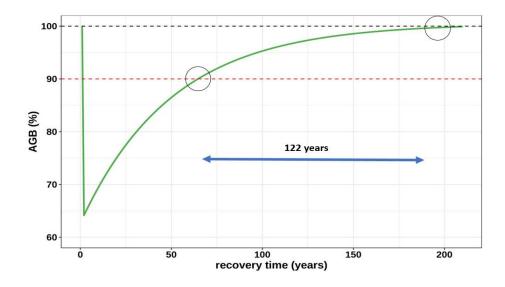
# **Supplementary Material**

#### Article


# Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events

Bruno L. De Faria <sup>1,2,\*</sup>, Gina Marano <sup>3</sup>, Camille Piponiot <sup>4</sup>, Carlos A. Silva <sup>5</sup>, Vinícius de L. Dantas <sup>6</sup>, Ludmila Rattis <sup>7,8</sup>, Andre R. Rech <sup>1</sup> and Alessio Collalti <sup>9,10</sup>

- <sup>1</sup> Programa de Pós-Graduação em Ciência Florestal, Universidade Federal Vales do Jequitinhonha e Mucuri Campus JK, Diamantina 39100-000, MG, Brazil; andre.rech@ufvjm.edu.br
- <sup>2</sup> Federal Institute of Technology North of Minas Gerais (IFNMG), Diamantina 39100-000, MG, Brazil
- <sup>3</sup> Department of Agriculture, University of Napoli Federico II, 80055 Portici (Naples), Italy; gina.marano@unina.it
- <sup>4</sup> Smithsonian Tropical Research Institute, 03092 Panamá, Panama; PiponiotC@si.edu
- <sup>5</sup> School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA; c.silva@ufl.edu
- <sup>6</sup> Institute of Geography, Federal University of Uberlandia (UFU), Av. João Naves de Ávila 2121, Uberlandia, Minas Gerais, 38400-902, Brazil; viniciusdantas@ufu.br
- <sup>7</sup> Woods Hole Research Center, Falmouth, MA 02540, USA; lrattis@woodwellclimate.org
- <sup>8</sup> Instituto de Pesquisa Ambiental da Amazônia, Canarana 78640-000, MT, Brazil
- <sup>9</sup> Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy, 06128 Perugia, Italy; alessio.collalti@cnr.it
- <sup>10</sup> Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
- \* Correspondence: blfaria@gmail.com

Figure S1. Pre-disturbance reference biomass map according to Avitabile et al. [60].

### **Figures**



**Figure S2.** The AGB dynamic as reproduced by the forest growth model (3-PG green line) showing the relationship between aboveground biomass (%) and recovery time in years to reach recovery threshold. Red dotted line 90% threshold and black dotted line 100% threshold.

## Tables

Table S1: Parameters description and their values used in 3-PG model (modified from Hirsch et al., 2004)

| Parameter                 | Description                                                      | Mean value and units                                  |
|---------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| Y                         | NPP/GPP ratio (i.e. CUE)                                         | 0.47 (dimensionless)                                  |
| α                         | Canopy quantum efficiency                                        | 0.035 (mol C mol uAPAR <sup>-1</sup> )                |
| SLA                       | Specific leaf area                                               | $20 (m^2 kg \text{ leaf } C^{-1})$                    |
| $P_{w}$                   | Fractional allocation to wood                                    | 0.4 (dimensionless)                                   |
| $\mathbf{P}_{\mathrm{f}}$ | Fractional allocation to foliage                                 | 0.25 (dimensionless)                                  |
| Pr                        | Fractional allocation to fine roots                              | 0.35 (dimensionless)                                  |
| Fh                        | Fraction of decomposed dead organic matter passing to humus      | 0.17 (dimensionless)                                  |
| Fm                        | Metabolic/structural ratio in leaves and roots                   | 0.1 (dimensionless)                                   |
| PAR                       | Incident photosynthetically active radiation                     | Model input (MJ m <sup>-2</sup> month <sup>-1</sup> ) |
| λ                         | Fractional absorption of PAR by foliage                          | 0.7 (per unit LAI)                                    |
| $	au_{w}$                 | Turnover time of live wood                                       | 600 (month <sup>-1</sup> )                            |
| $	au_{\mathrm{f}}$        | Turnover time of live leaves                                     | 12 (months <sup>-1</sup> )                            |
| $	au_{ m r}$              | Turnover time of live roots                                      | 12 (months <sup>-1</sup> )                            |
| τm                        | Turnover time of the metabolic fraction of leaf and root litter  | 4 (months <sup>-1</sup> )                             |
| τs                        | Turnover time of the structural fraction of leaf and root litter | 48 (months <sup>-1</sup> )                            |
| Th                        | Turnover time of soil humus carbon                               | 300 (months <sup>-1</sup> )                           |
| τwd                       | Turnover time of woody debris                                    | 60 (months <sup>-1</sup> )                            |
| $	au_{wp}$                | Turnover time of wood products                                   | 120 (months <sup>-1</sup> )                           |

Table S2: Details of ALS data acquisitions

| Data Attributes                        | Value       |
|----------------------------------------|-------------|
| ALS (Airborne Laser Scanning) system   | ALTM 3100   |
| Flight Altitude (m)                    | 750         |
| Acquisition Date                       | 10/05/2018  |
| Scan Angle (º)                         | 10          |
| Scanning Frequency (Hz)                | 40          |
| Point Density (points/m <sup>2</sup> ) | 22.98       |
| Datum                                  | SIRGAS 2000 |



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).