005 0.8618

Meyer 2P Corrected Age 469.5 1357.9 −0.8984 0.0328 0.8328
Meyer 2P DBH 428.1 821.7 −0.7459 −0.0716 0.6027

A total of 40 of the 83 sampled trees (48.2%) required suppression-corrected ages,
as they experienced at least one suppression period subsequent to growing taller than
breast height. Mean ring width measurement was noted for each suppression period.
Mean 10-year ring width measurements were noted for periods preceding and following
suppression periods. The mean ring width for suppression periods was 200% lower than
periods of free growth before suppression. The average ring width for suppression periods
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was 300% lower than free-growth periods following suppression release events. Table 4
shows the average ring width measurements of suppressed and free-growth periods to
justify the suppression correction methods.

Forests 2021, 12, x FOR PEER REVIEW  10  of  16 
 

 

 

Figure 2. Red spruce site index curves developed from a Meyer two‐parameter height model of 

(Age, Height) pairs. Individual lines are base age 50 site index curves. Open circles represent sam‐

ple trees (n = 83). 

A total of 40 of the 83 sampled trees (48.2%) required suppression‐corrected ages, as 

they experienced at least one suppression period subsequent to growing taller than breast 

height. Mean ring width measurement was noted for each suppression period. Mean 10‐

year ring width measurements were noted for periods preceding and following suppres‐

sion periods. The mean ring width for suppression periods was 200% lower than periods 

of free growth before suppression. The average ring width for suppression periods was 

300% lower than free‐growth periods following suppression release events. Table 4 shows 

the average ring width measurements of suppressed and free‐growth periods to  justify 

the suppression correction methods. 

Table 4. Red spruce suppression summary data showing the average number of suppression peri‐

ods and length of suppression. Ring width measurements for suppressed and free‐growth periods 

are also provided. 

Mean Number of Suppression Periods Per Tree  1.27 

Mean Suppression Period  34.9 years 

   

Mean Suppressed Ring Width  0.46 mm 

Pre‐suppression Mean 10‐Year Ring Width  1.11 mm 

Post‐suppression Mean 10‐Year Ring Width  1.62 mm 

Figure 2. Red spruce site index curves developed from a Meyer two-parameter height model of (Age, Height) pairs.
Individual lines are base age 50 site index curves. Open circles represent sample trees (n = 83).

Table 4. Red spruce suppression summary data showing the average number of suppression periods
and length of suppression. Ring width measurements for suppressed and free-growth periods are
also provided.

Mean Number of Suppression Periods Per Tree 1.27

Mean Suppression Period 34.9 years
Mean Suppressed Ring Width 0.46 mm

Pre-suppression Mean 10-Year Ring Width 1.11 mm
Post-suppression Mean 10-Year Ring Width 1.62 mm

For the (AC, H) pairing, all parameters were significant for both models (Table 2), and
AICc was similar at 471.0 and 469.5, respectively, for the C-R 3P and Meyer 2P models
(Table 3). As was the case with the (A, H) pairing, both models were unbiased, and here
the 95% confidence interval widths for bias were almost equal; the CR 3P model was
(−0.86, 0.86) and the Meyer 2P was (−0.90, 0.83). PRESS was 1357.9 for the Meyer 2P
model, which was less than the value of 1371.3 for the C-R 3P model. The 95% confidence
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interval for θ3 in this C-R 3p model is also significantly different from zero but also includes
one, so it too is not statistically necessary to generate the guide curves (Figure 3).
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The C-R 3P model for the (DBH, H) pairing failed to converge in the nonlinear
regression model, preventing comparison to the Meyer 2P model. For the Meyer 2P model,
both parameters were significant (Table 2). The model was unbiased, having a confidence
interval of (−0.74, 0.60), its AICc value was 428.1, and PRESS was 821.7 (Table 3). The
guide curves for this model (Figure 4) are based on a 35 cm base DBH, which was close to
the median DBH of 36.6 cm calculated for the sample trees.

The comparison between the (A, H) C-R 3P and Meyer 2P models against their
respective (AC, H) C-R 3P and Meyer 2P models shows that the suppression correction for
age reduced AICc and PRESS and led to a narrower 95% confidence interval for the bias.
The Meyer 2P model for (DBH, H) has the overall narrowest 95% bias confidence interval
and the least fit statistics for the five remaining models (Table 3).

While potentially the best generated site index curves here are the (DBH, H) Meyer 2P
curves, given the predominance of using (A, H) pairs for site index among multiple species,
the (AC, H) Meyer 2P site index equation was selected to examine site index conversion
equations between species site index, climate, and geographic variables. DBH has the
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greatest correlation with height, ρ = 0.82, followed by AC, ρ = 0.70, and then A, ρ = 0.51
(Table 5).
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Table 5. Correlation matrix for site index variables.

* Height DBH Age Corrected Age

Height 1.00 0.82 0.51 0.70

DBH 0.82 1.00 0.45 0.67

Age 0.51 0.45 1.00 0.85

Corrected Age 0.70 0.67 0.85 1.00

* All correlations were significant p < 0.0001.

3.2. Site Index Conversion Results

Slightly more than ninety percent (n = 75) of the total number of sample plots (n = 83)
had either a yellow birch or red maple present. Yellow birch site index trees were sampled
on 68.7% of the plots (n = 57), red maple trees site index trees on 69.9% (n = 58), and on
48.2% (n = 40) both were sampled.

The linear regression model between the (AC, H) Meyer 2p site index and red maple
site index (RM model) was significant (p = 0.0023), as was the YB model (p = 0.0008).
However, in the RM+YB model, red maple site index was not significant (p = 0.0664). This
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was likely due to the multicollinearity of red maple and yellow birch site index, where the
Pearson correlation coefficient was ρ = 0.23 coupled with a greater correlation between red
spruce site index and yellow birch site index (ρ = 0.43) than between red spruce site index
and red maple site index (ρ = 0.39). The YB model also had lower AICc and PRESS values
than the RM model (Table 6).

Table 6. Site index conversion best linear regression models for each variable pool.

Variables in Pool Model AICc R2
adj PRESS

Red maple (RM) 11.15 + 0.34SIRM 134.4 0.139 605.4

Yellow birch (YB) 8.88 + 0.48SIYB 124.4 0.173 518.1

Climate+Geography (C + G) 183.4 − 0.0059Elevation + 0.20NFFD −
0.51eFFp − 1.65EXT 183.4 0.188 757.0

RM + C + G
1418.8 + 0.42SIRM + 5.08Longitude −

34.83MAT + 4.75MWMT − 0.11DD18 −
1.17bFFP − 0.92eFFP + 0.071PAS

128.1 0.339 520.8

YB + C + G −158.54 + 0.32IYB + 6.33Latitude −
0.0060Elevation − 0.035DD18 − 0.45bFFP 112.7 0.380 448.8

RM + YB + C + G 124.71+ 0.27SIRM + 0.62SIYB − 14.77MAT +
5.51MWMT − 0.12DD0 − 0.40bFFP 81.9 0.455 298.0

A best model was selected using all subsets multiple linear regression for the four pools
of climate and geographic variables: C + G, C + G + RM, C + G + YB, and C + G + RM + YB.
The addition of either or both species’ site index into the C + G model resulted in smaller
AICc and PRESS values and an increase in R2

adj as compared to the C + G model. Of the
four, the RM + YB + C + G performed best, having the smallest AICc (81.9), the least PRESS
statistic (298.0), and the greatest R2

adj (0.46).
The single term RM and YB models both had smaller AICc and PRESS values versus

the four term C + G model, however, the C + G R2
adj was greater than both (Table 6).

Irrespective of the RM + YB + C + G model and considering just AICc and PRESS, models
containing yellow birch site index outperformed models containing red maple site index.
The overall best model in all categories was RM + YB + C + G.

4. Discussion

The Meyer [4] red spruce site index curve, developed from sites in Vermont, New
Hampshire, and Maine, is still in use as refit by Carmean, Hahn, and Jacobs [3]. However,
when site index values were estimated for the (A, H) pairs of trees in this study from the
refit equation, several erroneously large values occurred in the youngest trees aged less
than 35 years. It is noted in the McNab and Keyser [31] publication that disagreements
between the refitted equation tend to be distorted most at the largest and smallest values.
Both the guide curves for age (C-R 3P and Meyer 2P) are generated using a wider age range
than Meyer [4], from 23–304 years for actual age and from 23–158 for suppression-corrected
age. In addition, studies have shown that northern red spruce are not as affected by climate
as central and southern red spruce [32–36]. Data used to develop the Carmean, Hahn,
and Jacobs [3] site index model was collected in the 1920s [4]. Red spruce sampled in
the Meyer [4] study had different growing conditions and had probably not experienced
growth limitations from acid rain [35,37]. Because of the different growing conditions that
the red spruce in the Meyer [4] study experienced, the Carmean, Hahn, and Jacobs [3] red
spruce site index is potentially not representative of the central Appalachian red spruce
site index. Given this study’s wider range of measured tree ages, data local to the central
Appalachians, and the inclusion of the solved parameter values for the height equations, it
is suggestive that these new curves are an improvement to the Meyer [4] site index curves.

While it is unstated as to the number of parameters in their Chapman–Richard function
(three is typical), Nicholas and Zedaker [2] were unable to fit the function to their (DBH,
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H) pairs for southern Appalachian red spruce due to convergence issues in the nonlinear
modeling. This same problem was encountered here. This study sampled trees with a
minimum DBH criteria of 10.16 cm, lower than their 25 cm limit. The DBH range of trees
sampled here was 11.4–71.4 cm. Both parameter estimates for this study, θ1 = 29.41 and
θ2 = −0.022, were of the same order of magnitude and sign as the Nicholas and Zedaker [2]
parameters, which were 49.81 and −0.012, respectively. The θ2 parameter is part of the
exponent of the base e term, where it is the coefficient for DBH. As DBH increases, the
base e term decreases and the height increases. The smaller the value for θ2, the faster
height increases. Since −0.022 < −0.012, the curves that have been generated for central
Appalachian spruce are steeper than the curves generated for southern Appalachian red
spruce in relation to DBH. Of further note is that the Meyer 2P (DBH, H) guide curves in
this study had better fit statistics than any of the curves generated for (A, H) and (AC, H).
As DBH is a more readily measurable parameter, these new Meyer 2P (DBH, H) curves
may prove to be a valuable addition to site productivity work in the future.

Examination of the several site index conversion models reveals that a simple conver-
sion model containing a single tree species performed better than the best C + G model.
Given the opportunity, adding a site index tree to the data collection is therefore preferable
when an estimate of red spruce site index is of interest as opposed to relying on climate
and geographic predictors. Alternatively, it is useful to add climate and geographic data to
improve the site index conversion prediction. Yellow birch site index is a better predictor
than red maple site index, with or without C + G predictors. In this study, yellow birch
could be found on 57 plots and red maple could be found on 58 plots, so the likelihood
of finding yellow birch was nearly the same as red maple, and roughly 90% of the time
one or the other was present. Most publications only develop models using one associated
species as the predictor, which can be more readily implemented [21,25].

Linear models that use associated species, climatic, and geographic variables are
critical for estimating site index in the central Appalachians, as much of red spruce’s home
range is now predominantly in forest cover other than red spruce [38,39]. In locations where
red spruce is absent, these linear models could be useful for estimating site productivity
in terms of height growth for red spruce. Being able to quantify locations with predicted
site index values for red spruce would be a major advantage in selecting lands for future
restoration activities in order to ensure management activities occur on the sites most likely
to optimize both ecological and economic (return on investment) outcomes [40].

5. Conclusions

These new Meyer 2P height models with guide curves should be useful for estimating
central Appalachian red spruce site index values. The guide curves will allow foresters
to estimate red spruce site index values in the field with easily collected age, height, and
DBH values in stands that have a red spruce component in the overstory. Specifically,
these new site index curves may be more appropriate to estimate central Appalachian red
spruce site index values than previous site index models created for southern and northern
populations of red spruce. For situations where red spruce is absent from the overstory, the
linear models that use associated species could be helpful tools for estimating potential red
spruce site index values. If resources allow, models that have the best AICc values should
be used, but models with fewer parameters may be easier to implement in the field. The
ability to estimate red spruce site index using linear models with associated species could
help with quantifying site productivity in terms of red spruce site index where the species
once existed. Predicted red spruce site index values could be used to refine lists of potential
forest stands for red spruce restoration projects.
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